

Mass Timber Structural Design: Tips for Practicing Engineers

Scott Breneman, PhD, PE, SE WoodWorks – Wood Products Council scott.breneman@woodworks.org

Eloïse Allsop, P.E., CEng, MIStructE, M.Eng. Fast + Epp eallsop@fastepp.com

"The Wood Products Council" is a Registered Provider with The American Institute of Architects Continuing Education Systems (AIA/CES), Provider #G516.

Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request. This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

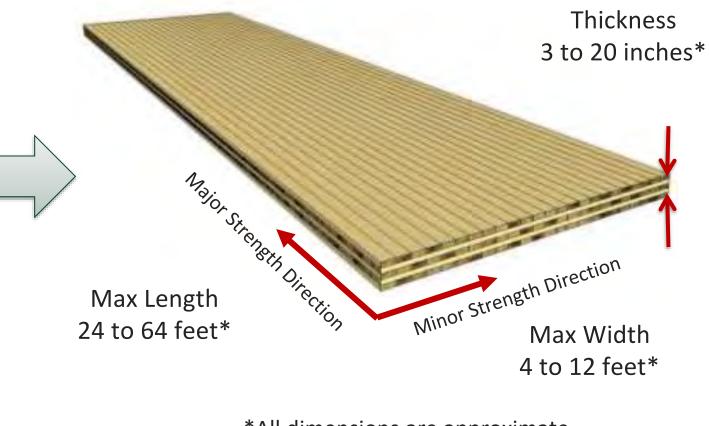
Course Description

As mass timber's use in commercial and multi-family projects across the US has grown, so too have the depth of questions that often arise when engineering these projects. This presentation will address some of the most common structural design questions related to mass timber buildings, as well as provide tips and resources to aid those working on such projects. Topics will include where to find and how to use the structural properties for mass timber panels; the differences and similarities between basic and custom CLT grades, treatment of holes and notches in CLT, different approaches to achieving fire-resistance ratings and real-world design tips which are not addressed in the design standards.

Learning Objectives

- Discuss the structural properties and performance characteristics of mass timber products and review their paths to acceptance on building projects.
- Review unique design situations for CLT panels and present engineering strategies to address them.
- Demonstrate design steps for calculated fire resistance of exposed mass timber panels.
- Review lessons learned in the design and construction of buildings using mass timber

Mass Timber Products



What is CLT?

3+ layers of laminations Solid Sawn or Structural Composite Lumber Laminations

Cross-Laminated Layup Glued with Structural Adhesives

*All dimensions are approximate. Consult with manufacturers

Candlewood Suites

Redstone Arsenal, AL

62,600 SF, 4 story hotel, 92
private rooms
CLT utilized for walls, roof
panels, and floor panels
Image Credit: Lend Lease

UMass Design Building

Amherst, MA

Photo Credit: Alex Schreyer

Cheney Park Apartments CLT floor on Panelized Light Frame Walls

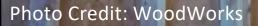


Photo Credit: WoodWorks

CrossFit Center Spokane, WA

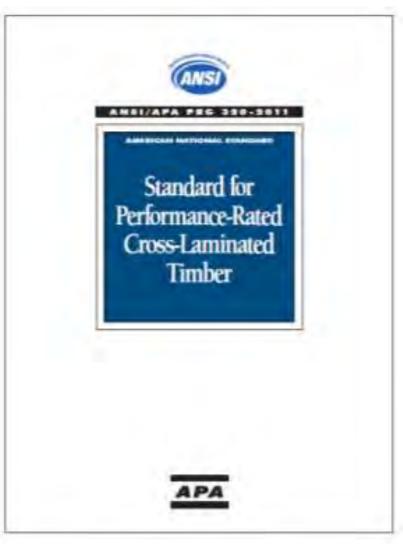
Photo Credit: WoodWorks

ER-United

w5-191

TRADE I

Photo Credit: Mike Bradley, Beacon Builders


BROCK COMMONS VANCOUVER, BC

ects

acto

5 PLY CLT PANELS, 2-WAY SPAN ~9'X13' GRID OF COLUMNS

North American CLT Product Standard

ANSI/APA PRG 320 Standard for Performance-Rated Cross-Laminated Timber

The Standard Covers:

- U.S. and Canada Use
- Panel Dimensions and Tolerances
- Component Requirements
- Structural Performance Requirements
- Panel and Manufacturing Qualification
- Marking (Stamping)
- Quality Assurance

CLT Basic Stress Grades

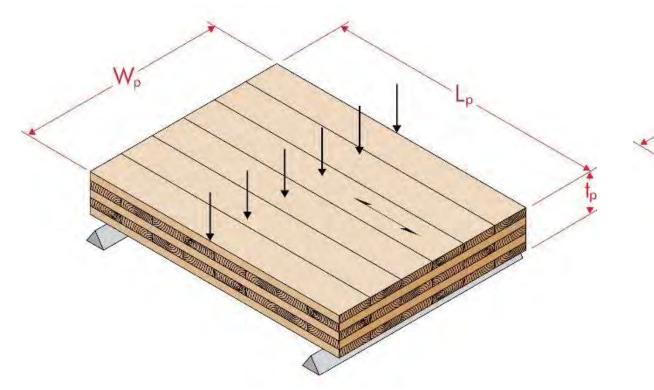
CLT Grade	Major Strength Direction	Minor Strength Direction
E1	1950f-1.7E MSR SPF	#3 Spruce Pine Fir
E2	1650f-1.5E MSR DFL	#3 Doug Fir Larch
E3	1200f-1.2E MSR Misc	#3 Misc
E4	1950f-1.7E MSR SP	#3 Southern Pine
E5	1650f-1.5E MSR Hem-Fir	#3 Hem-Fir
V1	#2 Doug Fir Larch	#3 Doug Fir Larch
V1(N)	#2 Doug-Fir Larch (North)	#3 Doug-Fir Larch (North)
V2	#1/#2 Spruce Pine Fir	#3 Spruce Pine Fir
V3	#2 Southern Pine	#3 Southern Pine
V4	#2 Spruce Pine Fir (South)	#3 Spruce Pine Fir (South)
V5	#2 Hem-Fir	#3 Hem-Fir

Basic solid sawn CLT stress grade in PRG 320-2019.

Other custom stress grades including structural composite lumber (SCL) permitted

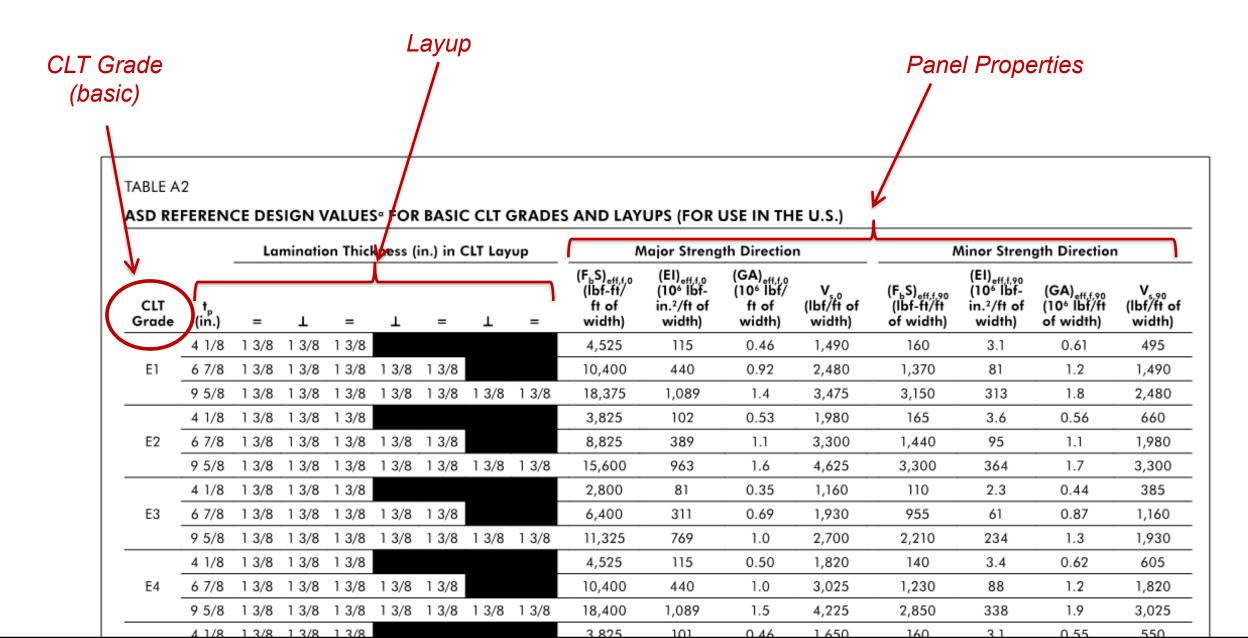
Common CLT Layups

7-ply 7-layer


9-ply 9-layer

C A C A C A	W/
antestest.	361
SET	1

Building Code Acceptance of CLT

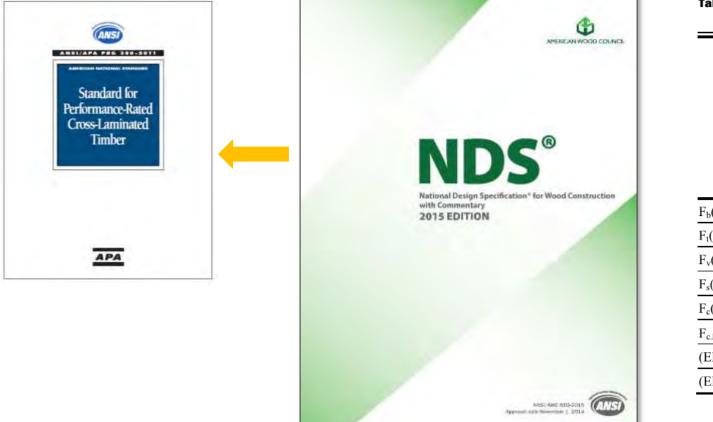

FLATWISE Panel Loading

Span in MAJOR Strength Direction "Parallel" Direction Use subscript '0' in Notation Span in MINOR Strength Direction "Perpendicular" Direction Use subscript '90' in Notation

Reference & Source: ANSI/APA PRG 320

PRG 320 Defined Layups

Flatwise CLT Panel Section Properties

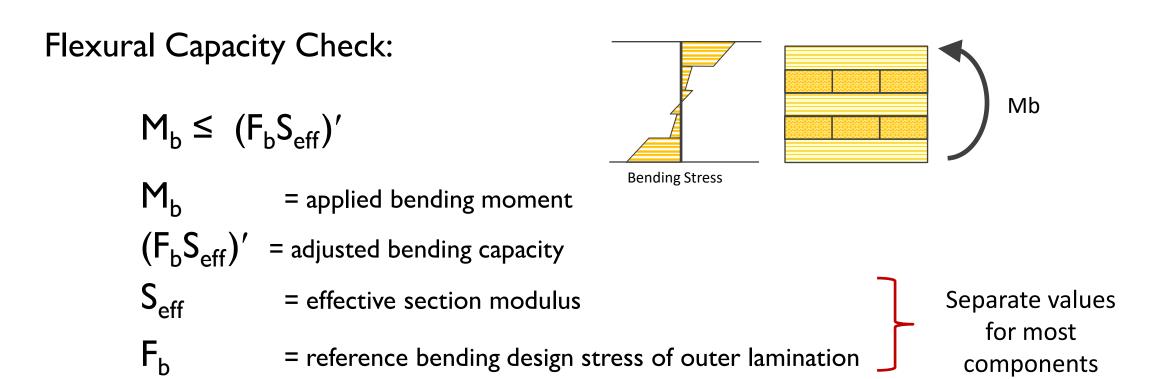


Flexural Strength: Flexural Stiffness: Shear Strength: Shear Stiffness: $\begin{array}{lll} F_b S_{eff,0} & F_b S_{eff,90} \\ EI_{eff,0} & EI_{eff,90} \\ V_{s,0} & V_{s,90} \\ GA_{eff,0} & GA_{eff,90} \end{array}$

Values in RED provided by CLT manufacturer

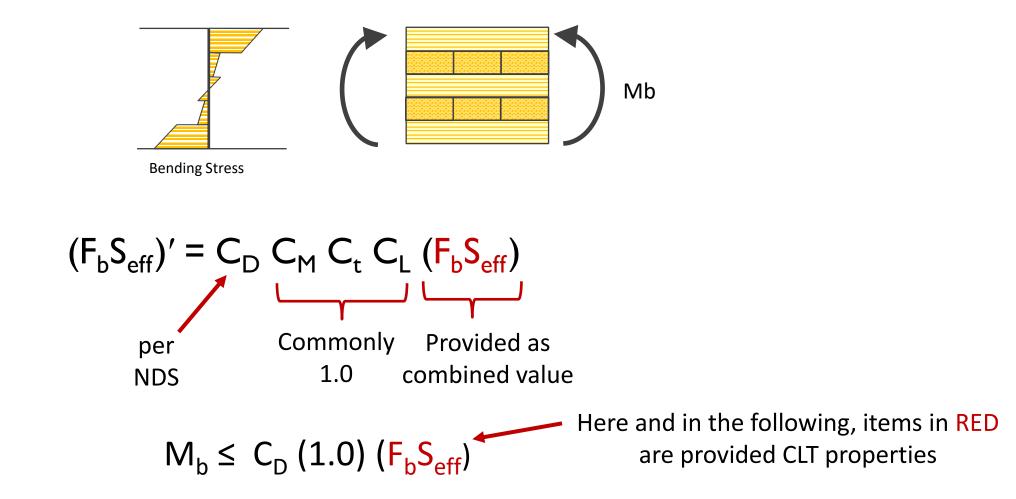
Reference: PRG 320 and CLT Product Reports

Structural Design Standardization


Table 10.3.1 Applicability of Adjustment Factors for Cross-Laminated Timber

	ASI only		ASD and LRFD				LRFD only			
	Load Duration Factor	Wet Service Factor		Temperature Factor	Beam Stability Factor	Column Stability Factor	Bearing Area Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor
$F_b(S_{eff})' = F_b(S_{eff})$	x C _D	C _N	м	C_t	$C_{\rm L}$	-	-	2.54	0.85	λ
$F_t(A_{parallel})' = F_t(A_{parallel})$	x C _D	, C _N	м	Ct	-	-	-	2.70	0.80	λ
$F_v(t_v)' = F_v(t_v)$	x C _D	C _N	м	C_t	-	-	-	2.88	0.75	λ
$F_s(Ib/Q)_{eff}' = F_s(Ib/Q)_{eff}$	x -	C	м	Ct	-	-	-	2.88	0.75	-
$F_c(A_{parallel})' = F_c(A_{parallel})$	x C _D	C _N	M	Ct	-	C_P	-	2.40	0.90	λ
$F_{c\perp}(A)' = F_{c\perp}(A)$	x -	C	м	Ct	-	-	C_b	1.67	0.90	-
$(EI)_{app}' = (EI)_{app}$	x -	C	М	Ct	-	-	-	-	-	-
$(EI)_{app-min}' = (EI)_{app-min}$	x -	C	М	Ct	-	-	-	1.76	0.85	-

National Design Specification for Wood Construction 2015 & 2018 Edition


Flatwise Flexural Strength

Design properties look like an Extreme Fiber Model:

Flatwise Flexural Strength

Flexural Capacity Check (ASD)

Flatwise Flexural Strength Design Example

Select acceptable CLT section **Given**:

16 foot span floor40 psf live load, 40 psf total dead load

16 foot span

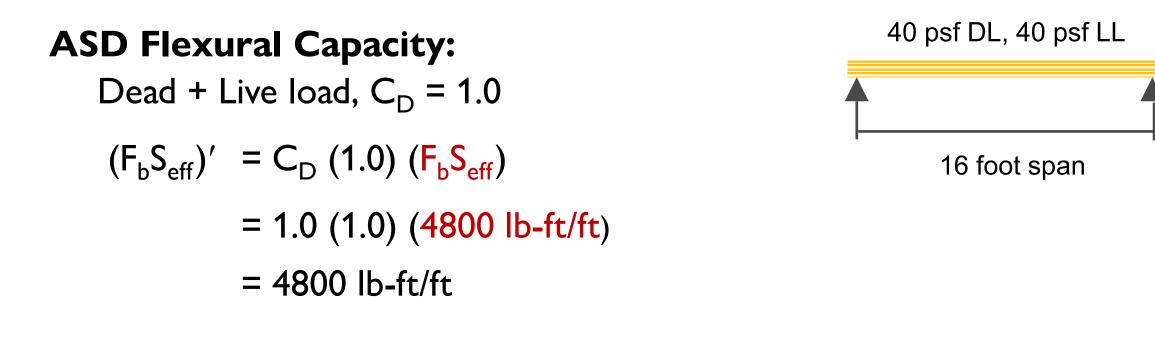
Assume:

one-way spanning action in major strength axis of CLT Analysis of a 1 ft strip of panel as beam

Calculate ASD Applied Moment using load combo 1.0DL + 1.0LL

$$M_b = w L^2 / 8 = (40+40 psf) (16 ft)^2 / 8 = 2560 lb-ft/ft$$

Flatwise Flexural Strength Design Example

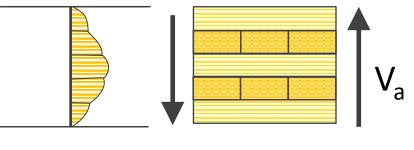

Look for Acceptable CLT Grade from PRG 320: $F_b S_{eff,0} > 2560 \text{ lb-ft/ft}$

										UPS (FOR							
		Lamination Thickness (in.) in CLT Layup								lajor Streng		1	Minor Strength Direction				
CLT Grade	t _p (in.)	=	Ŧ	=	Ŧ	=	T	=	(F _b S) _{eff,f,0} (Ibf-ft/ ft of width)	(EI) _{eff,f,0} (10° lbf- in.²/ft of width)	(GA) _{eff,f,0} (10 ^s lbf/ ft of width)	V₅₀ (lbf/ft of width)	(F _b S) _{eff,f,90} (lbf-ft/ft of width)	(EI) _{eff,f,90} (10° lbf- in.²/ft of width)	(GA) _{eff,f,90} (10 ⁶ lbf/ft of width)	V_90 (Ibf/ti of width)	
	4 1/8	1 3/8	1 3/8	1 3/8					2,090	108	0.53	1,980	165	3.6	0.59	660	
V1	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8			4,800	415	1.1	3,300	1,440	95	1.2	1,980	
	9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	8,500	1,027	1.6	4,625	3,300	364	1.8	3,300	
	4 1/8	1 3/8	1 3/8	1 3/8					1,980	108	0.53	1,980	150	3.6	0.59	660	
V1(N)	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8			4,550	415	1.1	3,300	1,300	95	1.2	1,980	
	9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	8,025	1,027	1.6	4,625	3,000	364	1.8	3,300	
	4 1/8	1 3/8	1 3/8	1 3/8					2,030	95	0.46	1,490	160	3.1	0.52	495	
∨2	6 7/8	1 3/8	1 3/8	13/8	1 3/8	13/8			4 675	262	0.91	2 480	1 370	81	1.0	1 490	

Select 5-Ply 6 7/8" Thick V1 Panel with $F_b S_{eff,0} = 4800$ lb-ft/ft

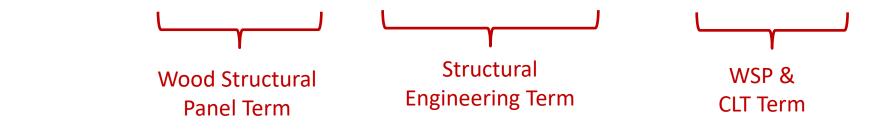
Reference: ANSI/APA PRG 320

Flatwise Flexural Strength Design Example


 $M_b = 2560 \text{ lb-ft/ft} \leq (F_b S_{eff})' = 4800 \text{ lb-ft/ft}$

Flexural Strength OK

Flatwise Shear Strength


Shear Capacity Check:

$$V_a \leq F_s(Ib/Q)_{eff}'$$

 $V_a = applied shear$
 $F_s(IbQ)_{eff}' = adjusted shear strength$

Shear Stress

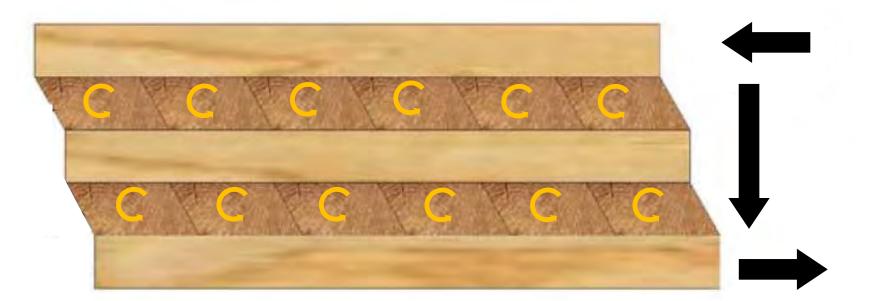
Jargon Alert! AKA "Planar Shear", "Out-of-Plane Shear", or "Rolling Shear" Strength

Reference: NDS 2018

Flatwise Shear Strength

Shear Capacity Check (ASD):

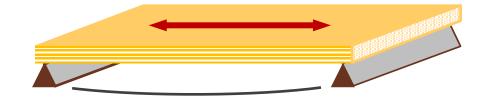
$$F_{s}(IbQ)_{eff}' = C_{M}C_{t}(F_{s}(IbQ)_{eff}) = C_{M}C_{t}V_{s}$$
Commonly
$$From Manufacturer$$


 $V_a \leq (1.0) V_s$

Note: Duration of Load Effects (Cd and λ) NOT applicable to Flatwise Shear Strength in the NDS

Reference: NDS & Product Reports

Flatwise Shear Strength

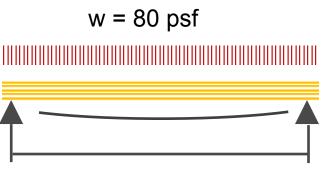


Rolling Shear

Source: CSA O86-14, 2016 Supplement

Deflection Calculations

General Purpose: 1 Way, Beam Action Needed Stiffness: El_{eff,0} GA_{eff,0}



Analyze as beam representing a strip (e.g 1. ft) of CLT Can model multiple spans, cantilevers, etc.

Flatwise Deflection Example

Uniform loading on one way slab: Beam Analysis using Flexural Stiffness: $El_{eff,0}$ Shear Stiffness: $GA_{eff,0}$ Maximum Deflection @ Mid-Span

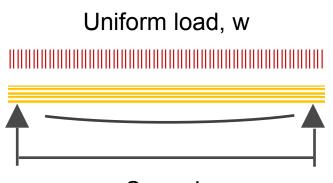
$$\Delta_{max} = \frac{5}{384} * \frac{wL^4}{EI_{eff}} + \frac{1}{8} * \frac{wL^2}{5/6 \ GA_{eff}}$$

16 foot span

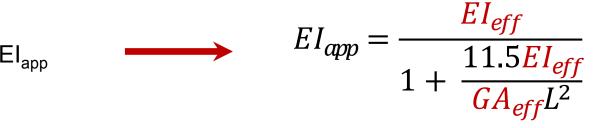
Note: 5/6 is shear deformation form factor for rectangular section from mechanics of materials. See NDS C10.4.1, FPL "Wood Handbook", etc.

Deflection Calculations

Simplified Beam Deflections:


For single span, simply supported uniform load

$$\Delta_{max} = \frac{5}{384} * \frac{wL^4}{EI_{eff}} + \frac{1}{8} * \frac{wL^2}{5/6 \ GA_{eff}}$$


What is *Apparent* Flexural Stiffness, El_{app}, such that

$$\Delta_{\max} = \frac{5}{384} \cdot \frac{wL^4}{EI_{app}}$$

Set equal to each other and solve for EI_{app}

Span, L

Reference: US CLT Handbook & NDS

Deflection Creep Factor

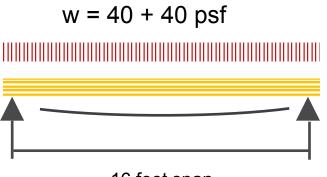
Deformation to Long Term Loads

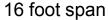
$$\Delta_T = K_{cr} \, \Delta_{LT} + \Delta_{ST} \qquad \text{NDS Eq 3.5-1}$$

 Δ_{ST} Deflection due to short-term loading

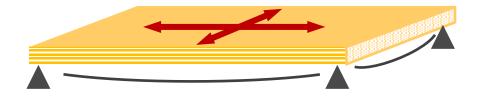
 Δ_{LT} Immediate deflection due to long term loading

$$K_{cr}$$
 2.0 for CLT in dry service conditions

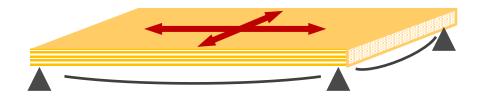

Design Example:


 Δ_{ST} from 40psf = 0.159 in (assuming long term = dead)

 Δ_{LT} from 40psf = 0.159 in


- $\Delta_{\rm T}$ = 2.0 (0.159) + 0.159 = 0.477 in
- = L / 403

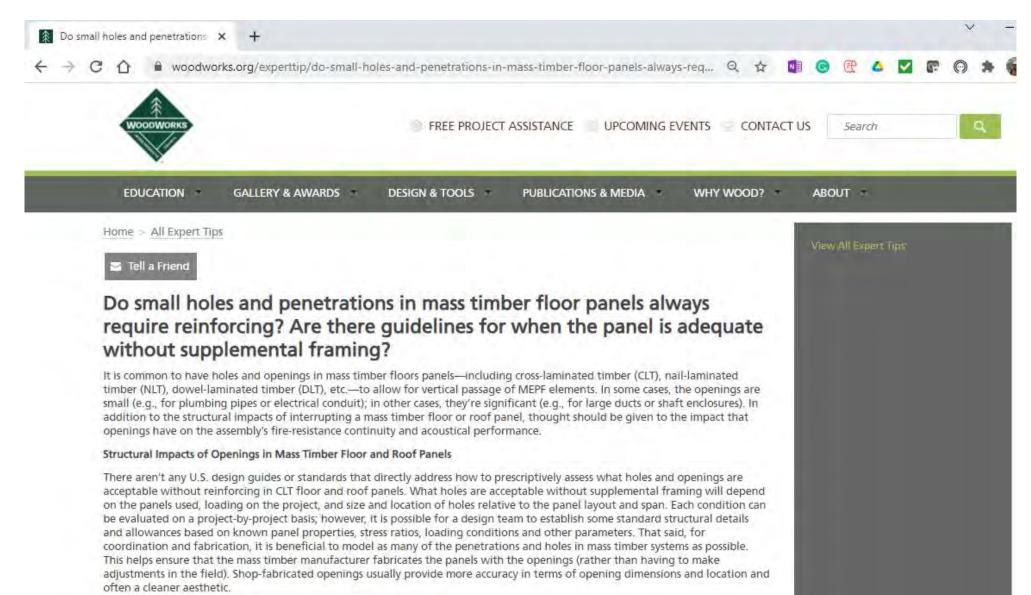
Reference: NDS 2015



Deflection Calculations

Analyze as plate in bending using FEM analysis software Note, CLT is not a symmetric isotropic plate

Point Supported Plates


Possible, however not common.

Structural design issues include:

- Compression perp to grain at support points
- Bi-directional bending stress interactions
- Punching shear

Not covered in NDS

Holes in Mass Timber Panels

Using PRG 320 Basic Grades for Design?

TABLE A2.

THE ALLOWABLE BENDING CAPACITIES^(a,b,c) FOR CLT LISTED IN TABLE A1 (FOR USE IN THE U.S.)

Ibf- GA _{eff,90} 2/ft) (10 ⁶ Ibf/ft 1 0.61	EI _{eff,90} (10 ⁶ lbf- in.²/ft)	$F_{b}S_{eff,90}$												
	,		GA _{eff,0} (10 ⁶ lbf/ft)	El _{eff,0} (10 ⁶ lbf- in.²/ft)	F₅S _{eff,0} (lbf-ft/ft)	=	\perp	=	T	=	\perp	=	CLT t (in.)	CLT Grade
1.0	3.1	160	0.46	115	4,525					1 3/8	1 3/8	1 3/8	4 1/8	
1.2	81	1,370	0.92	440	10,400			1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	6 7/8	E1
1.8	309	3,125	1.4	1,089	18,375	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	9 5/8	
6 0.56	3.6	165	0.53	102	3,825					1 3/8	1 3/8	1 3/8	4 1/8	
1.1	95	1,430	1.1	389	8,825			1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	6 7/8	E2
1.7	360	3,275	1.6	963	15,600	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	9 5/8	
3 0.44	2.3	110	0.35	81	2,800					1 3/8	1 3/8	1 3/8	4 1/8	
0.87	61	955	0.69	311	6,400			1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	6 7/8	E3
1.3	232	2,180	1.0	769	11,325	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	9 5/8	
6 0.63	3.6	180	0.53	115	4,525					1 3/8	1 3/8	1 3/8	4 1/8	
1.3	95	1,570	1.1	441	10,425			1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	6 7/8	E4
1.9	360	3,575	1.6	1,090	18,400	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	9 5/8	
6 0.59	3.6	165	0.53	108	2,090					1 3/8	1 3/8	1 3/8	4 1/8	
1.2	95	1,430	1.1	415	4,800			1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	6 7/8	V1
1.8	360	3,275	1.6	1,027	8,500	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	9 5/8	
1 0.52	3.1	160	0.46	95	2,030					1 3/8	1 3/8	1 3/8	4 1/8	
1.0	81	1,370	0.91	363	4,675			1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	6 7/8	V2
1.6	309	3,125	1.4	898	8,275	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	9 5/8	
6 0.59	3.6	180	0.53	108	2,270					1 3/8	1 3/8	1 3/8	4 1/8	
1.2	95	1,570	1.1	415	5,200			1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	6 7/8	V3
	360	3,575	1.6	1,027	9,200	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	9 5/8	
	3.1 81 309 3.0 95	160 1,370 3,125 180 1,570	0.46 0.91 1.4 0.53 1.1	95 363 898 108 415	2,030 4,675 8,275 2,270 5,200	1 3/8	1 3/8	1 3/8 1 3/8 1 3/8	1 3/8 1 3/8 1 3/8	1 3/8 1 3/8 1 3/8 1 3/8 1 3/8	1 3/8 1 3/8 1 3/8 1 3/8 1 3/8	1 3/8 1 3/8 1 3/8 1 3/8 1 3/8	4 1/8 6 7/8 9 5/8 4 1/8 6 7/8	

For SI: 1 in. = 25.4 mm; 1 ft = 304.8 mm; 1 lbf = 4.448 N

(a) See Section 4 for symbols.

(b) This table represents one of many possibilities that the CLT could be manufactured by varying lamination grades, thicknesses, orientations, and layer arrangements in the layup.

(c) Custom CLT grades that are not listed in this table shall be permitted in accordance with Section 7.2.1.

PRG 320 includes pre-defined Stress Grades, Layups and related Design Properties

Is doesn't tell you what CLT grades and layups are available.

Coordinate with manufacturers availability and information

3rd Party Product Qualification of CLT

approved a

CLT Product Reports

							Lä	ayup)							Pa	nel l	Prop	ertie
r custor	n)																1		
APA Pro	duct Ren	ort [®] PF	2-1 319																
Revised																	/	Page	3 of
V																	/		
Table 1.	Allowab	le Desi	gn Prop	perties	(iii) for l	Lumb	er Lan	nination	ns Use	ed in Se	manLar	n CLT (for Use	in the	U.S.)				
				Major	Streng	oth Dire	clion				12.00			Minor St	rength D	irection		-	
CLT Gra		b.07	Ep		1.0	Fa		Fyd		FRO	Fn.90		E90	Fue		F _{6.80}	F _{9.00}		F ₅₃₀
	p		(10° psi)		ISI)	(ps		(psi)		(psi)	(psi)		0º psi)	(psi)		(psi)	(psi)		(psi)
SL-V4	77	15	1.1	3	50	1,0	00	135	1.1	45	775	1.1	1.1	350	4	,000	135	1100	45
Table 2.	and the second					and 3).		- marco											
	Allowab	le Desi		acities	(x) for	Smar	tLam 8				Jse in th		_	th Direct			ai Shaa	ath Direc	
		le Desig		acities	(x) for	Smar	tLam 8	Balanci (in.) in C			Jse in th		or Streng	th Direc	tion	Min		gth Direc	tion
CLT Grade	Allowab Layup #	1000		acities	(x) for	Smar	tLam 8				Jse in tr		Elere (101 Ibf-	GAwts (10° (bttt)	tion V.= (b75)	Min FisSorial (bbf- firth)	Eleter (10 ⁿ Ibf-	GA _{stan} (10 ⁴ (btitt)	V.s
CLT		Thick- ness	gn Cap	L	(*) for aminat	Smar	tLam E ckness		CLT Lay			Maj FuSura (Ibl-	Elure (101	GA _{uts} (10 ⁶	V.II	Fi-Swith (IDF-	Eletti (101	GA_101 (101	V
CLT	Layup #	Thick- ness (in.)	gn Cap	L L 1 3/8	(*) for aminati	Smar	tLam E ckness		CLT Lay			Maj FoSina (IbF- ft/ft)	or Streng (101 16f- (n.Aft)	GA _{uta} (10 ⁴ (b0tt)	V (60%)	Fi-Swiss (bd- ft/ft)	Elet # (10* 16/- in_2/8)	GALKIE (104 (6670)	V. # (b00
CLT	Layup # 3-alt	Thick- ness (in.) 4 1/8	gn Cap = 1 3/8	1 3/8 1 3/8 1 3/8 x 2	(n) for aminati = 1.3/8	Smar	tLam E ckness		CLT Lay			Maj F55-81 (101- 1/11) 1,800	or Streng (10 ¹ 10 ¹ 10 ¹ 10 ¹ 10 ¹	GAuta (10° (50%) 0.41	V.s (60%) 1,430	FirSwitt (164- ft/ft) 245	Eletin (10 ¹ 10 ⁴ in 410) 2.9	GA.cm (10 ⁴ (b0fft) 0.41	V. # (bft) 495 990
CLT	Layup # 3-alt 4-maxx 5-alt	Thick- ness (in.) 4 1/8 5 1/2 6 7/8	gn Cap = 1 3/8 1 3/8 1 3/8 1 3/8	1 3/8 1 3/8 1 3/8 1 3/8 1 3/8	(*) for aminab = 1.3/8 1.3/8 1.3/8 1.3/8	Smart ion Thio	tLam 6 ckness =		CLT Lay			Maj (IbF 107) 1,800 2,925 4,150	or Streng (10 ¹ 10 ⁷ - (n.411) 74 161 286	GA _{ets} (10 ⁶ (5011) 0.41 0.49 0.83	V (b05) 1,430 1,740 1,980	Fi-Switti (bb/ ft/ff) 245 975 2,120	Eleter (10% ib/- in_A(t) 2.9 23 74	GA.cm (10 ⁴ (btm) 0.41 0.85 0.83	V (bfm 495 990 1,43
CLT	Layup # 3-alt 4-maxx	Thick- ness (in.) 4 1/8 5 1/2	gn Cap = 1 3/8 1 3/8 1 3/8 1 3/8 1 3/8 x 2	1 3/8 1 3/8 1 3/8 1 3/8	(x) for aminati = 1.3/8 1.3/8 1.3/8 1.3/8 1.3/8 x.2	Smart ion Thio	tLam 6 ckness =		CLT Lay			Maj (IbF 107) 1,800 2,925	or Streng (10 ¹ 10 ² - in.4m) 74 161	GA _{ata} (10° (501) 0.41 0.49	V _{4.8} (b05) 1,430 1,740	FiiSwitt (bb/ fi/ft) 245 975	Elenn (10 ¹ 16(- 10,2(11)) 2.9 23	GA ₄₇₃₈ (10 ⁴ (bbff) 0.41 0.85	V (bfm 495 990 1,43
CLT Grade	Layup # 3-alt 4-maxx 5-alt	Thick- ness (in.) 4 1/8 5 1/2 6 7/8	gn Cap = 1 3/8 1 3/8 1 3/8 1 3/8	1 3/8 1 3/8 1 3/8 1 3/8	(*) for aminab = 1.3/8 1.3/8 1.3/8 1.3/8	Smart ion Thio	tLam 6 ckness =		CLT Lay			Maj (IbF 107) 1,800 2,925 4,150	or Streng (10 ¹ 10 ⁷ - (n.411) 74 161 286	GA _{ets} (10 ⁶ (5011) 0.41 0.49 0.83	V (b05) 1,430 1,740 1,980	Fi-Switti (bb/ ft/ff) 245 975 2,120	Eleter (10% ib/- in_A(t) 2.9 23 74	GA.cm (10 ⁴ (btm) 0.41 0.85 0.83	tion V. = (bit) 495 990 1,430 495 990
CLT	Layup # 3-alt 4-maxx 5-alt 5-maxx	Thick- ness (n.) 4 1/8 5 1/2 6 7/8 6 7/8	gn Cap = 1 3/8 1 3/8 1 3/8 1 3/8 1 3/8 x 2 1 3/8	L 13/8 13/8 13/8 13/8 13/8 13/8 13/8 13/8	(a) for aminati = 1.3/8 1.3/8 1.3/8 1.3/8 1.3/8 x.2 1.3/8	Smart ion Thio	tLam 6 ckness =		=			Maj F55411 (104- 11,800 2,925 4,150 5,150	or Streng (10 ¹ 16 ⁴ - (n.Att) 74 161 286 355	GA _{ets} (10 ⁴ (5011) 0.41 0.49 0.83 1.4	V (b05) 1,430 1,740 1,980 2,450	Fi-Switti (bb- fi/m) 245 975 2,120 245	Elenn (10 ¹ in.2(11) 2.9 23 74 2.9	GA.cm (10 ⁴)btm) 0.41 0.85 0.83 0.86	V. = (b)11 495 990 1,43 495

Working with CLT: Know Your Supply Chain

- CLT Manufactures different CLT grades and maximum panel sizes
- CLT Manufacturers have specific CNC capabilities
- 3rd Party Fabricators can have additional CNC capabilities

Photo: Sauter Timber

Photo: DR Johnson

CLT Panels shall be used in dry service conditions, such as in most covered structures, where the average equilibrium content of solid wood is less than 16 percent... CLT panels qualified in accordance with the provisions of this standard are intended to resist the effects of moisture on structural performance as may occur due to construction delays or other conditions of similar severity.

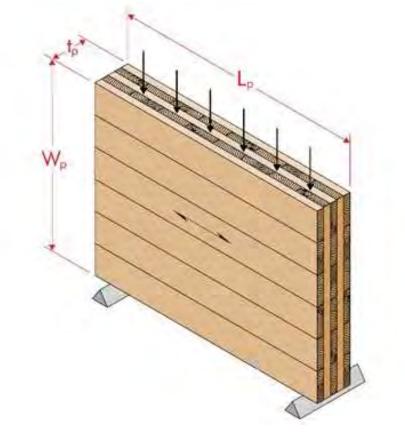
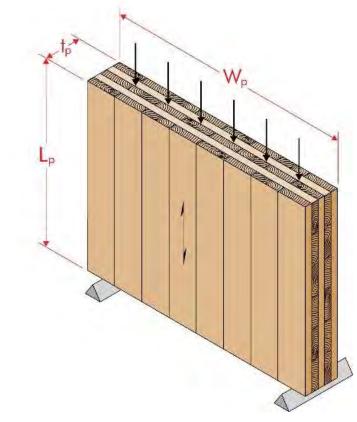

International Community Health Services Shoreline, WA

Photo Credit: Andrew Pogue Photography


2

HICHS Medical & Dental Circle

EDGEWISE Panel Loading

Span in MAJOR Strength Direction

Span in MINOR Strength Direction

Reference & Source: ANSI/APA PRG 320

In-Plane (Edgewise) Shear Testing per PRG 320

TABLE 3-REFERENCE DESIGN VALUES FOR IN-PLANE SHEAR OF THE STRUCTURLAM CROSSLAM® CLT PANELS1

CLT	CLT PANEL THICKNESS		ON ORIENTATION ² psi)	FACE LA	MINATION (lbf/ft of w	ORIENTATIC vidth)	DN ³
LAYUP ⁹	DESIGNATION	п4	<u>т</u> 4	п4		⊥4	
	99 V	175 ⁸	235 ⁸	8,200 ⁸		11,000) ⁸
V2M1	169 V	175 ⁸	235 ⁸	14,000 ⁸		18,800) ⁸
VZMT	239 V	175 ⁸	235 ⁸	19,800 ⁸		26,600) ⁸
	309 V	175 ⁸	235 ⁸	25,600 ⁸		34,300) ⁸
	105V	195	290	9,700		14,400)
V2M1.1	175V	270	290 ⁶	22,400		24,000	
V 21VI 1.1	245V	270 ⁵	290 ⁶	31,300 ⁵		33,600	
	315V	270 ⁵	290 ⁶	40,200 ⁵		43,200	6
		·	Г СОП 2624		Ι ΄	140-4\$^	I I
burce: ICC	-ES/APA Joint E	valuation Report	ESR 3031			143-5s	
					_ 4	175-5s	
					E1	197-7s	
45 to 2	290 PSI R	eference S	Shear Capa	acity		213-7I	
			•	aonty		220-7s	
	= 1.7	to 3.5 kip	s/ft			244-7s	
	ner inc	h of thick	nasel			244-71	
						267-91	

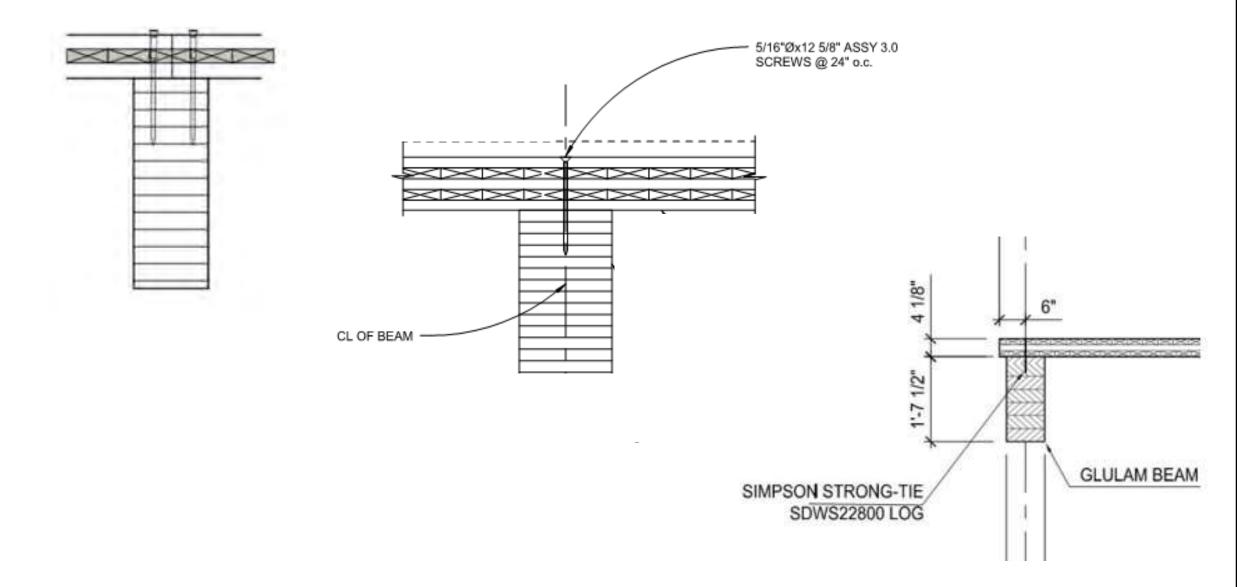
See Manufacturers and Evaluation Reports for Values

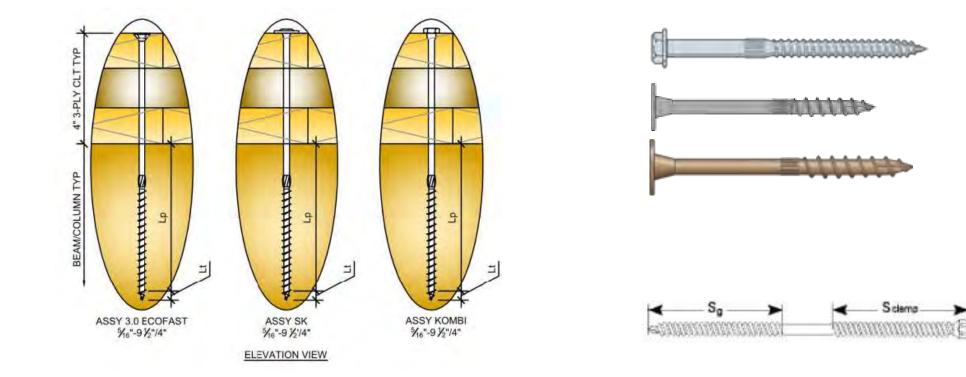
Source: APA Product Report PR-L306

3 Reference Design Values for Nordic X-Lam Listed in Table 1 (For Use in

4									
	0	Major Streng	gth Direction	Minor Strength Direction					
11,000 18,800 26,600	8	F _{v,e,0} ^(a) (psi)	G _{e,0} t _p ^(d) (10 ⁶ lbf/ft)	F _{v,e,90} ^(a) (psi)	G _{e.90} t _p ^(d) (10 ⁶ lbf/ft)				
34,300		155 ^(b)	1.36	190 ^(b)	1.36				
14,400		155	1.52	190 ^(b)	1.52				
24,000		155	1.79	190	1.79				
33,600 43,200		185 ^(c)	2.23	215 ^(c)	2.23				
140-4\$	5 1/Z	145	2.39	190 ^(b)	2.39				
143-5s	5 5/8	185 ^(c)	2.44	215 ^(c)	2.44				
175-5s	6 7/8	185	2.99	215	2.99				
197-7s	7 3/4	155 ^(b)	3.37	215 ^(c)	3.37				
213-7I	8 3/8	185 ^(c)	3.64	215 ^(c)	3.64				
220-7s	8 5/8	185 ^(c)	3.75	215 ^(c)	3.75				
244-7s	9 5/8	185 ^(c)	4.18	215 ^(c)	4.18				
244-71	9 5/8	185 ^(c)	4.18	215 ^(c)	4.18				
267-91	10 1/2	155 ^(b)	4.56	215 ^(c)	4.56				
314-91	12 3/8	185 ^(c)	5.38	215 ^(c)	5.38				

Multiply by **Cd = 1.6** for short term ASD strength

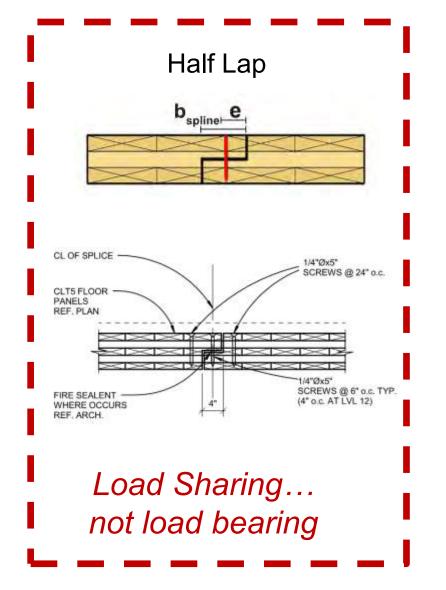

Mass Timber Design


Long self tapping screws used extensively throughout mass timber construction

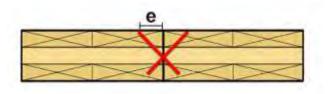
Connections

Panel to Beam Connection Styles

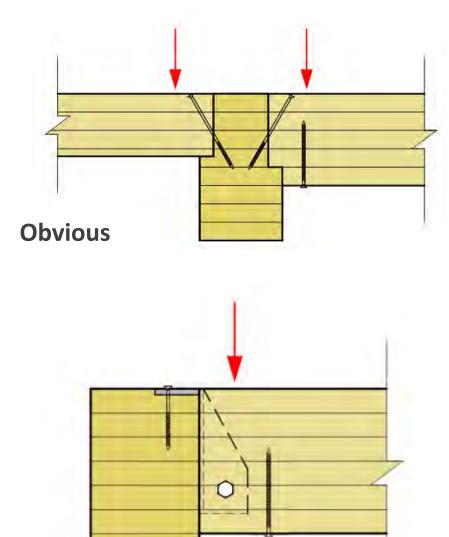
Proprietary Products



Source: MTC Solutions


Variety of Self Tapping Screws

Panel to Panel Connection Styles


Surface Spline CL OF SPLICE · 1" THICK PLYWOOD SPLINE w/ 1/4"Øx4" 11/2"~ -11/2" SCREWS @ 8" o.c. TYP. FIRE SEALENT WHERE OCCURS REF. ARCH. e So MyTiCon ASSY 3.0 6 Ecofast Screw 8mm x 90 mm Plywood 26 SLT3 Panel 38. 99 3"

Butt Joint

Notched Beams

NDS covers notches on tenson side of beams at support up to: 1/4th depth for solid sawn 1/10th dept for SCL 1/10th depth for Glulam beams

Reinforcement methods, outside the NDS, possible for notches beyond this.

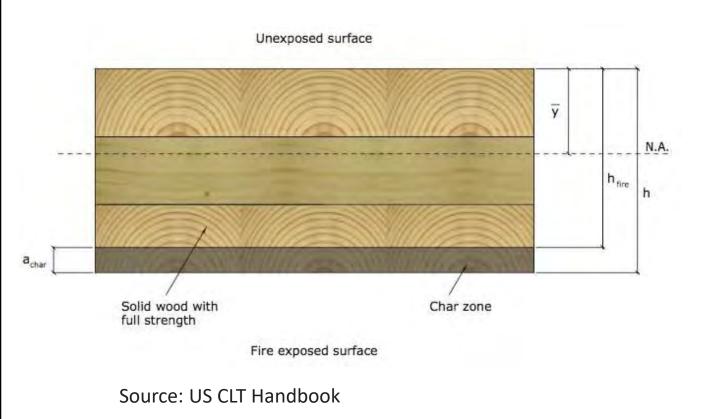
Subtle

Mass Timber Fire Resistance

For Exposed Wood Members: IBC 722.1 References AWC's NDS Chapter 16 (AWC's TR 10 is a design aid to NDS Chapter 16)

AMERICAN WOOD COUNCIL	FIRE DESIGN OF WOOD MEMBERS		
NDDS® National Design Specification* for Wood Construction 2015 EDITION	16.1 General 150 16.2 Design Proceedares for Exposed Wood Manubers 150 16.3 Wood Connections 151 16.4 Wood Connections 151 16.5 Wood Connections 151 16.6 Wood Connections 151 16.6 Wood Connections 151 16.6 Wood Connections 151 16.6 Wood Connections 151 16.7 Effector Care Main and Char Layer Thirtension (for 2, =13 %), etc.) 107 16.8 Science Care Main and Char Layer Thirtension (for 2, =13 %), etc.) 107		Calculating the Fire Resistance of Wood Members and Assemblies Technical Report No. 10
Appressi Kota September 90, 2014		10	

Mass Timber Fire Resistance

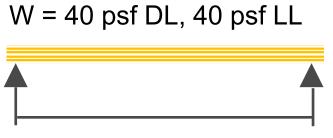


NDS Chapter 16 includes calculation of fire resistance of NLT, CLT, Glulam, Solid Sawn and SCL wood products

Table 16.	2.18		Effective Char Depths (for CLT with β_n =1.5in./hr.)									
Required Fire	-		_		(in.	<u> </u>						
Endurance	. · · · ·		lami	nation	thickn	esses, h	_{lam} (in.)					
(hr.)	5/8	3/4	7/8	1	1-1/4	1-3/8	1-1/2		2			
1-Hour	2.2	2.2	2.1	2.0	2.0	1.9	1.8	1.8	1.8			
1 ¹ / ₂ -Hour	3.4	3.2	3.1	3.0	2.9	2.8	2.8	2.8	2.6			
2-Hour	4.4	4.3	4.1	4.0	3.9	3.8	3.6	3.6	3.6			

Source: AWC's NDS

Mass Timber Fire Resistance



CLT fire design:

- Lam thickness affects char depth
- For simplicity, partially charred cross layers are often neglected for structural checks

Given:

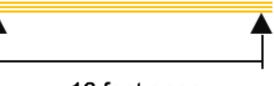
16 foot span floor40 psf live load, 40 psf total dead loadSelected 5ply 6 7/8" V1 Panel

16 foot span

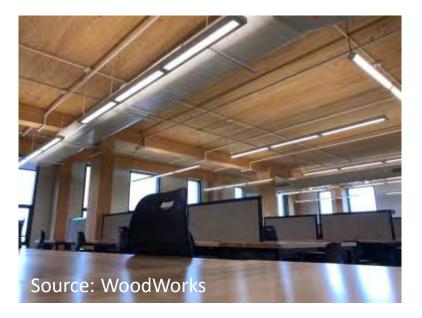
Check 1 hour fire resistance rating required

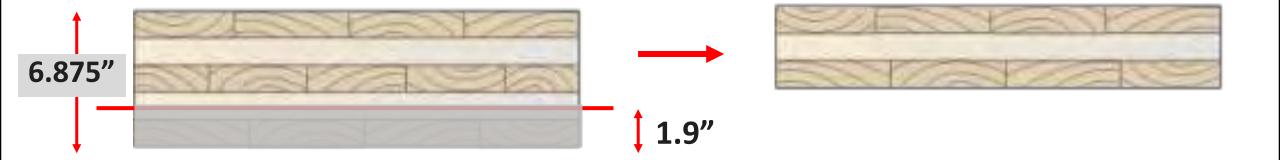
Calculate ASD Applied Moment using load combo 1.0DL + 1.0LL

$$M_b = w L^2 / 8 = (40+40 psf) (16 ft)^2 / 8 = 2560 lb-ft/ft$$


Table 16.2.1B Effective Char Depths (for CLT

ļ	Required Fire Endurance	Effective Char Depths, a _{char} (in.) lamination thicknesses_h _{lam} (in.)											
	(hr.)	5/8	3/4	7/8	1	1-1/4	1-3/8	1-1/2	1-3/4	2			
	1-Hour	2.2	2.2	2.1	2.0	2.0	1.9	1.8	1.8	1.8			
	1½-Hour	3.4	3.2	3.1	3.0	2.9	2.8	2.8	2.8	2.6			
	2-Hour	4.4	4.3	4.1	4.0	3.9	3.8	3.6	3.6	3.6			


with β_n =1.5in./hr.)


Source: AWC's NDS

40 psf DL, 40 psf LL

16 foot span

		Lami	amination Thickness (in.) in CLT Layup						Major	Strength D	irection	Minor S	Strength D	irection
CLT Grade	CLT t (in.)	=	\perp	=	\perp	=	\perp	=	F₅S _{eff,0} (lbf-ft/ft)	El _{eff,0} (10 ⁶ lbf- in.²/ft)	GA _{eff,0} (10 ⁶ lbf/ft)	F₅S _{eff,90} (Ibf-ft/ft)	EI _{eff,90} (10 ⁶ lbf- in.²/ft)	GA _{eff,90} (10 ⁶ lbf/ft)
	4 1/8	1 3/8	1 3/8	1 3/8					2,090	108	0.53	165	3.6	0.59
V1	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8			4,800	415	1.1	1,430	95	1.2
	9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	8,500	1,027	1.6	3,275	360	1.8
	4 1/8	1 3/8	1 3/8	1 3/8					2,030	95	0.46	160	3.1	0.52
V2	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8			4,675	363	0.91	1,370	81	1.0
	9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	8,275	898	1.4	3,125	309	1.6

SOURCE: ANSI/APA PRG 320

NDS Table 16.2.2 stress adjustment factors applied to adjust to average ultimate strength under fire design conditions

Table 16.2.2 Adjustment	ractors	TOF FIFE	Design-	_						
					ASD					
			Design Stress to Member Strength Factor	Size Factor ²	Volume Factor ²	Flat Use Factor ²	Beam Stability Factor ³	Column Stability Factor ³		
Bending Strength	F_{b}	x	2.85	C _F	C_{V}	\mathbf{C}_{fu}	CL	÷		
Beam Buckling Strength	F_{bE}	x	2.03		ie.		1.4	- A.		
Tensile Strength	Ft	x	2.85	\mathbf{C}_{F}		9		4		
Compressive Strength	Fc	x	2.58	C _F	•	-		C_{P}		
Column Buckling Strength	F_{cE}	x	2.03	4	4	-	1.4	-		
1 0 10 50 00 11000 11 1			c					-		

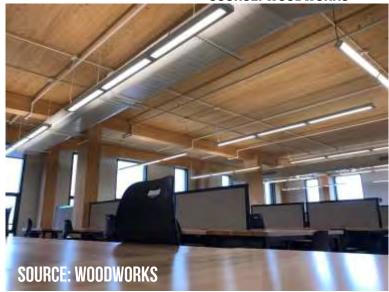
1. See 4.3, 5.3, 8.3, and 10.3 for applicability of adjustment fact rs for specific products.

Table 16.2.2 Adjustment Factors for Fire Design1

2. Factor shall be based on initial cross-section dimensions.

3. Factor shall be based on reduced cross-section dimensions.

 $M_{f}' = (2.85)(F_{b}S_{eff})(C_{L}) = (2.85)(2090)(1.0) = 5957 lb-ft/ft$ Fire Check: $M_{f}' > M_{b}$


 $M_{f}' = 5957 \text{ lb-ft/ft} > M_{b} = 2560 \text{ lb-ft/ft}$

5-PLY V1 CLT adequate for 1 Hour Fire Exposure

40 psf DL, 40 psf LL

16 foot span

SOURCE: WOODWORKS

Many successful CLT fire tests have been conducted, both with and without gypsum board protection

Fire Testing ACCREDITE Laboratory initing Laborat NGC 11.-216 TEST REPORT Page 1 of 53 American Wood Council 222 Catoctin Circle SE, Suite 201 Leesburg, VA 20175 Standard Methods of Fire Tests of Building Construction and Materials ASTM E 119 - 11a That Hupperi No. WP-1960. Assignment No. 11085 Subject Material Cross-Latrinated Timber and Opparen Binard Wall Assembly (class-Bearing) Tast Dille: Cintober 4: 2012 Report Date: Ottober 18, 2013 Pressaral by: Michael J. Pilani. Test Erophan

Additional Resources – WoodWorks.org

Fire Design of Mass Timber Members

Code Applications, Construction Types and Fire Ratings

Richard McLain, PE, SE • Senior Technical Director • WoodWorks Scott Breneman, PhD, PE, SE • Senior Technical Director • WoodWorks

For many years, exposed heavy timber framing elements have been permitted in U.S. buildings due to their inhere fire-resistance properties. The predictability of wood's ch rate has been well-established for decades and has long recognized in building codes and standards.

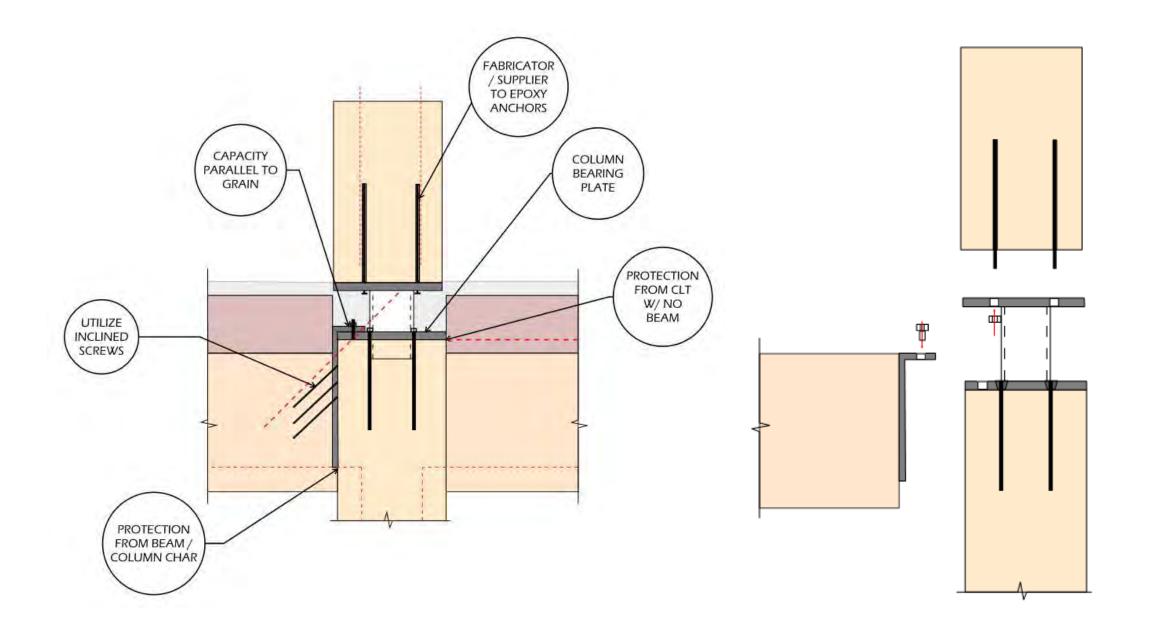
Today, one of the exciting trends in building design is the growing use of mass timber—i.e., large solid wood pane products such as cross-laminated timber (CLT) and naillaminated timber (NLT)—for floor, wall and roof construct Like heavy timber, mass timber products have inherent fire resistance that allows them to be left exposed and st achieve a fire-resistance rating. Because of their strength dimensional stability, these products also offer an alterna steel, concrete, and masonry for many applications, but h much lighter carbon footprint. It is this combination of ex structure and strength that developers and designers acr

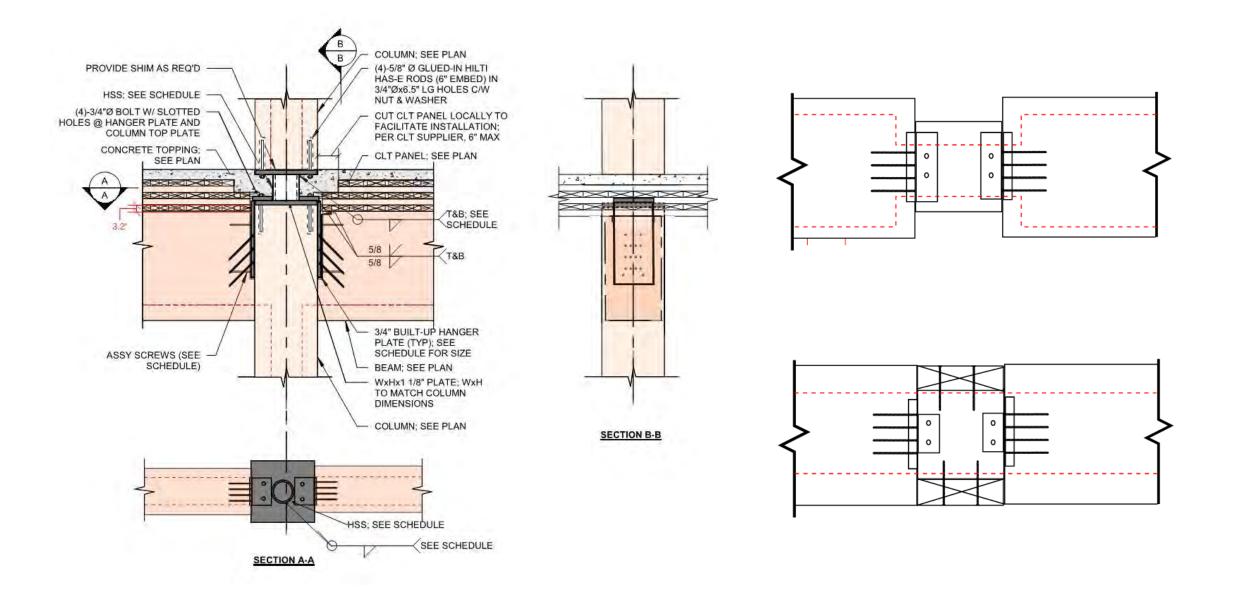
Inventory of Fire-Resistance Tested Mass Timber Assemblies

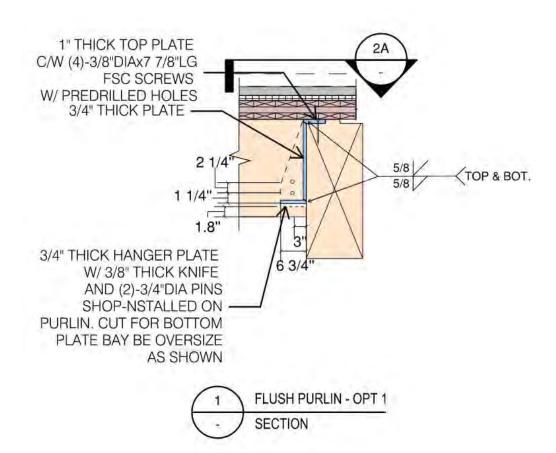
Table 1: North American Fire Resistance Tests of Mass Timber Floor / Roof Assemblies

WoodWorks

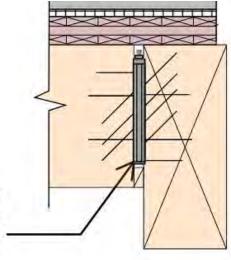
CLT Panel	Manufacturer	CLT Grade ar Major x Minor Grade	Colling Protection	Panel Connection	Plane Topping	Load Rating	Fire Resistance Achieved (Haurs)	Source	Festing Lab
3.slyCLT (D4mm4400m)	Norda	HERE LIFER FOR THE MER WARF WE	± 1 нунч ч $U^{\pm n}$ Турь X дуралн	Hait-Leg	Nese	Richmell M/s Menmi Capacity	0.1.1	(fait)	NRC Fee Laboratory
3-pty CLY (10th on 4.133 m)	Streamlers	SPERIOR SPECIAL	I lines 2.6. Like X Edenu	Ball-Lap	None	Bisterial Construction	0.1	itters)	NRC Fee Laboratory
5-ply-CL7 (175mm 8-875%)	Nindie	н	New	Topsale Spins	2 -staggered layers of $1/2^{\ast}$ errent beams	Lauded, See Manufacturer	Ú,	X.	NRC Fire Laboratory March 2016
5-ph ELT (175mm 8-6757)	Nijsdie	H	Danyo of 54° Tigo X gypouts stallar 2- strangels gail being major with 358° Brougher batts	Topule Spine	2 staggered layers of $1/2^{\circ}$ centre bounds	Lonited, Son Mersilictorer	4	\$	NRC Fire Laboratory Nov 2014
5-ply 63.T 1)75mm+5.87371	North	E	Name	Topoale Spine	14 in papentity gposts over blockes accession rat	Britanii 50%-Marani Capisity	ц.	X	UL
S-phr< (175mm n.X75*)	Nordic	B	1 layer 1 8° surnal gynam	Tomolek: System:	2.4 in proprintly gipents: over Marcon natistical nut or proprietary mend band	Rationi SPS Monort Capacity			101
5-phy-CL7 (175mm 5-875*)	Nordic	E	1 January 5-67 Type X golgs smiller Euroleust (Stamma) andre 2 Toff 1-Januar with 1 1-57 Miller of Wood Surveys Availa	Uniting	Nime	Londrid, Son Minterformerer	4	24	lowerick #24/2012
5-ply CLE (175mm 5-8797)	Strandar	1000 still 700 y 390 st	Kanir	Topvide Spisor	1-1-2" Mexico Cyp-Gente 3001 error Maximi Baledinces Mick	Linded, See Manufacturer	2.8	4	Intertely, 2/22/2016
3-phy 63.7 (1775-000-6.8755)	DR Askeam		New	Half-Lap II. Forwards Spring	L. Colorna political	Lintel, Sei Minuficture	1.0.11	1	5wRi (May 20(6)
5-pty 13.1 (1750m&3153	Norde	571 1000 10 MSA 10 507 10	None	Hait-Lap	Naces	Badakol 59% Minum Capacity	ы) men	NRC Fae Laboratory
3-ph/ (1.7 (175am)(-0.755)	Sincarlan	589 10.02 + 529 10.42) layer 50° f gie 3 gyptern	Hall-Lep	These	Considerati (d1%-Marrier) Copuesty	1) (Teal)	NRC Fare Laboratory
7-sh-CLT	Situation	iter wind a territor	Hime	(Mail-Log)	Name	Lineshaunti 1017a Manuart Constants	26	(there)	NRC Fee Laboratory

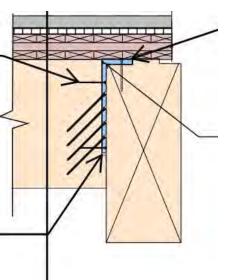

Additional Resources – WoodWorks.org



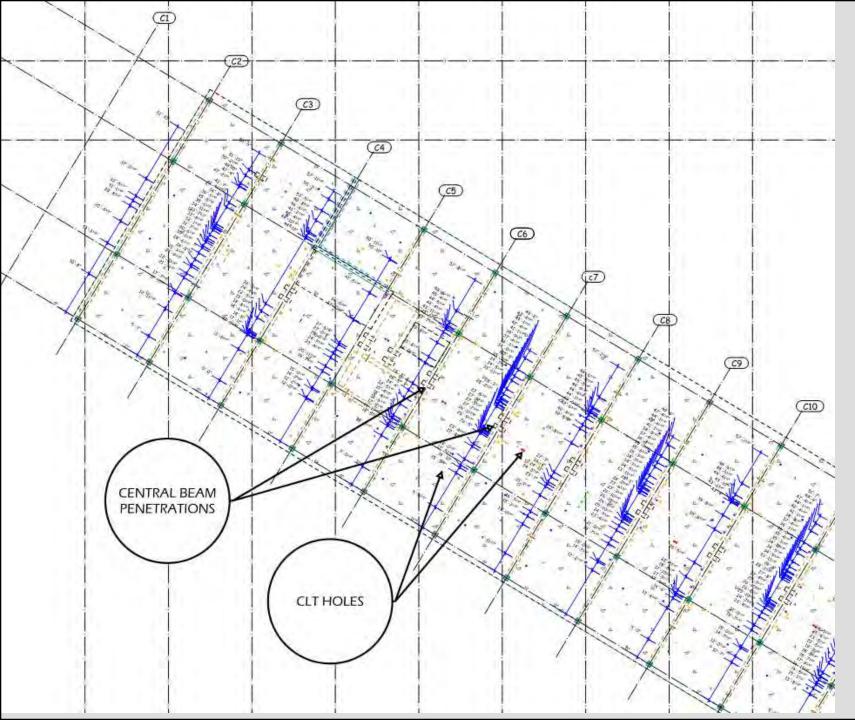

CONNECTIONS

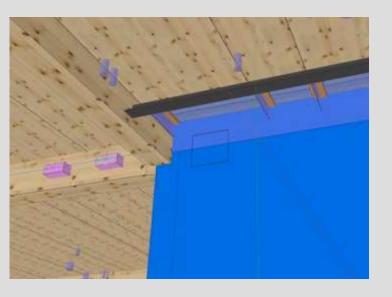
Disclaimer: This presentation was developed by a third party and is not funded by WoodWorks or the Softwood Lumber Board


RENDERING: Hartshorne Plunkard Architecture



PRE-ENGINEERED PROPRIETARY BEAM HANGER SEE SCHEDULE

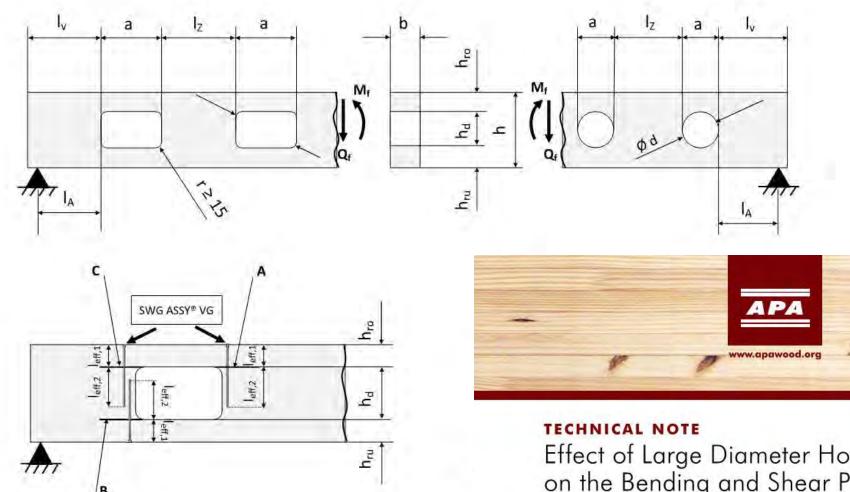


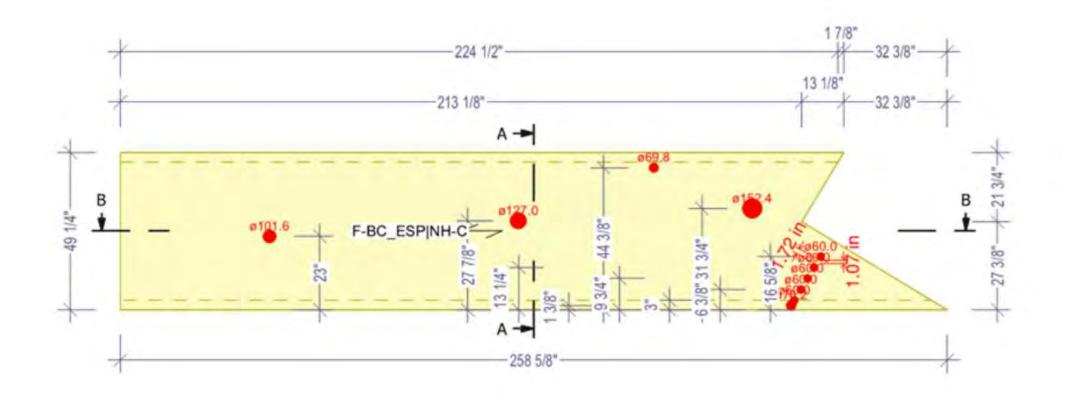

(4)-5/16"Øx3 1/8"LG PSC SCREWS FOR INSTALLATION (2 TOP AND BOTTOM)

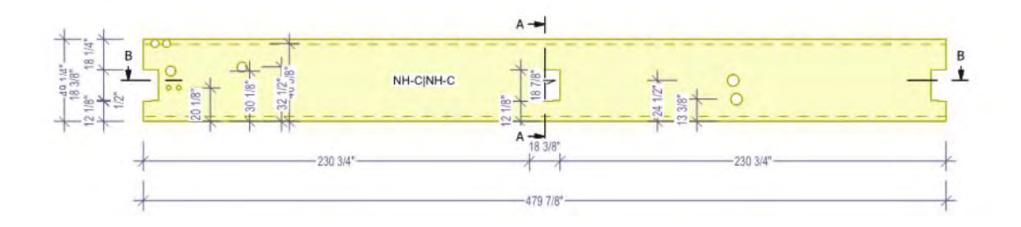
3/4" THICK HANGER PLATE C/W (16)-5/16"Øx9 1/2"LG FSC ASSY SCREW 45°-INCLINED IN 4 ROWS SHOP – INSTALLED ON PURLIN

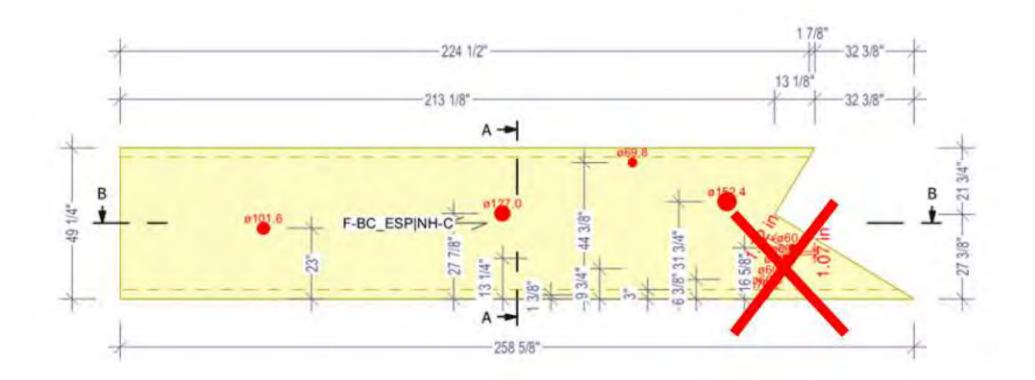
PENETRATIONS

RENDERING: Hartshorne Plunkard Architecture

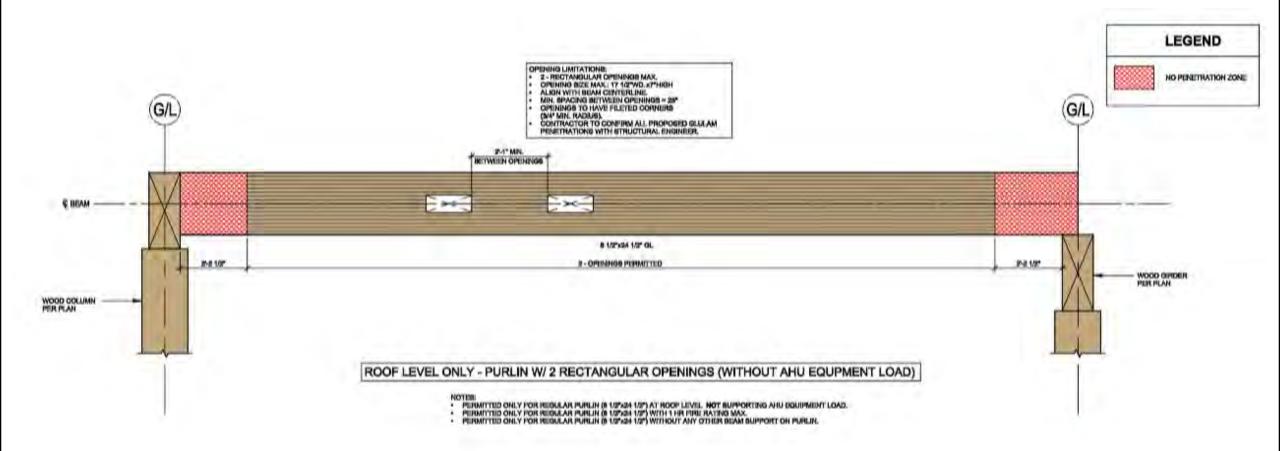





MyTiCon Timber Connectors White Paper


Full thread SWG ASSY[®] Screws as Reinforcement




Effect of Large Diameter Horizontal Holes on the Bending and Shear Properties of Structural Glued Laminated Timber

MOISTURE

RENDERING: Hartshorne Plunkard Architecture

Questions?

This concludes The American Institute of Architects Continuing Education Systems Course

Scott Breneman, PhD, PE, SE WoodWorks – Wood Products Council scott.breneman@woodworks.org

Eloïse Allsop, P.E., CEng, MIStructE, M.Eng. Fast + Epp eallsop@fastepp.com

Copyrighted Materials

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

> © The Wood Products Council 2021 and © Fast + Epp 2021