Learning Objectives

At the end of this program, participants will be able to:

1. Participants will be able to identify and observe the complex geometry as compared with conventional uses of structural wood.
2. Various timber connection designs will be examined in an effort to justify the end result.
3. Discussion of the use of digital computational design shall be examined.
4. Participants will be able to assess the use of a new material in this application in the reviewed project.
k_{mod}
Load bearing capacity depending on service class

Class 3
$k_{\text{mod}} = 0.7$

Class 2
$k_{\text{mod}} = 0.9$

k_{def}
Creep depending on service class

Class 3
$k_{\text{def}} = 2.0$

Class 2
$k_{\text{def}} = 0.8$
Input Timber Data (All timber with e=68mm)

Input Connection (All at minimum weight)

Relative Struct. Calc.

Check Connection

Check OK

Calc finished

F_{k,max} < F_{SLS}?

Check Not OK

Upgrade Timber Width / Connection

Upgrade with Steel Truss if need be

Update SW and DL’s

Update Resistance

Check Connection

Check OK

Upgrade with Steel Truss if need be

Update SW and DL’s

Update Resistance

F_{k,max} < F_{SLS}?
Questions?

This concludes The American Institute of Architects Continuing Education Systems Course

Jan-Peter Koppitz
Arup
Jan.peter.koppitz@arup.com
WoodWorks Upcoming Events

Aug/Sep Practical and Inspirational: Exposing the Potential of Heavy Timber Construction *Multiple Dates & Locations - visit our website*

Sept 17 Minneapolis Wood Solutions Fair

Sept 30 International Conference on Timber Bridges, Las Vegas NV

Oct 15 Portland Wood Solutions Fair

Nov 14 Mid-Atlantic Wood Solutions Fair, Baltimore MD