WOODWORKS

NOVEMBER 13TH 2019

Integrating Passive House into Everyday Enclosure Design

-Presented by Dan Whitmore, CPHC, CPHB RDH Building Science

Disclaimer: This presentation was developed by a third party and is not funded by WoodWorks or the Softwood Lumber Board.

PASSIVE HOUSE CONSULTING & CERTIFICATION

RESEARCH & EDUCATION

FAÇADE ENGINEERING

HISTORIC REHABILITATION RDH

Making Buildings Better™

ENERGY & IAQ MONITORING "The Wood Products Council" is a Registered Provider with The American Institute of Architects Continuing Education Systems (AIA/CES), Provider #G516.

Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request. This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Course Description

To some design and construction professionals, the term 'passive house' carries connotations of added expense, difficult details and super-thick walls and roofs. However, for larger scale multi-family and commercial buildings, the concepts of passive house design can be easily implemented with a proper understanding of the core principles and guiding design techniques. Passive house can provide deep operational energy reductions through its core principles of entire building air tightness, minimal thermal bridging, and a balanced and appropriately-sized mechanical ventilation system. This webinar will draw on these guiding principles to illustrate how passive house concepts can be integrated into a number of wood-frame project types—including mid-rise multi-family, low-rise commercial, and tall wood buildings. Enclosure detailing techniques, construction cost impacts, and energy savings potential will be illustrated with an emphasis on repeatable and scalable strategies.

Learning Objectives

- 1. Review the basic principles of passive house design and discuss unique aspects that arise when implementing this technique in larger, multi-family projects.
- 2. Highlight benefits associated with the use of wood framing in multi-family and commercial passive house projects.
- 3. Demonstrate successful detailing options for walls and roofs in wood-frame projects with an emphasis on air tightness and insulation continuity.
- Discuss design guidelines for future implementation of low-energy projects in cold climates with the possibility of cost competitiveness with traditional project types.

"Here is one of the few effective keys to the Design problem: The ability of the Designer to recognise as many of the constraints as possible; his (*or her*) willingness and enthusiasm for working within these constraints." -Charles Eames

Photo: Jeremy Bitterman Photography Architect: Holst Architecture Contractor: Hammer and Hand Industry 21.1%

(1116 MMT CO2e)

Buildings 44.6% (2358 MMT CO₂e)

Transportation 34.3% (1816 MMT CO₂e)

U.S. CO₂ Emissions by Sector

Source: ©2013 2030, Inc. / Architecture 2030. All Rights Reserved. Data Source: U.S. Energy Information Administration (2012).

U.S. Energy Consumption by Sector

Source: ©2013 2030, Inc. / Architecture 2030. All Rights Reserved. Data Source: U.S. Energy Information Administration (2012).

A home built since 2000 consumed the same amount of energy as one built in the 1960s

Source: EIA, 2015 Residential Energy Consumption Survey

2015 Residential Energy Consumption Survey July 31, 2018

•

Source: EIA, 2015 Residential Energy Consumption Survey

Architectural Solution: Enclosure First

Corvette Landing

Image: Peripheriques Martin-Trottin Architects

Enclosure First: Passive House

FROM THE OFFICE OF GENERAL COUNSEL

2018 Code of Ethics and Professional Conduct

Image: Holst Architecture

CANON VI **Obligations to the Environment** Members should recognize and acknowledge the professional responsibilities they have to promote sustainable design and development in the natural and built environments and to

implement energy and resource conscious design.

AIA CANON VI Obligations to the Environment

E.S. 6.1 Energy conservation: Members should set ambitious performance goals for greenhouse gas emission reduction with their clients for each project.

Energy Code Roadmap: WA State

Incremental Improvement Compared to Targets 100% 90% Reduciton in Energy Use (2006 Base) 80% 70% 60% 50% 40% 30% 20% 10% 0% 2015 2018 2021 2024 2027 2030 2006 2009 2012 69.0% Residential 100% 82.7% 76.1% 75.0% Commercial 86.8% 82.0% 100% Target: 8.75 % savings 100% 91% 83% 74% 65% 56% 48% 39% 30% compared to the 2006 WSEC Target: 14% savings compared 100% 86% 64% 55% 47% 41% 35% 30% 74% to each previous code

Passive House as the goal

What is Passive House?

Passive House is a Toolkit

Passive House is a Path with Guardrails

Passive House is a Goal

Photo: Drew McKenzie, Sportspress Northwest

Energy Code has a Goal

- Design a building using prescriptive assemblies
- →Figure out how much energy it will use
- →0%, 10%, 20% "better"

		the second s		s for Commercial Buildings includ	sing R2, R3	& R4 over 3 sto	ries and all		A second s	d Nov 2017	
Project Title: 1 - Fill this line out on PROJ-SUM									/01/2010		
I.	ug	Component Pe	For SDCI Use								
C.	alc	ulation Adjus		1							
Fe	enestration Area as % pross above-grade wall area Max. Tarpet 30.0%							1			
Skylight Area as % gross roof area Max. Target: 5.0%											
_	-	ical Fenestrati				ve Selected on	ENV-SUM				
		tand-alone Proje		Vertical Fenestration		Net Wall		User Note			
E)	xisting-to-remain Areas Skyligto				Net Roof						
Er	1111	Cavey+Ci Pan/D		iource & Table # 2		Proposed UA x Area (A) =			arget UA Area (A) =	UAUXA	
		R=						0.026			
Roots	Deck	R= R=						Above Deck Ins	sulation	U-0.026	
	Did	R=					- 21	0.027			
	i a	R= R=					-	Metal Building		U-0.027	
	-	R=						0.027			
	Joint/Rfb	R- R-						Joist/single raft	er	U-0.027	
	長	R=					1.1	0.021			
	Anic/Oth	R= R=						Single raft, attic	c, other	U-0.021	
	ŝ	R=					- 2	0.055			
	Sheel Firm	R= R=						Steel/metal fran	ne	U-0.055	
ł	191	R=					1	0.052			
Opena Wels - Hove Ore	3	R= R=						Metal Building		U-0.052	
	0	R=						0.051			
	Wood	R= R= R=						Wood Frame, o	ther	U-0.051	
		R=					2	0.057			
	Mans	R= R=						Mass Wall		U-0.057	
1	fer.	R=						0.200		0.000	
	2	R= R=						Mass Transfer	Deck	U-0.20	
¥	\$	R=						0.054	-		
g	(pool)	R= R= R=						Group R Wood	Cen. Wall	U-0.054	

Passive House Delivers

Image: Holst Architecture

Engineered Energy Efficiency

Premium Indoor Air Quality

Premium Indoor Environmental Quality

Passive House: the Path to -Net Zero Energy -Zero Net Carbon

+Q: How much insulation do you need for a Passive House wall?

+Q: How much insulation do you need for a Passive House wall?

A: As much as is required and no more

Enclosure to Usable Area Ratio

.

Building Form

Building Form

Envelope Examples

 \rightarrow Walls: $R-25_{eff}$ \rightarrow Roof: $R-43_{eff}$ \rightarrow Floor:R-16 to 30_{eff} \rightarrow Windows: $U-0.24_{eff}$

Air Tightness: 0.08 cfm/ft2 75Pa*

Envelope Examples

Air Tightness:

0.08 cfm/ft2 75Pa*

eloned.								
Postal code								
Street								
Responsible perso	Responsible person							
Sumame & Name	Dan Whitmore, R	IDH Building Science						
Locality	Seattle							
Postal code	96103							
Street	2101 N 34th St							
Tel.	206-408-2646		~					
Heating demand: Cooling demand Heating load	7.05 kBtu/ft²yr 2 kBtu/ft²yr 3.93 Btu/ft ft²	2						
Cooling load	2.94 Btu/hr ft ²	-		- i v				
Source energy:	3,865 kWh/Person yr	2000	4000 6000	8000 10000				
Site energy:	7.9 kBtu/ft*yr	1.8	2 43 6	7.8 8				

Passive House: Engineered Energy Performance

Passive House Enclosure Mantra:

 Super-Insulated
Thermal Bridge "Free"
Air-Tight

1. Super-Insulated

Definition of super : of high grade or quality

Effective R-Value due to Exterior Insulation Attachments

Effective R-Value

2. Thermal Bridge "Free"

3. Air-Tight

+

Why the Air Barrier is so important

Primary Relationship ---- Secondary Relationship

1 – Water is defined here as precipitation (rain, snow, hail, etc.) and ground water

2 – Vapor is separately defined here as the water vapor in air, as well as condensate moisture

Delivering Passive House Enclosures

Photo: REACH CDC

Delivery is in the Details

Issues: cladding attachment, material selection

Effective Wall R-value versus Wall Thickness

Enclosure: Critical Barrier Analysis of Super Insulated Walls

- Water Resistive Barrier (WRB)
- Air Barrier (AB)
- Vapour Retarder (VR/VB)
- Thermal Barrier (Insulating Materials)

Exterior Insulation over common wall types: the field is easy

Window Installation Details are not as easy

Key considerations:

- Avoid metal flashings that bypass framing or insulation
- Reduce wood framing around window
- Over-insulate the window frames where feasible
- Air tight
- Proper water management

Air Barrier Challenges @ Transitions

Air Sealing at Parapets

Continuous shelf angles ~50% R-value loss

Shelf angle on stand-offs only ~15% R-value loss

Delivery is in the Details: Installer Review

Delivery is in the Details: Installer Review

Courtland Place Passive House 2011 Seattle, WA

Karuna Passive
House2014 Yamhill
County, ORHolst ArchitectsHammer and Hand

Passive 2016 Seattle, WA Whitney Architecture 🔛 Hammer and Hand

Madrona Passive House 2015 Seattle, WA SHED Architecture & Design Hammer and Hand

Flora Vista Passive House 2018 Olympia, WA Roussa Cassel, Architect Bicycle Homebuilding

Pax Futura 2018 Seattle, WA NK Architects Cascade Built

Pax Futura 2018 Seattle, WA NK Architects Cascade Built ORCHARDS AT ORENCO Phase I Hillsboro, OR

2016

REACH CDC

Ankron-Moison Architecture

Walsh Construction

DOIG RIVER CHURCH

Ft Saint John British Columbia 2019

SKEENA DORM Six stories, 220 rooms UBC Okanagan **UBC Properties Trust** Public Architecture

Photos: RMI

ROCKY MOUNTAIN INSTITUTE Basalt, CO 2017

PHIUS+ Submitted Square Footage

NATIONAL MASONRY SYSTEMS GUIDE **Northwest Edition**

Achieving Air

.....

••

~

This guide pr professionals

airtight Part 3

in British Colu

C HOU

WALEGET

C CPM

FOUNDATION

Northwest Masonry Institute Masonry Institute of Washington International Masonry Institute

®₽₿

OBASALITE

MASONEY INSTITUTE OF VIASHINGTON

team

2018

Sponsored by

MUTUAL MATERIALS'

RDH RULLDING

Mass Timber Enclosure Symposium MASSTIMBER.RDH.COM

February 11, 2020 Block 41 in Seattle, WA

LEARN FROM INDUSTRY SPECIALISTS RESEARCH GUIDES GET LEARNING CREDITS

Photo: Thorsten Chlupp Karuna Foundation

Dan Whitmore- CPHC, CPHB dwhitmore@rdh.com

> QUESTIONS?

This concludes The American Institute of Architects Continuing Education Systems Course

Dan Whitmore

RDH Building Science

dwhitmore@rdh.com