

Course Description

Increasingly, building designers and developers are looking to mid-rise light-frame wood construction as a cost-effective and sustainable solution for commercial and multi-family buildings. This presentation will review the allowable construction types, with an emphasis on the opportunities and advantages of using light-frame wood in Types III and V. Today's speakers will cover design considerations associated with these types of projects, including how to maximize height and area through the use of sprinklers, open frontage, sloping sites, podiums, and mezzanines. Common framing methods will also be discussed in the context of ensuring that projects are designed to be structurally sound, constructable, and code compliant.

Learning Objectives

- 1. Discuss how mid-rise, light-frame wood construction meets the need for additional commercial space and multi-family housing while contributing to vibrant and sustainable communities.
- 2. Review allowable construction types, occupancies, and building heights and areas for mid-rise light-frame wood construction under the 2024 International Building Code (IBC).
- 3. Explore potential modifications to the IBC's base tabular heights and areas based on building frontage, sprinklers, sloping sites, podiums, and mezzanines.
- 4. Understand how to design for standard framing practices to avoid costly construction errors and ensure the resulting building is structurally sound and code compliant.

Mid-Rise Design: Optimizing Size, Maximizing Value

INTRODUCTION TO HEIGHTS AND AREAS FOR MID-RISE MULTI-FAMILY LIGHT-FRAME WOOD BUILDINGS

October 1, 2025

Presented by

Mike Romanowski, SE Senior Regional Director | CA-South, AZ,NM

Outline

- » Context for Mid-Rise Construction (Urban Densification)
- » Mid-Rise Building Configurations
- » Maximizing Height & Area
- » Case Studies

Landing Apartments, Russell Scott Steedle & Capione Architects, photo Gregory Folkins

Outline

- Context for Mid-Rise Construction (Urban Densification)
 - » Mid-Rise Building Configurations
 - » Maximizing Height & Area
- » Case Studies

1430 Q, The HR Group Architects, Buehler Engineering, Greg Folkins Photography

Global Population Boom

Global Population

7.9 billion in 2022 9.7 billion by 2050 23% increase

Urban Population

6.4 billion by 2050 40% increase

Need for Sustainable Multi-Family & Mixed-Use Structures

Economically Meet our Urban Housing Needs

Increased Environmental Responsibility

These 2 items don't need to be in opposition—Wood-framing helps them work together!

Mid-Rise Construction

Where **wood** is a viable option, it's likely the most appropriate choice.

- » Senior Living
- » Apartments/Condos
- » Mixed-Use
- » Student Housing
- » Affordable Housing
- » Hotels

The Gibson, Hummel Architects, KPFF Consulting Engineers, photo Leo A. Geis

Why Wood?

- Using wood helps reduce environmental impact
- Wood products play a significant role in the modern economy

Wood Costs Less

Wood is Versatile

Wood Meets Code

Wood is Durable

Wood is Renewable

The Gibson, Hummel Architects, KPFF Consulting Engineers, photo Leo A. Geis

Carbon Footprint | High Density Housing

Sustainability Advantage

Volume of wood used:

5,200 cubic meters / 183,600 cubic feet of lumber and sheathing

U.S. and Canadian forests grow this much wood in:

15 minutes

Carbon stored in the wood:

3,970 metric tons of CO₂

Avoided greenhouse gas emissions:

8,440 metric tons of CO2

TOTAL POTENTIAL CARBON BENEFIT:

12,410 metric tons of CO₂

EQUIVALENT TO:

Source: US EPA

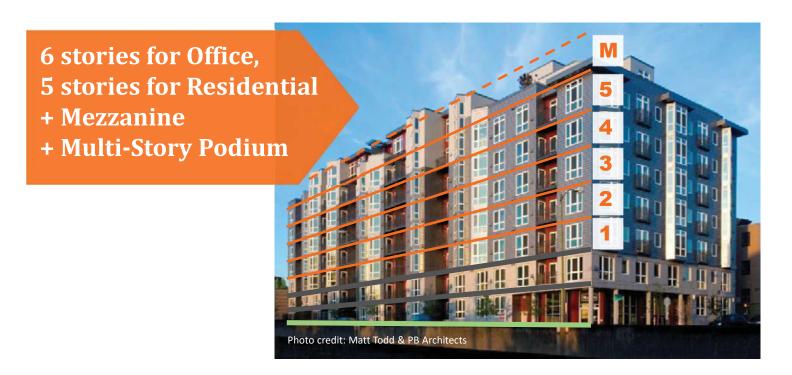
2,370 cars off the road for a year

Energy to operate a home for 1,050 years

For information on the calculations in this chart, visit woodworks.org Note: CO2 on this chart refers to CO2 equivalent.

Outline

- » Context for Mid-Rise Construction (Urban Densification)
- ➤ Mid-Rise Building Configurations
 - » Maximizing Height & Area
- » Case Studies


1430 Q, The HR Group Architects, Buehler Engineering, Greg Folkins Photography

Mid-Rise Wood Construction

How many stories can be wood framed in the IBC?

Mid-Rise Wood Construction

Walk-Up/Tuck-Under

First floor walk-up units with private garage

Benefits:

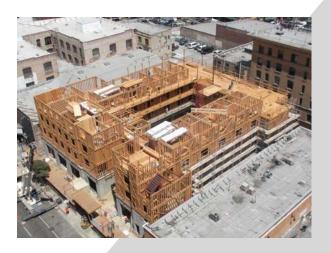
- » Eliminates need for S-2 parking garage
- » Can be all wood
- » Least expensive overall but lowest densification rates (20-35 units/acre)

Wrap-Around (aka the Texas Donut)

Walk-up units surround parking structure

Benefits:

- » Enhanced security
- » Centralized access to parking
- » Visual appeal from street
- » More expensive than walk-up/tuck-under
- » 5-stories yields 60-80 units/acre



Podium (not a code-defined term)

Multiple stories of wood over an elevated concrete deck

Benefits:

- » Increased number of stories
- » Accommodates mixed-use occupancies
- » Most expensive but can allow increased density

4 Over 1 Podium

4 wood stories of residential over 1-story (parking or retail) podium

» 80–100 units/acre

Inman Park Condos, Atlanta, GA Davis & Church

5 Over 1 Podium

5 wood stories of residential over 1story (parking or retail) podium

» 100–120 units/acre

AvalonBay Stadium, Anaheim, CA VanDorpe Chou Associates

Inman Park Condos, Atlanta, GA
Davis & Church

5 Over 1 Podium

5 wood stories of residential over 1-story (residential) podium

» 120–140 units/acre

16 Powerhouse, Sacramento, CA
D&S Development
LPA Sacramento

Outline

- » Context for Mid-Rise Construction (Urban Densification)
- » Mid-Rise Building Configurations
- Maximizing Height & Area
 - 1. Construction Types
 - 2. Tabulated Heights & Areas
 - 3. Measuring Height
 - 4. Sprinkler Systems
 - 5. Frontage
 - 6. Calculating Allowable Building Area
 - 7. Basements, Mezzanines & Special Design Provisions
 - " Case Studies

1430 Q, The HR Group Architects, Buehler Engineering, Greg Folkins Photography

Construction Types – Section 602

Type V

- » All building elements can be any material allowed by code
- » Subdivided into V-A (protected) and V-B (unprotected)

Type IV (Heavy/Mass Timber)

- » Minimum prescriptive sizes per IBC Section 2304.11
- » Exterior walls must be noncombustible or MT (may be FRTW in IV-HT)
- » Interior building elements must be noncombustible or MT (may be light-frame wood in IV-HT if fire rated)
- » Subdivided into IV-A, IV-B, IV-C and IV-HT, each with different levels of protection

Type III

- » Exterior walls must be noncombustible (may be FRTW in most cases)
- » Interior building elements can be any material allowed by code
- » Subdivided into III-A (protected) and III-B (unprotected)

Tabulated Heights & Areas

	TYPE OF CONSTRUCTION													
OCCUPANCY CLASSIFICATION	See Footnotes	Type I		Type II		Type III		Type IV				Type V		
		A	В	A	В	Α	В	Α	В	С	HT	A	В	
ADECMEN	NSb	UL	160	65	55	65	55	65	65	65	65	50	40	
A, B, E, F, M, S, U	S	UL	180	85	75	85	75	270	180	85	85	70	60	
R ^h	NS⁵	UL	160	65	55	65	55	65	65	65	65	50	40	
	S13D	60	60	60	60	60	60	60	60	60	60	50	40	
R	S13R	60	60	60	60	60	60	60	60	60	60	70 50	60	
	S	UL	180	85	75	85	75	270	180	85	85		60	
													-	

_	TAB	LE 504.4	-ALLO	WABLE N	UMBER	OF STOR	IES ABO	VE GRAD	E PLANE	a, b				
OCCUPANCY CLASSIFICATION	TYPE OF CONSTRUCTION													
	See Footnotes	Type I		Type II		Type III		Type IV				Type V		
		A	В	A	В	Α	В	Α	В	С	HT	Α	В	
D	NS	UL	11	5	3	5	3	5	5	5	5	3	2	
В	S	UL	12	6	4	6	4	18	12	9	6	4	3	
	NSª	UL	11	4	,			-		2		3	2	
R-2 ^h	S13R	4	4	4	4	4	4	4	4	4	4	4	3	
	S	UL	12	5	5	5	5	18	12	8	5	4	3	

Tabulated Heights & Areas

TABL	E 506.2—	ALLOW	ABLE A	REA FACT	$OR(A_t = N)$	15, 51, 51	3R, S13D	or SM, as	applicab	le) IN SQ	UARE FEE	T ^{a, b}		
	SEE FOOT	TYPE OF CONSTRUCTION												
OCCUPANCY CLASSIFICATION		Type I		Type II		Type III			Тур	Type V				
	NOTES	Α	В	Α	В	Α	В	Α	В	С	HT	A	В	
В	NS	UL	UL	37,500	23,000	28,500	19,000	108,000	72,000	45,000	36,000	18,000	9,000	
	S1	UL	UL	150,000	92,000	114,000	76,000	432,000	288,000	180,000	144,000	72,000	36,000	
	SM	UL	UL	112,500	69,000	85,500	57,000	324,000	216,000	135,000	108,000		27,000	
	NSd			1										
R-2h	S13R	UL	UL	24,000	16,000	24,000	16,000	61,500	41,000	25,625	20,500	12,000	7,000	
K-2	S1	UL	UL	96,000	64,000	96,000	64,000	246,000	164,000	102,500	82,000	18,000 72,000	28,000	
	SM	UL	UL	72,000	48,000	72,000	48,000	184,500	123,000	76,875	61,500		21,000	

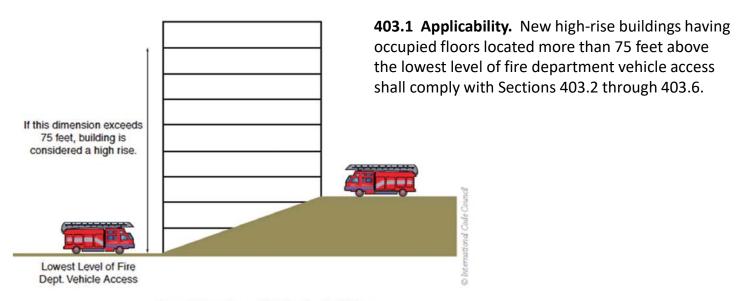
NS = Buildings not equipped throughout with an automatic sprinkler system

S1 = Buildings a maximum of one story above grade plane equipped throughout with an automatic sprinkler system installed in accordance with Section 903.3.1.1 (NFPA 13)

SM = Buildings two or more stories above grade plane equipped throughout with an automatic sprinkler system installed in accordance with Section 903.3.1.1 (NFPA 13)

S13R = Buildings equipped throughout with an automatic sprinkler system installed in accordance with Section 903.3.1.2 (NFPA 13R)

Measuring Height – Chapter 2 Definitions


HEIGHT, BUILDING. The vertical distance from *grade* plane to the average height of the highest roof surface.

GRADE PLANE. A reference plane representing the average of finished ground level adjoining the building at *exterior walls*. Where the finished ground level slopes away from the *exterior walls*, the reference plane shall be established by the lowest points within the area between the building and the *lot line* or, where the *lot line* is more than 6 feet from the building, between the building and a point 6 feet from the building.

626 Dekalb Avenue, Atlanta, GA Matt Church - Davis Church Structural Engineers

Measuring Height – Section 403

Determination of high-rise building

Sprinkler Systems

In many cases, sprinklers are required by code depending on occupancy per Section 903.2

- » Most new Group R fire areas
- » Group A, E, M or S fire areas exceeding 1k-48k sf

Stella Apartments, DesignARC, Taylor and Syfan, photo Lawrence Anderson

Sprinkler Systems

- » NFPA 13 Standard for Commercial Occupancies per IBC Section 903.3.1.1
- » NFPA 13R Standard for Low-Rise Residential Occupancies per IBC Section 903.3.1.2
- » NFPA 13D Standard for One and Two-Family Residences per IBC Section 903.3.1.3

Sprinkler Systems – NFPA 13 vs. NFPA 13R

NFPA 13 NFPA 13R Goal: Provide life safety

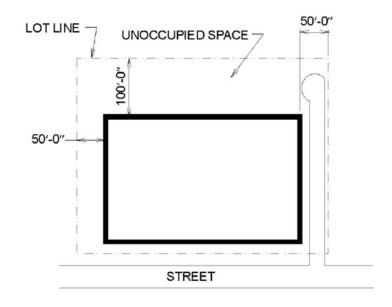
and property protection

Goal: Provide life safety only Fully sprinklered system throughout entire building Partially sprinklered system; unoccupied spaces often don't

even in unoccupied spaces (closets, attics) require sprinklers

Can cost more

60 feet


Lower levels of water discharge, shorter water supply time can result in smaller pipe sizes, reduce need for storage & pumps

Permitted for many occupancies, buildings of many Limited applications, mainly for multi-family up to 4 stories,

sizes, allows greater building size increases

Frontage – Section 506.3

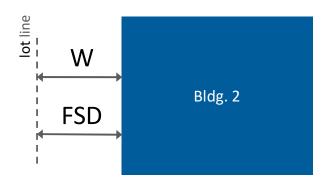
The allowable area of a building is permitted to be increased when it has a certain amount of frontage on streets (public ways) or open spaces, since this provides access to the structure by fire service personnel, a temporary refuge area for occupants as they leave the building in a fire emergency and a reduced fire exposure to and from adjacent structures.

Frontage – Sections 506.3.1 & 506.3.2

MINIMUM QUALIFICATIONS

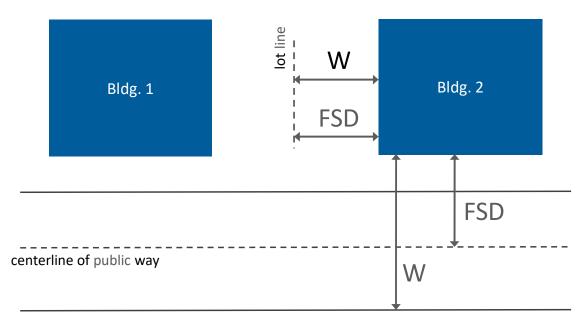
25% min. of the building perimeter is on a public way or open space 20' min. distance from the building face to:

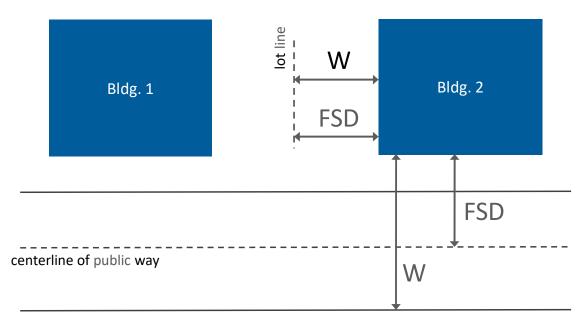
- » The closest interior lot line
- » The entire width of a street, alley or public way
- » The exterior face of an adjacent building on the same property


Frontage

The width "W" of public way or open space is NOT always the same as fire separation distance (FSD) used for purposes of determining fire resistance ratings of exterior walls and openings

Frontage – Section 506.3.2


For two buildings on DIFFERENT lots


Frontage – Section 506.3.2

For buildings near public right of ways:

Frontage – Section 506.3.2

For buildings near public right of ways:

Frontage – 2018 IBC Section 506.3.2

$$W = [(L_1 \times W_1) + (L_2 \times W_2) + (L_3 \times W_3)....]/F$$
(Equation 5-4)

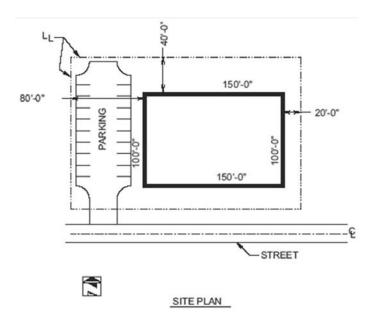
WHERE:

- W = Calculated width (weighted average) of public way or open space (feet)
- L_n = Length of a portion of the exterior perimeter wall
- w_n = Width (\ge 20 feet) of public way or open space associated with that portion of the exterior perimeter wall
- F = Building perimeter that fronts on a public way or open space having a width of 20 feet or more

Frontage – 2018 IBC Section 506.3.3

$$I_f = [F/P - 0.25]W/30$$
 (Equation 5-5)

Where:


 I_f = Area factor increase due to frontage ($I_{fmax.}$ = 0.75)

F = Building perimeter that fronts on a public way or open space having a minimum distance of 20 feet

P = Perimeter of entire building (feet)*

W = Width of public way or open space (feet) in accordance with Section 506.3.2 (30 feet max.)

^{*} Fire walls must be treated like a perimeter wall with zero frontage

Frontage – 2024 IBC Section 506.3.3

506.3.3 Amount of increase. The area factor increase based on frontage shall be determined in accordance with Table 506.3.3.

TABLE 506.3.3—FRONTAGE INCREASE FACTOR ^a			
PERCENTAGE OF BUILDING PERIMETER	OPEN SPACE (feet)		
	20 to less than 25	25 to less than 30	30 or greater
0 to less than 25	0	0	0
25 to less than 50	0.17	0.21	0.25
50 to less than 75	0.33	0.42	0.50
75 to 100	0.50	0.63	0.75

Calculating Allowable Building Area (Single-Occupancy Building 3 Stories or Less) – Section 506.2.1

$$A_a = A_t + (NS \times I_f)$$
(Equation 5-1)

 A_a = Allowable area of each story (sq. ft.)

 A_t = Tabular allowable area factor (NS, S1 or S13R) per Table 506.2*

NS = Tabular allowable area factor per Table 506.2 for nonsprinklered building (sprinklered or not)

 I_f = Area factor increase due to frontage (percent) per Section 506.3

* Code error; SM should have been included

Calculating Allowable Building Area (Single-Occupancy Building More Than 3 Stories) – Section 506.2.1

$$A_a = [A_t + (NS \times I_f)] \times S_a$$
(Equation 5-2)

- A_a = Total allowable building area (sq. ft.)
- A_t = Tabular allowable area factor (NS, S13R or SM) per Table 506.2
- NS = Tabular allowable area factor per Table 506.2 for nonsprinklered building (sprinklered or not)
- I_f = Area factor increase due to frontage (percent) per Section 506.3
- S_a = 3 where the actual number of stories above grade plane exceeds 3, or 4 where the building is equipped throughout with an NFPA 13R sprinkler system

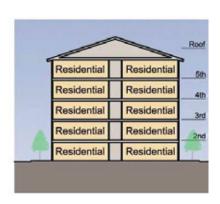
Basements on Sloping Sites – Section 506.1.3

Basements need not be included in the total allowable floor area of a building provided the total area of such basements does not exceed the area permitted for a one-story above grade plane building.

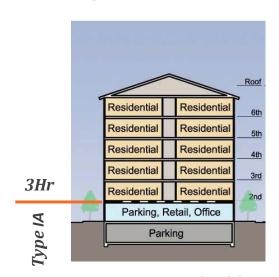
A "basement" is defined as "A story that is not a story above grade plane" such that the finished surface of the floor next above is:

- No more than 6 feet above grade plane; and
- No more than 12 feet above the finished ground level at any point

Fashion Valley, CA AvalonBay Communities


Mezzanines – Section 505.2

Mezzanines are considered a portion of the story below and are not counted toward building area* or number of stories if:


- » Maximum 1/3 the floor area of a room or space where located (1/2 the floor area within dwelling units located in buildings equipped throughout with NFPA 13 or NFPA 13R sprinkler systems)
- » Special egress provisions apply
- » Must be open and unobstructed to room in which it's located (walls ≤ 42" allowed)
 - » Several exceptions
- » Slightly different for equipment platforms

^{*}Does count toward fire area with regard to fire protection in Chapter 9

Special Design Provisions (Podiums) – Section 510.2

5-story Type III building

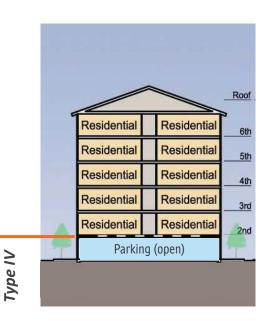
5-story Type III building on top of a Type I-A podium

Increases total allowable stories...not allowable building height

Special Design Provisions (Podiums) – Section 510.2

Considered separate buildings above and below for purposes of area calculations if:

- » Overall height is still limited to min. of either building
- » 3-hr rated horizontal assembly
- » Building below is Type I-A with sprinklers
- » Enclosures penetrating horizontal assembly are 2-hr rated
- » Occupancy above is A, B, M, R or S
- » Occupancy below is anything except H
- » Fire walls (if req.'d), can terminate at podium level


The Flats at ISU, Normal, IL
OKW Architects
Precision Builders & Associates

Special Design Provisions (Wood Podiums) - Section 510.4

Possibility of a Type IV wood podium where the number of stories starts above the parking level when:

- » Occupancy above is R and below is S-2
- » Parking garage is open Type IV-HT parking with grade entrance
- » Horizontal assembly between 1st and 2nd floor shall be:
 - » Type IV-HT
 - » Have 1-hr fire rating when sprinklered
 - » Have 2-hr fire rating when not sprinklered
- » Overall height from grade is still limited by the R occupancy http://www.woodworks.org/experttip/can-parking-incorporatedmixed-use-wood-frame-buildings-construction-type-perspective/

Parking beneath Group R

Wood Podiums

SEAOC 2012 CONVENTION PROCEEDINGS

All-wood Podiums in Mid-rise Construction

Michelle Kam-Biron, S.E. WoodWorks Newbury Park, CA

Karyn Beebe, P.E., LEED AP APA San Diego, CA

Abstract

Concern for the environment and climate change as well as the economic downtom of the past few years have created a demand for sustainable multi-family housing. According to the Washington, D. Ch-sude Naisond Association of Home Builders Multifamily Production Index (MPI), a leading and condominium bousing market has shown steady improvement for six consecutive quarters. However, leady's economic and environmental realities have led the building industry to revealuate the way we design and build multi-nov building multi-nov put of the conductive of the conductive

Mid-rise podium construction, consisting of two to four stories of wood framing above a concrete first story (the "podium") and often incorporating additional subterranean concrete levels, is composed by North America and in levels of residential units built on top of one or two levels of purking or other non-residential occupancies below. In purking or other non-residential occupancies below. In spaper, we are defining wood podium as the level (or transfer level) between the two or more soties of wood-frame residential occupancy had be lower non-residential occupancy which is traditionally constructed of concerning the an article titled, "What to Build Now," by Michael Russo, Dan Wilthe, All, EED AP, and partner with Wheel Malcolm Architects LLP in Torrance, CA states, "Wood podium's bisacially tunck-under agentuments on steroids."

The projects described in this paper have parking, retail, and restaurant space on their first level. The podium is composed of gyperete for light weight concrete) toping over wood structural panels supported by I-joists and glued laminated (glulam) beams. Both design teams made a conscientious effort to per utilize concrete or steel framing.

ALL-WOOD PODIUMS

Although a podium structure typically refers to wood-frame construction over concrete, a handful of designers have lowered their costs even further by designing the podium in wood.

"When determining the cost of a structure, there are a lot variables, including most notably time, materials and labor," said Karyn Beebe, P.E., of APA. "Using wood instead of concrete lowers the mass of the building, which results in more economical podium shear walls and foundations. Using the same material for the entire structure may also mean lower design costs, and the construction team experiences savings in the form of fewer trades on site, which means less mobilization time, greater efficiency because framing is repeated on all of the levels, easier field modifications, and a faster schedule."

Architect Dan Withee, AIA, LEED AP, of Withee Malcolm Architects designed an 85-unit wood podium project in San Diego. He estimated that a concrete podium can cost \$15,000 per parking space compared to \$9,500 for wood podium.⁶

Horizontal Wood Assemblies are effectively used to transition from Residential units above to Retail/Parking below

Multi-Story Wood Construction

A cost-effective and sustainable solution for today's changing housing market Sponsored by reThink Wood and Wood/Works

on effective, one complant and seatestic mile of the wood contrivation is a spaining the attention of design profession and another who was a sea a way to achieve higher density housing allower to com-white relating the culture in torquire of their process. He, many familiar with wood the complex of the complex is the complex of the complex of the complex of the complex of the contraction for the variety that the determination and building Code (IEC; allows wood frame construction for the variety and them to including occupancies that range from business and the contraction of the variety and those in which the contraction of the co

but its benefits are equally applicable to other occupancy types."

Among their benefits, word buildings typically effer share construction and reduced installation mosts. For example, after completing the first plane at a developer studed five-testey student bousing project using steel construction. OKM Artheries to Chickage without low word. "The 12-pange steel profits were expensive, very heavy and difficult to install, rate worlding and acreving the chart steep backing was very time consuming, was project artheries Effect Schoth. "Using wood was far more economical for the second plane." Passed, Maria, president

CONTINUING EDUCATION

LANK ORE ABACES HOW

LANK ORE GOD OF HOUR FOR LEED

AND ORE GOD OF HOUR FOR LEED

AND ORE SERVICE AND FOR LEED

AND ORE SERVICE

AND ORE SERVICE AND FOR LEED

AND ORD OR SERVICE AND FOR LEED

AND ORD ORD OR SERVICE AND FOR LEED

AND ORD ORD OR SERVICE AND FOR LEED

AND ORD ORD OR SERVICE AND FOR LEED

AND ORD ORD OR SERVICE AND FOR LEED

AND ORD OR SERVICE AND FO

and provisions for mid-rise multi-family

Outline

- » Context for Mid-Rise Construction (Urban Densification)
- » Mid-Rise Building Configurations
- » Maximizing Height & Area
- Case Studies

1430 Q, The HR Group Architects, Buehler Engineering, Greg Folkins Photography

Case Study – Wood Buildings Aim High

Inman Park Condominiums

Atlanta, GA

Architect: Brown Doane Architects

Engineer: Davis & Church

4 stories of wood over 1 story of concrete parking Floor joists selected to maximize headroom and not exceed building height (10' ceilings)

Drop ceilings for MEP at perimeter of some rooms

Case Study - Maximizing View and Value With Wood

Marselle Condominiums

Seattle, WA

- » Type III-A condo complex
- » 5-1/2 stories of wood over 2 stories of concrete
- » Mezzanines added \$250 in cost, but \$1M in value
- » 30% cost saving over concrete
- » Time savings over steel

Architect: PB Architects

Engineer: Yu & Trochalakis

Contractor: Norcon, NW

Completed: 2009

Photo Credit: Matt Todd Photography

Case Study – Innovations in Wood

Emory Point Atlanta, GA

» 3 mixed-use buildings completed – Luxury apt.'s, retail and restaurants

» (1) 5-story building of Type III-A wood over slab on grade

» (2) 4-story buildings of Type V-A wood over 1-story concrete podium

35% Structure Savings

» \$14/sf (wood floor structure)

» \$22/sf (concrete floor structure)

Architect: Cooper Carry, The Preston

Partnership

Engineer: Ellinwood + Machado,

Pruitt Eberly Stone

EMORY POIN

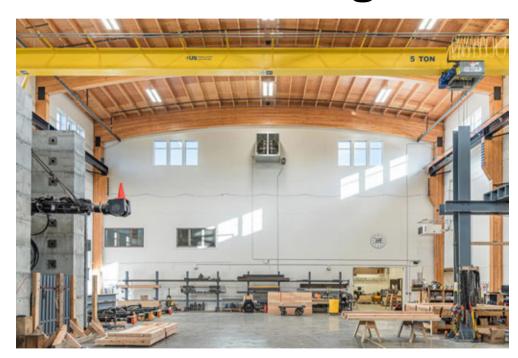
Contractor: Fortune-John

Photo credit: Gables Residential

Frame it Right! Back to Basics for Big Buildings

Lindsey Kuster, PE Engineered Wood Specialist

APA – The Engineered Wood Association



1933: Douglas Fir Plywood Association

1994: APA-The Engineered Wood Association

APA – The Engineered Wood Associate

APA's 42,000 square-foot research center

Introduction

- Structural Engineering Background
- Southwest Representative
 - California
 - Arizona
 - Nevada
 - New Mexico
- Based in San Diego

lindsey.kuster@apawood.org

Frame it Right! Back to Basics for Big Buildings

Course Description:

The demand for commercial and multifamily construction is soaring, and the framing industry is expanding to meet this demand.

APA – The Engineered Wood Association has walked hundreds of job sites and identified the most common wood construction framing errors found in today's nonresidential buildings.

This session examines the consequences of these framing mistakes from the ground up providing practical solutions for avoiding typical issues using APA resources as a guide.

Frame it Right!

Learning Objectives:

- Identify common pitfalls in the construction of low-rise wood buildings.
- Understand how the loads on a nonresidential wood building influence framing and mitigate negative effects of loading.
- Understand how engineered wood products (EWP) may be used and how to choose EWP products that meet those needs.
- Learn how to navigate technical resources to address the challenges with nonresidential wood buildings framers.

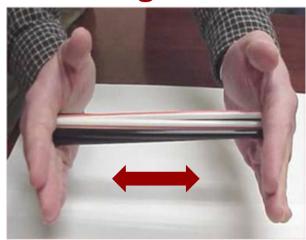
Agenda

Why is Training Needed?

Building from the ground up

- Wood Strength
- Walls
- Floors
- Roofs
- Special Topics
- Q&A

Engineered Wood Products (EWP)

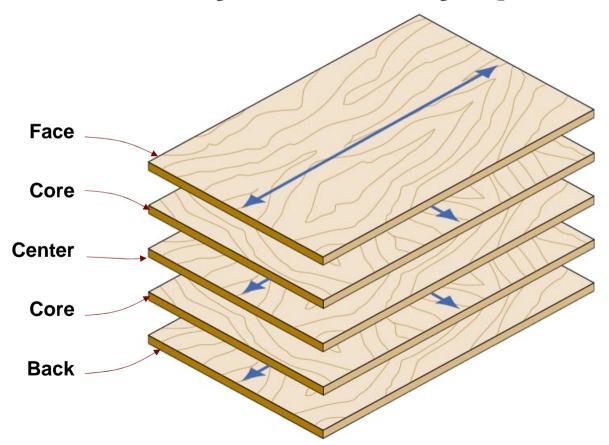


- ✓ Plywood
- ✓ OSB Oriented Strand Board
- √ I-joist and Rim Board
- ✓ Glulam Glued Laminated Timber
- ✓ LVL Laminated Veneer Lumber
- ✓ LSL Laminated Strand Lumber
- ✓ OSL Oriented Strand Lumber
- ✓ CLT Cross Laminated Timber
- **✓ MPP** Mass Plywood Panels

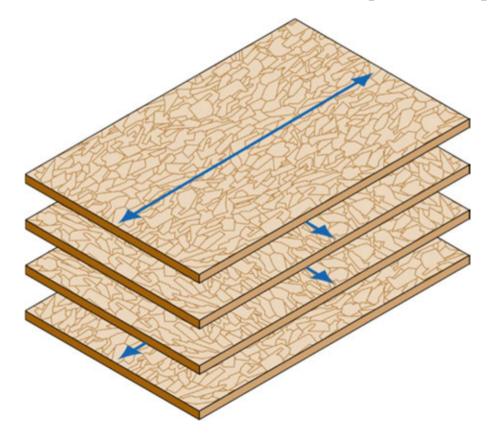
Wood has a Stronger Direction

Load parallel to grain

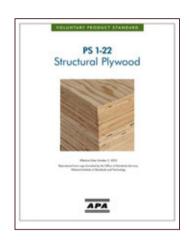
Stronger


Load perpendicular to grain

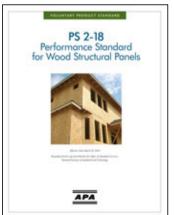
Weaker



Plywood Layup



Oriented Strand Board (OSB) Layup

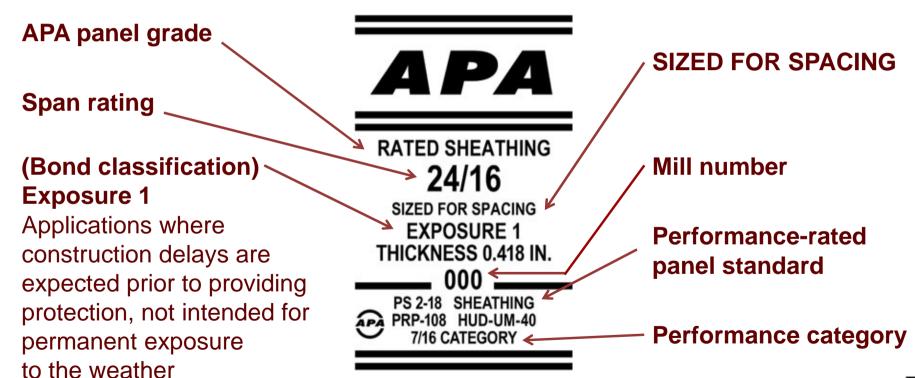


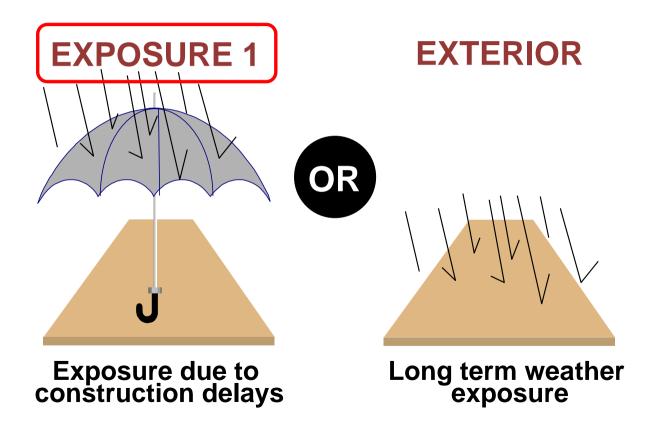
Manufacturing Standards

PS 1: Voluntary Product Standard <u>PRESCRIPTIVE</u> Standard (revised 2022)

PS 2: Voluntary Product Standard <u>PERFORMANCE</u> Standard (revised 2019)

APA Stamp in the Field





APA Panel Certification Marks

Bond Classification

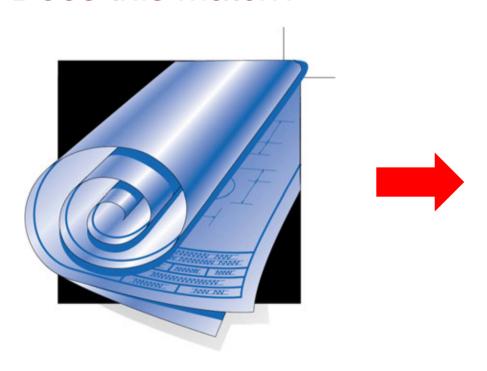
APA Panel Certification Marks

Out-of-Date Specifications

 1/2" CDX – C & D veneers, with exterior glue (when panels were made with interior & exterior glue)

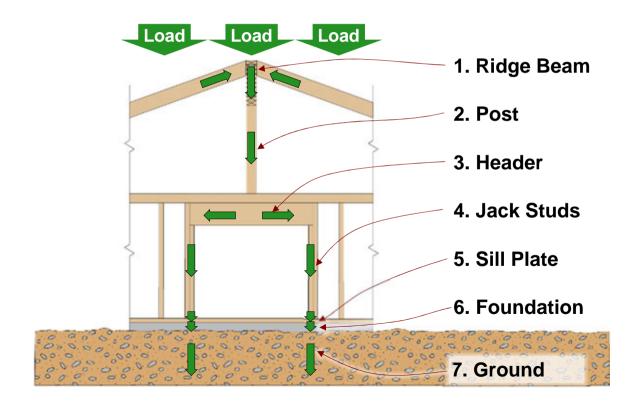
Previous Specifications

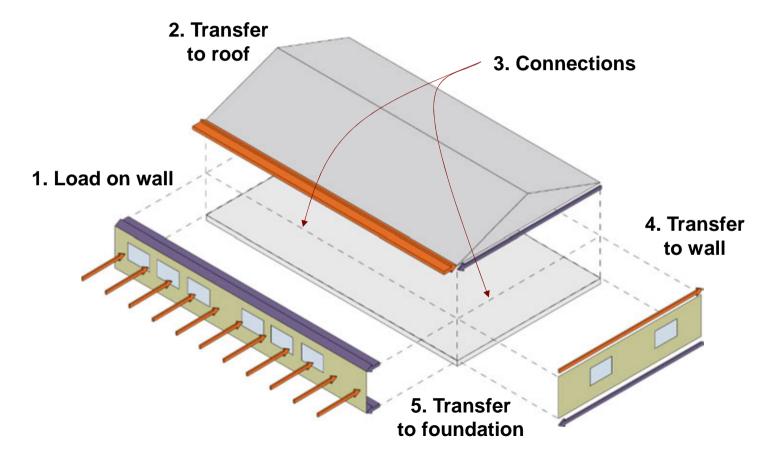
15/32" APA Rated Sheathing, 32/16, Exposure 1
 New Terminology


 15/32 Performance Category, APA Rated Sheathing, 32/16, Exposure 1, Square edge (or T&G)

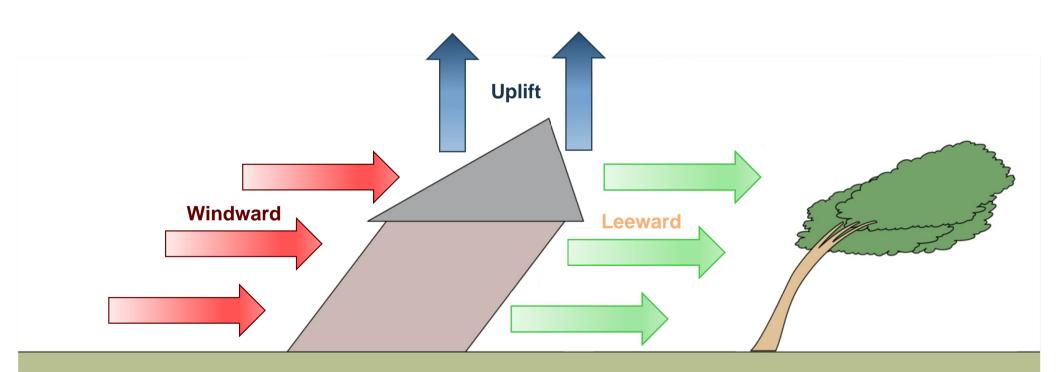
https://www.apawood.org/apa-trademark

Frame it Right!


Does this match?

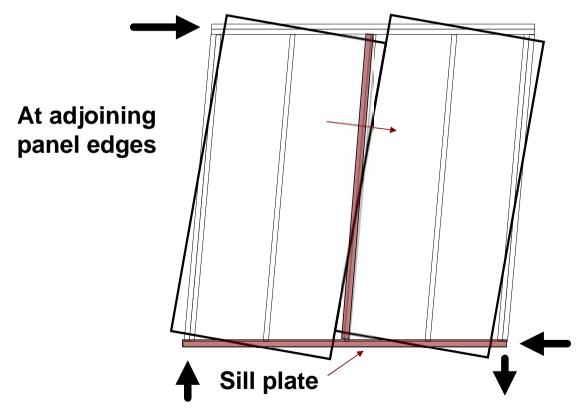


Vertical (Gravity) Load Path

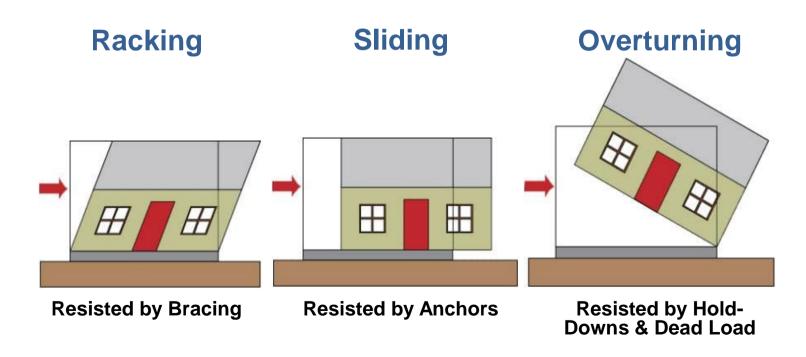


Lateral Load Path

Lateral Load Path

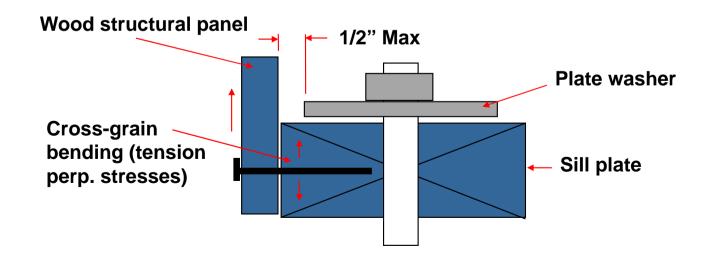


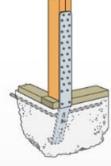
Building From the Ground Up: Walls


Building From the Ground Up: Walls

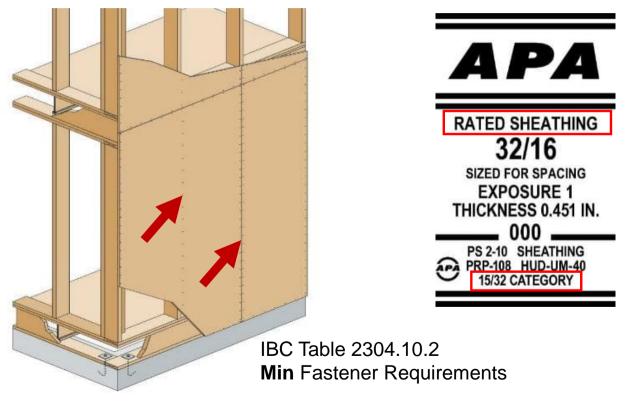
Lateral Forces

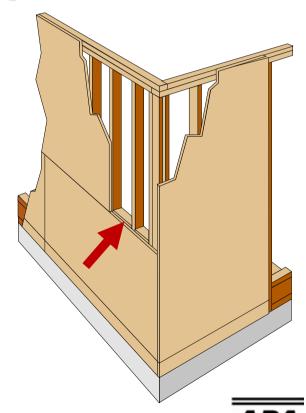
Modes of Failure

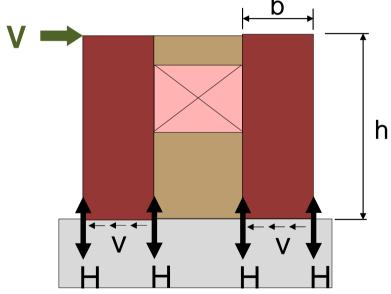



Anchor Bolts

- Size and spacing per engineer.
- Large plate washers (3" x 3" x 0.229") prevent cross- grain bending/splitting of sill plate (required in Seismic Zones D and E, IBC 2308.3.1). APA recommends these for high wind applications.

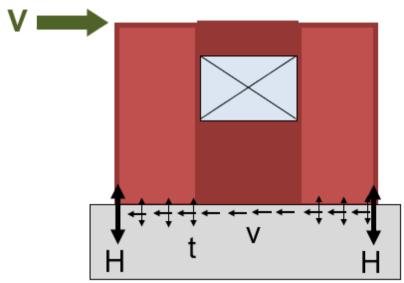




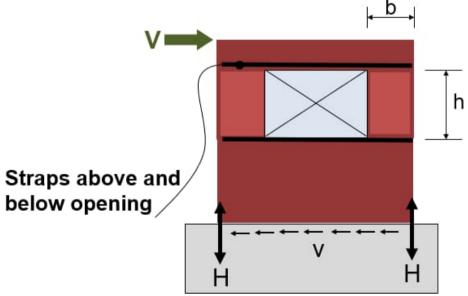


Resource: APA Technical Topics: Plywood or OSB? Used as Intended, the Two Products are Interchangeable, Form TT-047

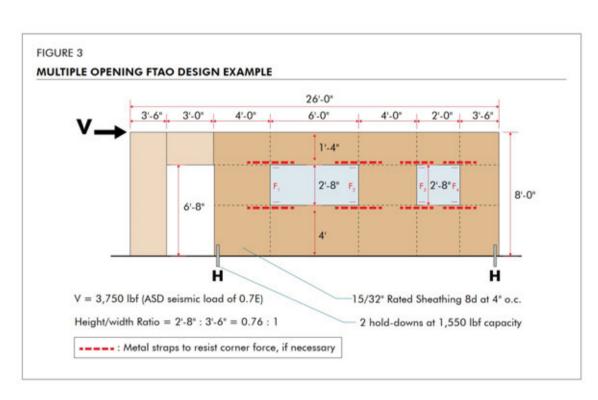
Segmented Shear Walls



Perforated Shear Walls



Force Transfer Around Openings (FTAO) Shear Walls



FTAO Technical Note - Form T555

Provides a design example for FTAO wall with two window openings

FTAO Calculator: Companion to Technical Note

www.apawood.org/ftao

APA FTAO Calculator

Excel-based tool released January 2018
Based on design methodology developed by Diekmann
Calculates:

Max hold-down force for uplift resistance

Required horizontal strap force above and below openings

Max shear force for sheathing attachments

Max deflection

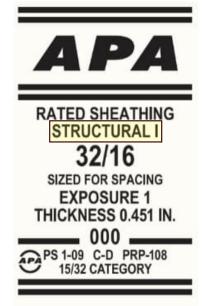
Design example corresponds with FTAO Technical Note, Form T555

APA Force Transfer Around Openings Calculator

This calculator is an Excel-based tool for professional designers that uses FTAO methodology to calculate maximum hold-down force for uplift resistance, the required horizontal strap force for the tension straps above and below openings, the maximum shear force to determine sheathing attachment, and the maximum deflection of the wall system. The calculator includes worksheets for shear walls wi openings and a design example.

High Load Shear Walls

RATED SHEATHING


32/16

SIZED FOR SPACING EXPOSURE 1 THICKNESS 0.451 IN.

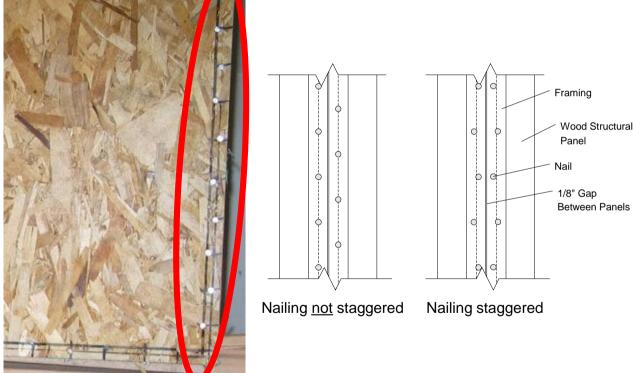
000

PS 2-10 SHEATHING PRP-108 HUD-UM-40 15/32 CATEGORY

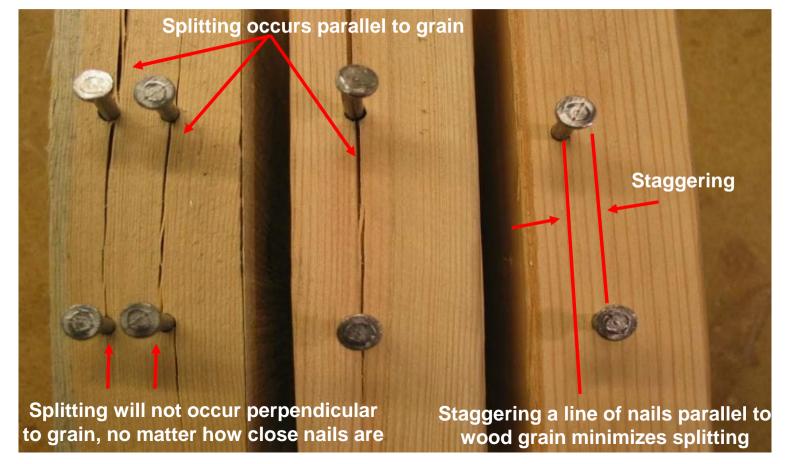
Rated Sheathing

versus

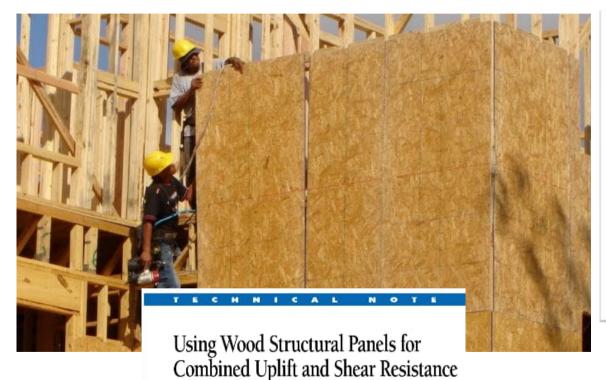
Structural I

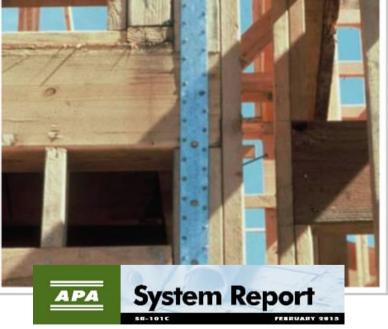

Structural I Panels

- Increased shear capacity
- Increased stiffness, especially across the panel
- Plywood & OSB (performance tested)
- Before specifying, check local availability



Staggered nailing in tightly nailed shear wall helps prevent splitting of framing




Staggered Fastening

Walls: Floor to Floor Load Transfer

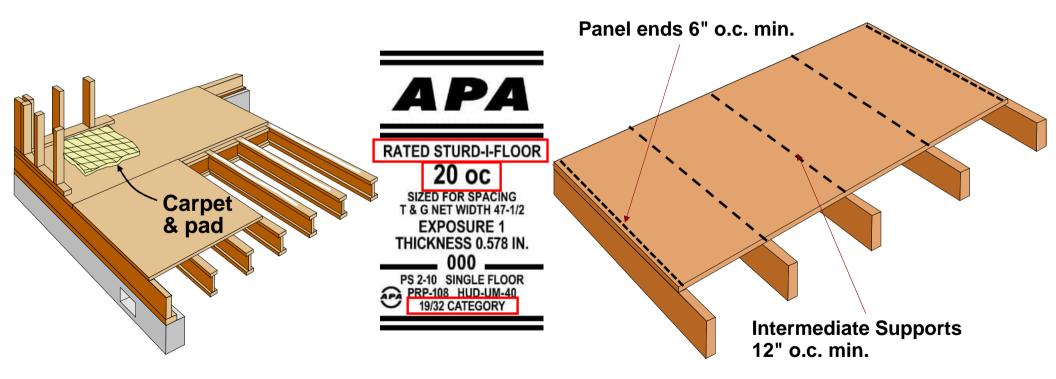
Design for Combined Shear and Uplift from Wind

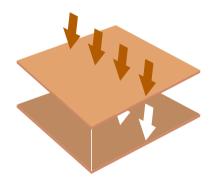
Number E510A • February 2008

APA Technical Note E510

APA System Report SR-101

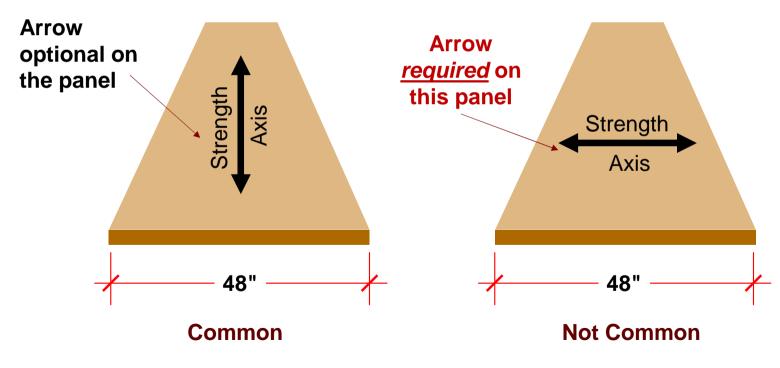
Wall Sheathing Nail-base sheathing





Roof Span L/240 30 PSF live 10 PSF dead

Floor Span L/360 100 PSF live 10 PSF dead



Strength Axis

Frame it Right!

Fully Fasten with Clamping Force

Frame it Right!

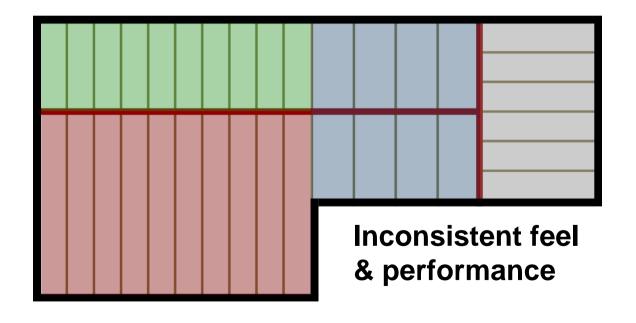
Nail installation

Overdriving reduces performance APA recommends adding one for every two overdriven

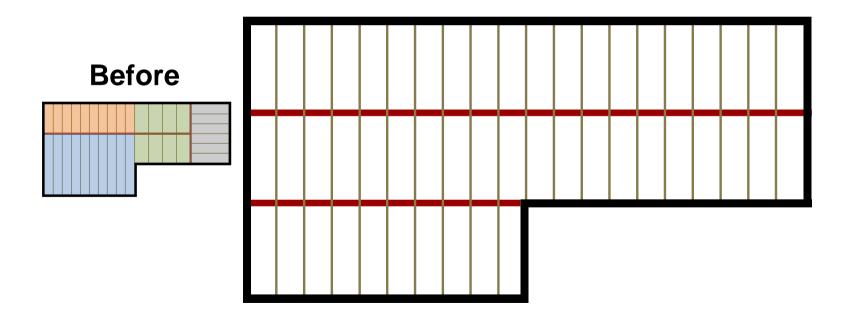
Overdriven Nails

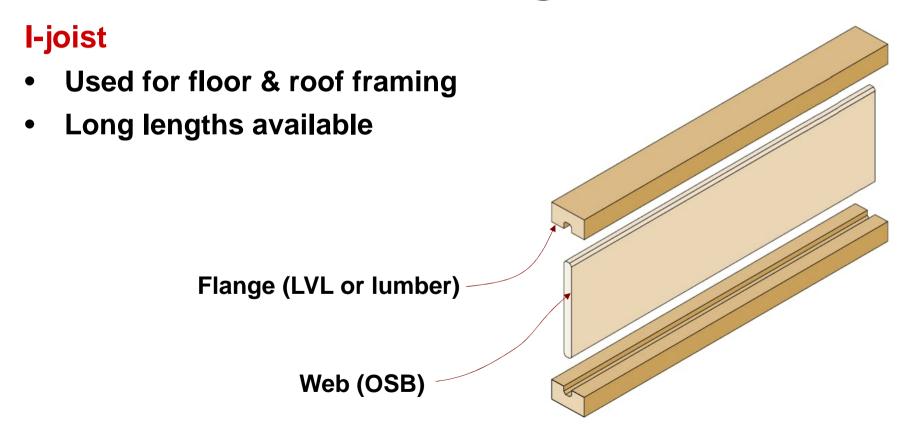
To Maintain Shear Capacity (APA Technical Topic TT-012)

Overdriven Fasteners	Overdriven Distance	Action
≤ 20% Perimeter	< 1/8"	None
> 20% Perimeter	> 1/16"	Add 1 nail for
Any	> 1/8"	every 2 overdriven



Floor Joist Layout — Consistency Counts

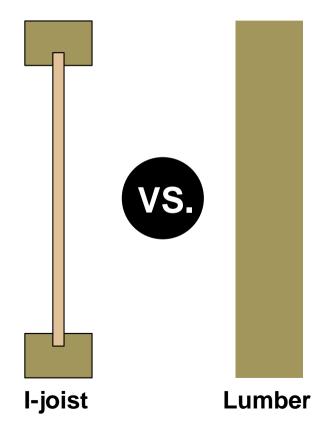

Inconsistent spacing & span


Floor Joist Layout — Consistency Counts

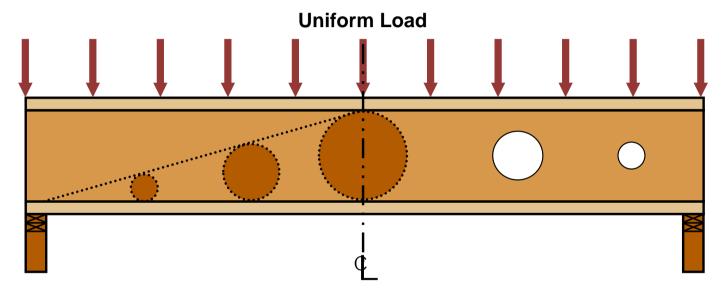
Consistent Spacing & Span

Use Wood's Strength Direction

Sustainability

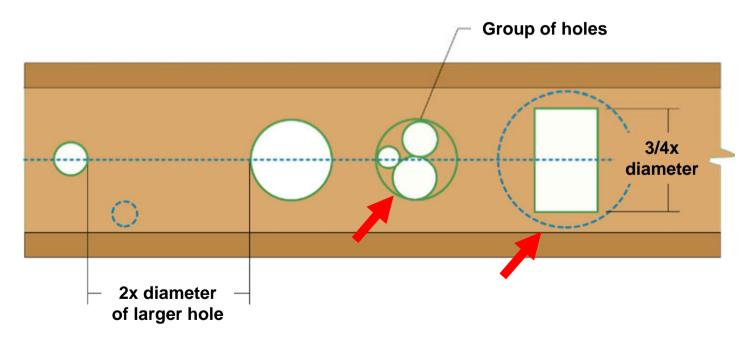

I-joist vs. Lumber

Both at 16" o.c.

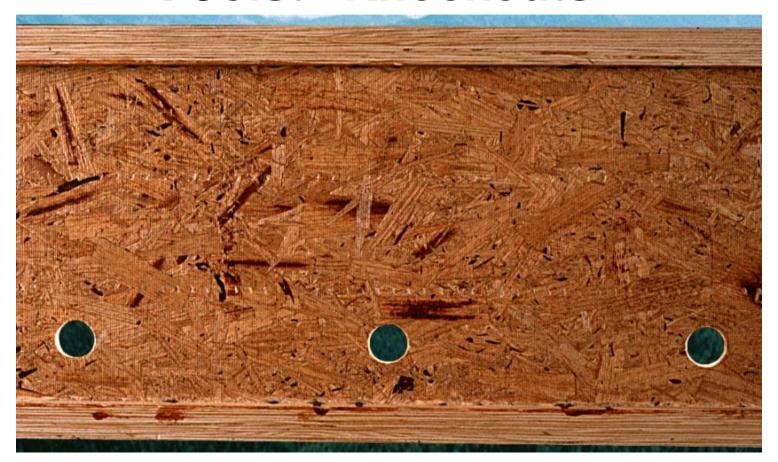

36% less wood fiber

I-joist at 19.2" o.c & Lumber at 16" o.c.

■ 46% less wood fiber

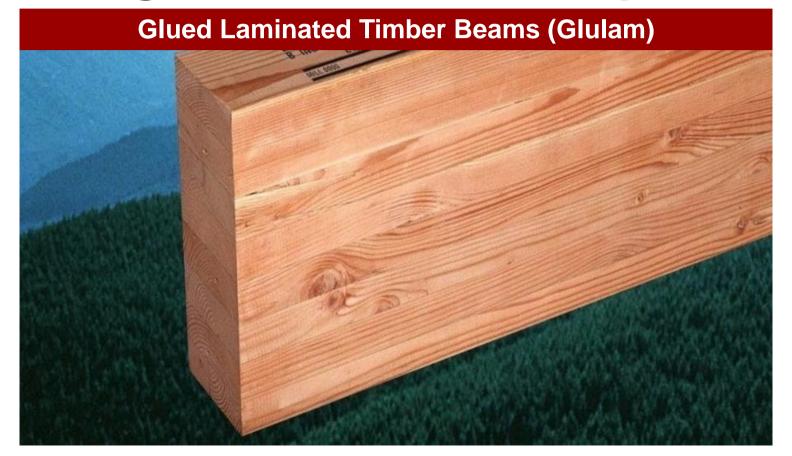


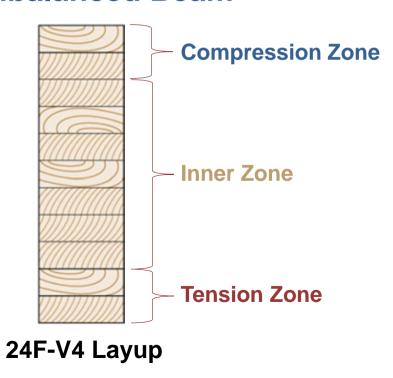
Hole Size in Proportion to Shear Force

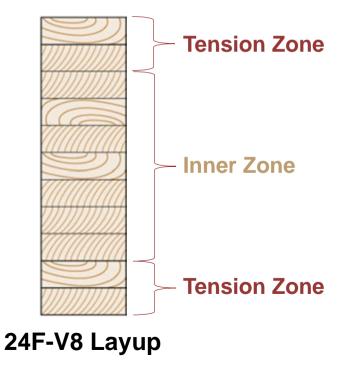


I-Joist "Knockouts"

Frame it Right!



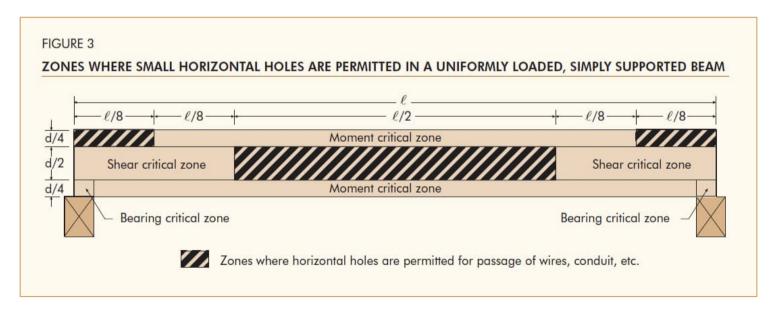




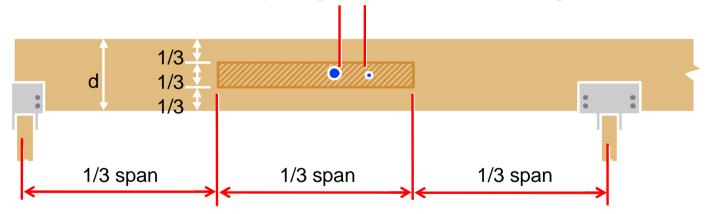
Balanced and Unbalanced Glulam

Unbalanced Beam

Balanced Beam


Caution when using Unbalanced Glulams

APA Tech Note: Field Notching and Drilling Glulam, Form S560



APA Tech Note: Field Notching and Drilling LVL, Form

G535

Minimum amount of spacing = 2×10^{-2} x diameter of the largest hole

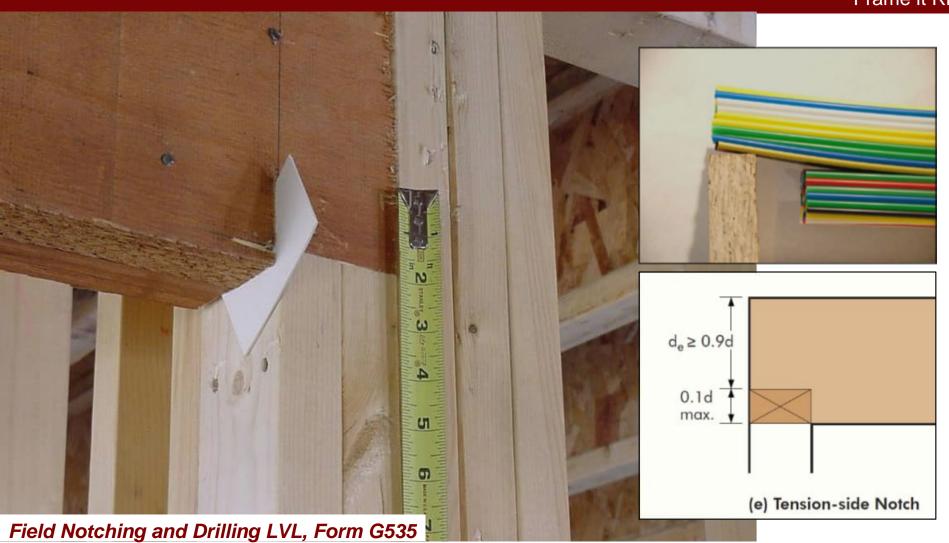
Zone where holes are permitted for passage of wires, conduits, etc.

No holes greater than 2" in diameter. No more than 3 holes per span.

Check with LVL manufacturer's guidelines for holes

APA Tech Notes: Effect of Large Diameter Horizontal Holes on Properties of LVL and Glulam Beams, Forms V900 and V700

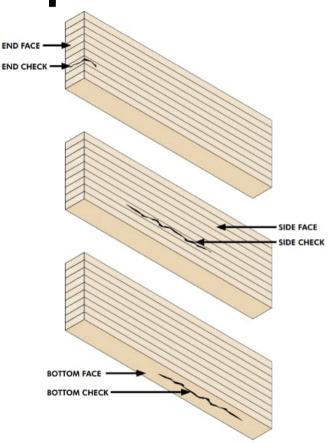
TECHNICAL NOTE


Effect of Large Diameter Horizontal Holes on the Bending and Shear Properties of Laminated Veneer Lumber

TECHNICAL NOTE

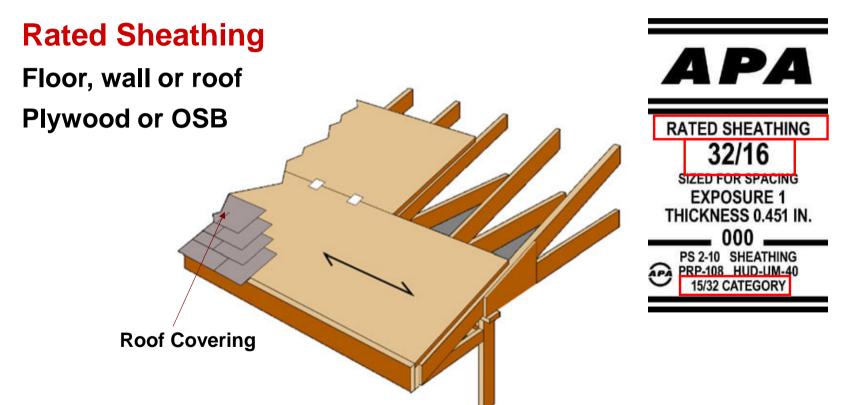
Effect of Large Diameter Horizontal Holes on the Bending and Shear Properties of Structural Glued Laminated Timber

Frame it Right!



Seasoning checks in glulams

Wood Properties



Checking Evaluation

- Guidelines established for what size checks are okay without an engineering analysis
- Published in Owner's
 Guide to Understanding
 Checks in Glued
 Laminated Timber, Form
 F450

Also see APA Technical Note: Evaluation of Check Size in Glued Laminated Timber Beams, Form R475

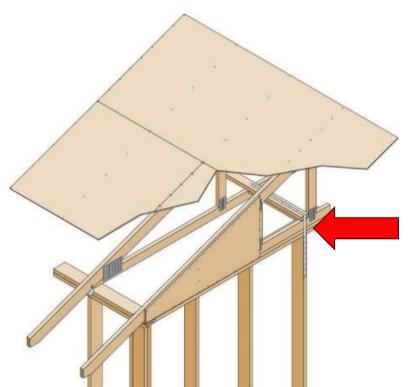
IS MY GLULAM OK? Is the span of the glulam beam greater than 10 times the depth? Example: Depth is 12", span is greater than 10" Where do the checks appear? BOTTOM FACE Is the check parallel to the grain of wood? SIDE FACE Is the depth of the check less than one-third the width of the beam, and is the length less than one-third the length of the beam? **END FACE** Is the length of the check or split less than one-half the depth of the member? NO STRUCTURAL CONCERN **CONSULT DESIGN PROFESSIONA** If the checks on your building's If checks in glulam exceed these alulam pose no structural sizes and situations, a qualified problems, engineering analysis design professional should is not required. These evaluate the effect of the checks. recommendations apply to both simple span beams and multiple span beams under uniform loads.

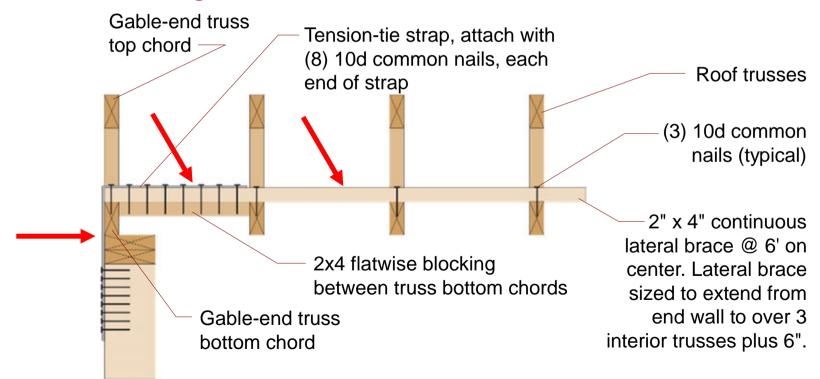
APA Engineered Wood Construction Guide, Form E30, Table 34

RECOMMENDED UNIFORM ROOF LIVE LOADS FOR APA RATED SHEATHING® AND APA RATED STURD-I-FLOOR WITH STRENGTH AXIS PERPENDICULAR TO SUPPORTS®											
	Minimum Panel Performance Category	Maximum Span (in.)		Allowable Live Loads (psf)d							
Panel Span Rating		With Edge Support	Without Edge Support	Spacing of Supports Center-to-Center (i					(in.)		
				12	16	20	24	32	40	48	60
APA RATI	ED SHEATHING	;•									
12/0	3/8	12	12	30							
16/0	3/8	16	16	70	30						
20/0	3/8	19.2	19.2	120	50	30					
24/0	3/8	24	19.2*	190	100	60	30				
24/16	7/16	24	24	190	100	65	40)			
32/16	15/32	32	28	300	165	110	65	30			
40/20	19/32	40	32	_	275	195	120	60	30		
48/24	23/32	48	36	_	_	270	175	95	45	30	
60/32	7/8	60	40	_	_	_	305	165	100	70	35
60/48	1-1/8	60	48	_	_		305	165	100	70	35


APA Engineered Wood Construction Guide, Form E30, Table 37

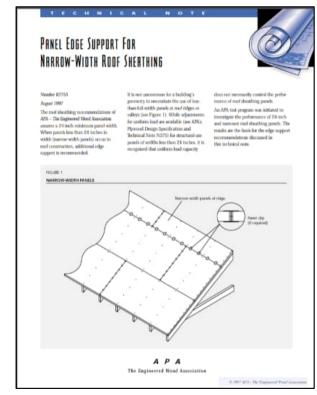
	Panel Performance	Span Rating	Maximum Span -	Load at Maximum Span		
Panel Grade	Category		(in.)	Live	Total	
	7/16	24/16	24°	15	25	
APA STRUCTURAL I	15/32, 1/2	32/16	24	30 ^d	40 ^d	
RATED SHEATHING	19/32, 5/8	40/20	24	70*	80*	
	23/32 3/4	48/24	24	105 ^f	115	
	7/16	24/16	16	35	45	
APA RATED	15/32, 1/2	32/16	24°	15*	25°	
SHEATHING	19/32, 5/8	40/20	24	40h	50h	
	23/32, 3/4	48/24	24	70*	80*	
a. For guaranteed or warran	ted roofs, contact membr	ane manufacturer for	acceptable deck.			
 b. Provide edge support. 						
c. Solid blocking recommen	ded at panel ends for 24-	inch span.				
d. For 4-ply plywood, reduce	load by 10 psf.					
e. For 4-ply plywood, reduce	load by 30 psf.					
f. For 4-ply plywood, reduce	load by 45 psf.					
g. For 4-ply plywood, reduce	load by 5 psf.					
h. For 4-ply plywood, reduce	load by 15 psf.					


3-dimensional metal connectors


Gable ends

Studs-to-Floor/Roof

Tie gable-end walls back to the structure



Narrow Width Roof Sheathing

Narrow Roof Sheathing

- If WSP* is 16" to 24"
 2 clips at lower edge acceptable
 Lumber block lower edge
- If WSP is 12" to 16"
 Lumber block lower edge
- If WSP is less than 12"
 - Lumber block upper and lower edges

*"WSP" = wood structural panel (plywood or OSB)

Special topics

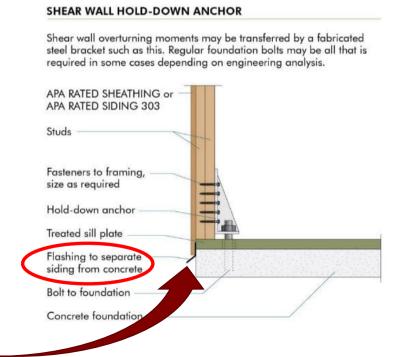
- On-site moisture management
- Panel Expansion
- Panel Shrinkage

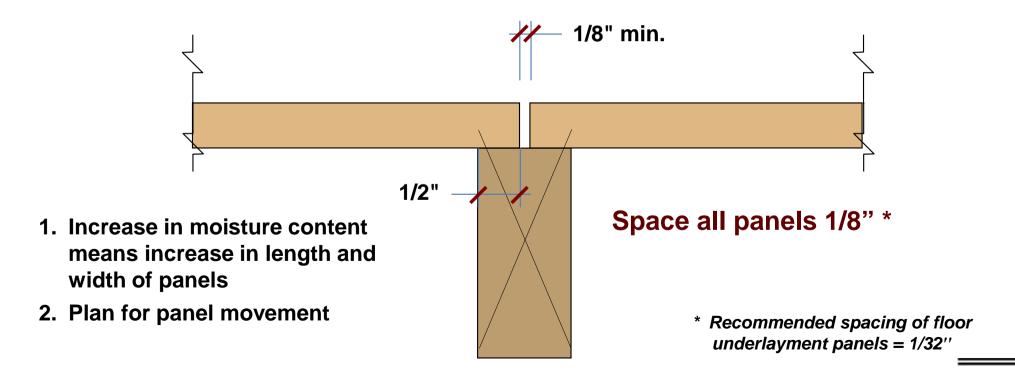
Prevent Moisture Intrusion in Subfloors Drying of Subfloor

Fans

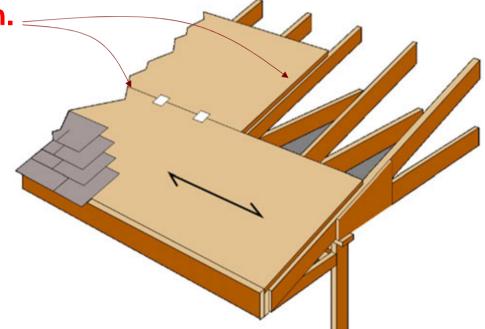
Dehumidification

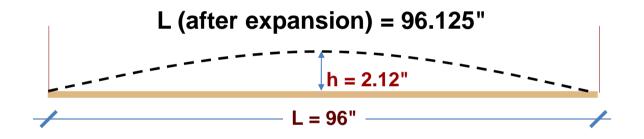
Capillary Action


- Is the product touching the foundation rated for concrete contact?
- What are the long-term consequences?

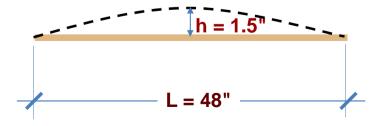


Use Flashing


Flashing keeps the panel from contacting the concrete.

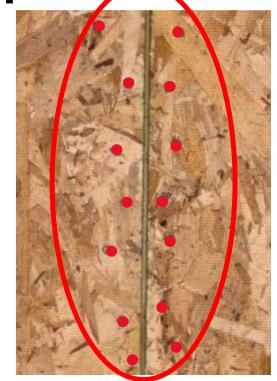


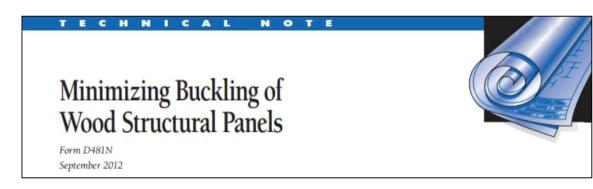
Space panels 1/8" min. = (ends & edges)



Allow for panel expansion

L (after expansion) = 48.125"


What can happen if panels aren't allowed to acclimate?



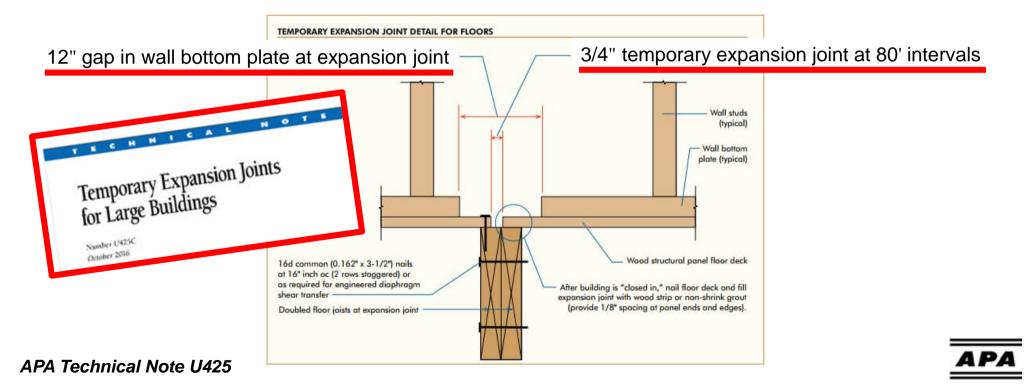
Nailing approx. 3" o.c.

Buckling — High Risk Applications

- Panels installed parallel to supports (e.g., walls)
- Edge nailing 4" o.c. or closer
- Long lasting rainy weather or high humidity
- Panels installed within a few days of their manufacture
- Others...

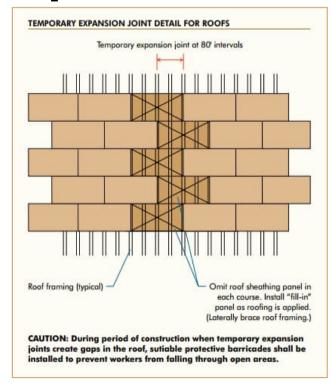
APA Technical Note D481

High risk because the conditions may reduce edge gap's effectiveness in absorbing panel expansion.



Panel Expansion of large structures

- Panel expansion may accumulate through the framing of large, continuous floor or roof decks
- Provide temporary expansion joints to minimize displacement when building plan dimension exceeds 80'



Provisions for large structures

- Sheath 80-foot sections, omitting a roof sheathing panel between sections
- Complete installation with fill-in panels immediately before sheathing is covered with roof underlayment

Shrinkage occurs primarily in horizontal wood dimensional lumber members such as wall plates and floor joists.

Wood shrinkage

- Wood mostly shrinks perpendicular to grain. (Shrinkage parallel to grain is approximately 1/40 of the shrinkage perpendicular to grain and can be neglected.)
- The amount of shrinkage (or expansion) in wood is directly proportional to the change in moisture content.
- The higher the moisture content at time of construction, the more shrinkage that can occur in the structure as the structure dries out/acclimates.
- Wood shrinkage must be accounted for in structures > than 2 stories.

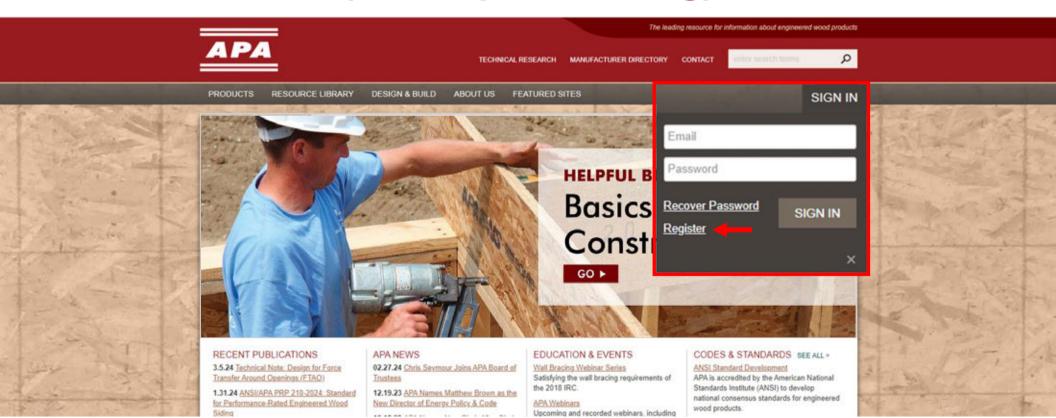
Tips:

- Keep materials dry, dry in as soon as possible
- Load floors ASAP
- Accommodate movement in plumbing and electrical (vertical slip joints, vertical slot holes at horizontal runs, etc.)
- Limit or avoid dissimilar materials.
- Additional information on Accommodating Shrinkage in Wood-Frame Structures can be found on WoodWorks web page, www.woodworks.org

Quick Summary

Simple basics make a big difference:

- Follow the prints and specifications
- Space panels
- Follow fastening guidelines
- Check load paths/stacking
- Control moisture


Assistance is available from APA

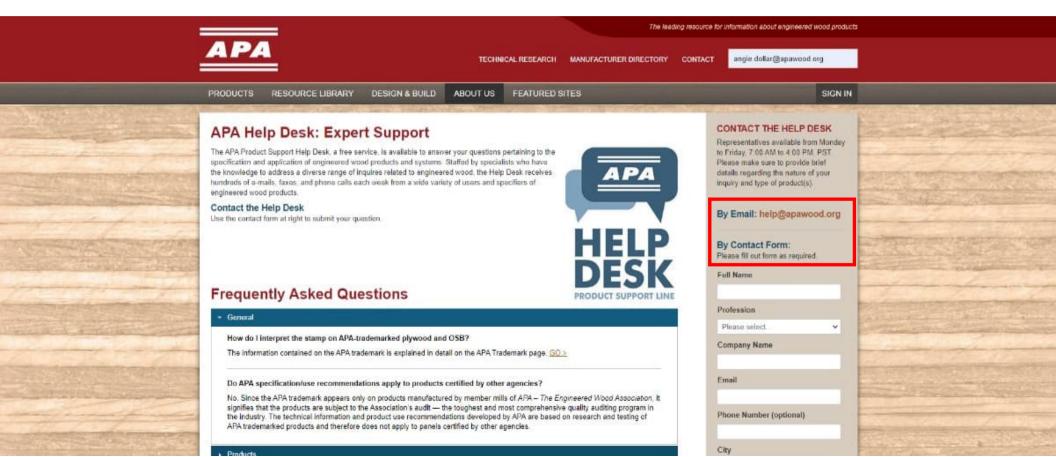
APA Update Newsletter (www.apawood.org)

APA Update Newsletter (www.apawood.org)

APA Update Newsletter (www.apawood.org)

UPCOMING WEBINAR

Designing Engineered Wood Diaphragm Systems


Wednesday, May 22 | 10-11 a.m. PDT
Diaphragms play a vital role in a
building's lateral load path. Whether
that lateral load is from seismic activity
or wind forces, the diaphragm is
responsible for distributing that lateral
load to the shear walls. This session
provides guidance on the proper
design of engineered wood diaphragm

Help Desk

Phone #: 253-620-7400

EWS Territories

www.apawood.org/staff-contacts

Questions? Ask us anything.

Mike Romanowski, SE Senior Regional Director | CA-South, AZ, NM (619) 206-6632

mike.romanowski@woodworks.org

Lindsey Kuster, PE

Engineered Wood Specialist | Southwest Region

(619) 909-5355

<u>lindsey.kuster@apawood.org</u>

901 East Sixth, Thoughtbarn-Delineate Studio, Leap!Structures, photo Casey Dunn