Building Sustainably: Wood's Role in Healthy Forests and Healthy Buildings

WOODWORKS

February 28, 2023 & March 2, 2023

Presented by John O'Donald II, PE, WoodWorks

Apex Plaza / Courtesy William McDonough + Partner

Land Acknowledgement

Recognizing the Nacotchtank and Piscataway People, the First Residents of the land that would become the District of Columbia.

Every community owes its existence and vitality to generations from around the world who contributed their hopes, dreams, and energy to making the history that led to this moment. Some were brought here against their will, some were drawn to leave their distant homes in hope of a better life, and some have lived on this land for more generations than can be counted. Truth and acknowledgment are critical to building mutual respect and connection across all barriers of heritage and difference. We begin this effort to acknowledge what has been buried by honoring the truth. We stand on the ancestral lands of the Nacotchtank and the Piscataway People. We pay respects to their elders past and present. Please take a moment to consider the many legacies of violence, displacement, migration, and settlement that bring us together here today. And please join us in uncovering such truths at any and all public events and to use such truths to guide the legacy of this Arts Commission.

The land acknowledgement was created by CAH Commmissioner Quanice Floyd with resources provided by the U.S. Department of Arts and Culture, and was adopted by the Board of Commissioners on May 21, 2020. It is read at the beggining of all public meetings of the Commission.

"The Wood Products Council" is a Registered Provider with The American Institute of Architects Continuing Education Systems (AIA/CES), Provider #G516.

Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request.

This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Course Description

Explore the benefits of using wood products in construction, from our forests to wood buildings. In addition to their renewability, wood products require less embodied energy to manufacture than other structural building materials. This presentation will discuss three topics: forestry and the impact of wood use on forest health, the relevance of wood to green building rating systems, and biophilic design strategies for healthy buildings. It will answer questions such as: Where do our trees and forests grow? How have forests changed over time? What is the relationship between people and forests—now and in the past? How does wood contribute to biophilic design principles? What is the purpose of green building rating systems and how do they vary? How can wood products be used in construction to gain points and credits within a number of green building rating systems?

Learning Objectives

- 1. Highlight North America's ecological capacity to support a diverse range of forests.
- 2. Discuss how using a variety of forest products can economically support healthy and sustainable forests.
- 3. Describe how wood's use can be leveraged in a number of green building rating systems to help achieve certification.
- 4. Demonstrate how wood can contribute to sustainable development trends such as biophilic design and healthy buildings.

The Business Case for Healthy Buildings ULI Report

Global Wellness Real Estate Industry:

- \$134 billion industry in 2017
- 6.4% annual increase since 2015
- \$180 billion industry by 2022

Healthy Bldgs ROI (Survey of 200 Canadian Bldg Owners):

- 46% easier to lease
- 28% command premium rents
- 38% of those who reported value in healthy bldgs said they are worth 7% more than conventional ones

Millennials:

- 78% say workplace quality is important
- 69% would trade other benefits for good workplace

"Health and wellness-focused environments...can help reduce company operating costs and increase revenues and profits."

State of Our Forests

Common Environmental Concerns About Specifying Wood

- 1. Is North America running out of forests?
- 2. Does specifying wood products contribute to deforestation?
- 3. Is wood a renewable resource?

U.S. Forest Land: Forest **Area** in the United States 1630 – 2017

Source: USDA-Forest Service, Forest Resources of the United States, 2017 (2018)

State of our Forests: US Timber Volume on Timberland

Source: USDA-Forest Service, Forest Resources of the United States, 2017 (2018)

US Forest Lands

Forest Land Ownership

This map displays the basic vegetation (forest vs. non-forest) of the conterminous United States as well as ownership (private vs. public). The lands displayed as "public" include Federal and State lands but do not generally include lands owned by local governments and municipalities.

US Forest Lands

Forest Land Ownership

This map displays the basic vegetation (forest vs. non-forest) of the conterminous United States as well as ownership (private vs. public). The lands displayed as "public" include Federal and State lands but do not generally include lands owned by local governments and municipalities.

US Forest Lands

Forest Land Ownership

This map displays the basic vegetation (forest vs. non-forest) of the conterminous United States as well as ownership (private vs. public). The lands displayed as "public" include Federal and State lands but do not generally include lands owned by local governments and municipalities.

Urban areas: DCW (1998)

Cooperative Forestry Staff, Washington Office.

US Forest Harvest by Owner

Source: USDA-Forest Service, US Forest Resource Facts and Historical Trends FS-1035. (2014).

Regeneration vs. Deforestation

Deforestation is the permanent conversion of forest land to nonforest land uses. Worldwide, agricultural expansion is the main driver of deforestation, but in the U.S., the rate of deforestation has been virtually zero for decades.

Source: State of the World's Forests—2020– FAO and UNEP, USDA Forest Service, US Forest Resource Facts and Historical Trends FS-1034 (2014)

Forests are more than Lumber Factories

- We can balance the long-term and short-term desires and the multiple uses through responsible forest management.
- Best Management Practices (BMPs)
- State, Federal and Provincial monitoring and forest inventory programs
- Forestry Practices and Laws
- Professional Logger Training and Certification
- Sustainable Forest Management Systems

Photo: Green Diamond Resource Company

Sustainable Forestry Management Systems

- Wood from well-managed forests is sustainable over the long term.
- Forest certification shows that the wood comes from well-managed forests
- The major North American programs are:

Sustainable Forestry Management Systems

Similarities:

- Biological diversity
- Wildlife habitats / species diversity
- Special sites/values
- Soil & water resources
- Sustainable harvests
- Prevent illegal or unauthorized sources

- Protect from deforestation and conversion
- Aboriginal rights and/or involvement
- Independent audit required
- Audit of forest planning and practices
- Public disclosure required
- Chain of custody and label option

Background on Climate Change

Rising Temperatures and Melting Glaciers

Carbon & Greenhouse Gas Emissions

year

CO₂ in the atmosphere and annual emissions (1750-2019)

40

35

30

25

20

15

10

5

0

CO₂ emissions (billions of tons

NOAA Climate.gov Data: NOAA, ETHZ, Our World in Data

Global Population Increase

2050 = 9.9 billion people

2020 = 7.8 billion people

Source: www.prb.org

New Buildings & Greenhouse Gases

Global CO₂ Emissions by Sector

Buildings generate nearly 40% of annual global greenhouse gas emissions (*building operations* + *embodied energy*)

Embodied energy: **11%** Concrete, iron, steel **~9%**

Source: © 2018 2030, Inc. / Architecture 2030. All Rights Reserved. Data Sources: UN Environment Global Status Report 2017; EIA International Energy Outlook 2017

Image: Architecture 2030

Carbon Terms

- **Embodied Carbon**: Carbon emissions associated with the entire life cycle of the building including harvesting, mining, manufacturing, transporting, installing, maintaining, decommissioning, and disposing/reuse of a material or product
- **Operational Carbon**: Carbon emissions associated with operating a building including power, heat, and cooling

Embodied Carbon

- Primarily related to manufacturing of materials
- More significant than many people realize, has been historically overlooked
- Big upfront GHG "cost" which makes it a **good near-term target** for climate change mitigation

Embodied Energy vs Embodied Carbon

Embodied Energy:

Amount of energy used to:

- Extract, harvest, mine resources
- Process and assemble materials
- Transport products
- Construct building
- Maintain and repair building
- Deconstruct building and dispose or recycle materials

Embodied Carbon:

Carbon emissions resulting from:

- Combustion of fuels to generate embodied energy
- Chemical reactions

Carbon emissions may be offset by:

• Carbon sequestration during growth or manufacturing

Embodied vs. Operational Energy Traditional Non-Wood Building

% Energy

Image: Gray Organschi Architecture

How Does Wood Fit in?

Carbon Benefits of Wood

- Less energy intensive to manufacture than steel or concrete
- Less fossil fuel consumed
 during manufacture
- Avoid process emissions
- Carbon storage in forests and promote forest health
- Extended carbon storage in products

More Carbon Terms

Carbon Sequestration: The process by which CO_2 is **removed** from the atmosphere and deposited in solid or liquid form in oceans, living organisms, or land.

Carbon Storage: Carbon is **stored as a solid** in the form of plant material: roots, trunks, branches, stems, and leaves. It can continue to be stored in **wood building materials**.

Image: Dovetail Partners, Inc.

Carbon Storage Wood ≈ 50% Carbon (dry weight)

Biogenic Carbon

"Carbon derived from... material of biological origin

excluding material embedded in geological formations or transformed to fossilized material and excluding peat."

Photosynthesis:

 $6 \text{ CO}_2 + 6 \text{ H}_2 0 \rightarrow \text{C}_6 \text{H}_{12} \text{O}_6 \text{ (stored)} + 6 \text{ O}_2 \text{ (released)}$

Long-Term Positive Effects

		Energy effect	Carbon effect	Value-added effect
₽	Forest	Stores solar energy	Removes C from Atmosphere	Increases forest value; supplies wood
	Timber	Often local, short transit	C in raw material	Strengthens rural economies
	Lumber	Low embodied energy	Stores C; replaces materials w/ greater C impact	Supports energy independence; strengthens US Forestry
(0)	Wood structure	Low thermal conductivity & bridging	Stores C; reduces insulation / GHG emissions	Cost effective & provides biophilic environment
	Modernization, refurbishment, urban densification	Lightweight & easy to transport	More C storage	Increasing use of prefab; saves resources & retains value
	Demo, recycling, energy recovery	Low energy recycling or emissions neutral energy recovery	Extended C fixation due to recycling	Innovative solutions for circular economy

Source: Building with Wood – Proactive Climate Protection, Dovetail Partners, Inc.

Specifics of Carbon Storage

Where is Carbon Stored?

Harvested Wood Pools

- Harvested Wood Products
- Solid Waste Disposal Sites

Forest Pools

- Aboveground Biomass
- Belowground Biomass
- Dead Wood
- Litter or Forest Floor
- Soil Organic Carbon

Source: https://usaforests.org/
Carbon Storage in Harvested Wood Products

As of 2019, the carbon stock for Harvested **Wood Products in Use** in the conterminous 48 states is estimated at **1,521 Million Metric Tons**.

Carbon Stocks in Forest Land and Harvested Wood Pools, 2019

https://www.epa.gov/sites/production/files/2020-04/documents/us-ghg-inventory-2020-main-text.pdf

Harvested Wood Products

- Solid sawn wood products have the lowest level of embodied energy.
- Wood products requiring more processing steps (for example, plywood, engineered wood products, flake-based products) require more energy to produce but still require significantly less energy than their non-wood counterparts.

Image: Weyerhaeuser

Image: LP Building Solutions

Source: USFPL Wood Handbook; Wood as a Sustainable Building Material

Image: Structurecraft

Tools to Evaluate Carbon Impact

WoodWorks Carbon Calculator

- Available at **woodworks.org**
- Estimates total wood mass in a building
- Provides **estimated** carbon impacts:
 - Amount of **carbon stored** in wood
 - Amount of greenhouse gas emissions avoided by choosing wood over a non-wood material

Volume of wood used: 208,320 cubic feet

Carbon stored in the wood: 4,466 metric tons of CO₂

Avoided greenhouse gas emissions: 9,492 metric tons of CO₂

TOTAL POTENTIAL CARBON BENEFIT: 13,958 metric tons of CO₂

EQUIVALENT TO:

Source:

2,666 cars off the road for a year

Energy to operate a home for 1,186 years

http://www.woodworks.org/carbon-calculator-download-form/

Whole Building Life Cycle Assessment (WBLCA)

"Evaluation of the inputs, outputs, and potential environmental impacts... throughout its life cycle"

- WBLCA covers all stages in the life cycle of a building and its components
- Several tools available; various methodologies
- <u>https://www.thinkwood.com/education/calculate-</u> wood-carbon-footprint
- <u>https://www.thinkwood.com/blog/understanding-</u> <u>the-role-of-embodied-carbon-in-climate-smart-</u> <u>buildings</u>

Resources from WoodWorks

Whole Building Life Cycle Assessment (WBLCA)

» Introduction to Whole Building Life Cycle Assessment: The Basics

Biogenic Carbon and Carbon Storage

- » When to Include Biogenic Carbon in an LCA
- » How to Include Biogenic Carbon in an LCA
- » Biogenic Carbon Accounting in WBLCA Tools
- » Long-Term Biogenic Carbon Storage
- » Calculating the Carbon Stored in Wood Products

Environmental Product Declarations (EPDs)

- » Current EPDs for Wood Products
- » How to Use Environmental Product Declarations

Energy Use of US Buildings

47% of energy goes to HVAC Systems

Source: US DOE Buildings Energy Data Book (2011 Data)

Thermal Performance of Walls

Thermal Conductivity of Materials

R-Value of Common Wall Materials

*From manufacturer's data

Data Source: "Building Construction Illustrated" 3rd Edition (2001). Ching & Adams

Wood vs Steel Framing

30 Wood Studs Steel Studs 24.7 25 21.5 19.3 20 17.3 17.2 16.2 14.3 14.2 15 12 11.2 10.3 10 7.3 5 0 2x4 no EPS 2x6 no EPS 2x4 1" EPS 2x6 1" EPS 2x4 2" EPS 2x6 2" EPS

Effective Wall Insulation Value Give

Given same amount of insulation, the wood framing walls perform better.

OR

It takes more insulation to get equivalent performance out of a steel stud wall.

Thermal Performance of Light Frame Structures-CWC, Wood Handbook – FPL USDA

The Passive House Path

Objective: Radically reduce energy consumption by **insulating beyond code** minimums, use of **high-efficiency ventilation** system, and **air-tight** construction

- Perform 60-85% better on energy consumption basis over code-compliant building
- Use 40-60% less energy for space conditioning than conventional building

Passive Building Works Well for All Climate Zones

- Works in all climates; tailored to each climate zone
- Already integrated into North American codes and standards
- Passive retrofitting is like regular retrofitting: messy and worth it
- Test the airtightness as construction progresses

The Many Benefits of Passive Buildings

- Superinsulation and tight construction make buildings comfortable to be in
- Better buildings are more predictable and affordable to operate at little extra cost
- Passive buildings have:
 - 1. Continuous insulation: eliminate thermal bridging
 - 2. Airtight construction: stop heat and moisture
 - 3. Optimized windows and doors: keep heat in or out
 - 4. Balanced ventilation: ensure fresh air and control moisture
 - 5. Minimal space conditioning

Energy Efficiency

Techniques such as **Passive House** can be paired with wood's inherent thermal benefits to gain greater savings

- Minimize thermal bridging
- Can act as a continuous air barrier (i.e. plywood-sheathed wall with taped joints)

V-A

The Distillery

Boston, MA

- 4 stories wood over
 2 story podium
- 60,000 sf total
- 28 residential units over parking & retail
- First multi-family Passive House building in New England

Resources for Developers/Owners

WOOD PRODUCTS COUNCIL

www.woodworks.org/learn/mass-timber-clt/mass-timber-business-case/

INTRO, Cleveland CLEVELAND, OH

INTRO, Cleveland: Project Team

Developer Harbor Bay Ventures

HARBOR BAY

Investor Profile **Private Family Office** Lender Profile First National Bank of Omaha Busey Bank First National Bank of Pennsylvania

INTRO, Cleveland: Mass Timber Development

Development Overview

- 9-story, 115' tall building
- 8 stories of CLT & glulam construction over a podium

• Strategy:

- Create Cleveland's best, most distinctive urban living experience; a new level and bespoke brand
- Combine best-in-city amenity package and contemporary interiors to appeal to health/ wellness & entertainment-focused young professionals

Property Information

Property timing	Completed Feb 2022
Submarket	Cleveland's Ohio City neighborhood
Construction Type	4-B over 1-A retail & parking
Site size	2.1 acres (FAR 5.5)
Gross building area	512,000 SF
Net rentable area (total)	279,000 SF

INTRO, Cleveland

Quantitative Overview

Costs				
Total project cost		\$147,000,000		
	-	\$494,950/ unit	_	
Land Cost		\$10,450,000	@ appraised value	
		Market Standard*	Pro Forma	Realized**
Construction costs		\$212 / GSF	\$200 / GSF	\$215 / GSF
NOI				
Apartment		Market	Realized	
Rental rates				
	Studio	\$1,279	\$1,500 -\$1,750 (P.H. \$2,000)	~26% higher
	1-BR	\$1,631	\$1,675 -\$2,500 (P.H. \$5,700)	~28% higher
	2-BR	\$2,301	\$2,500 -\$5,200 (P.H. \$7,800)	~67% higher
	3-BR	\$3,334	\$8,800 -\$19,500 P.H.	~324% higher
Occupancy at stabilization	91%	98%	~7% higher	
Parking Revenue		Market	Pro Forma	Realized**
Included or in addition to lease?		Additional	Additional	Additional
Rate		\$175 / lot / month	\$185 -\$200 / lot / month	\$225 -\$375 / lot / month
Retail		Market	Pro Forma	Realized**
Retail rental rates		\$30 -\$40 / RSF/YR	\$45 / RSF/YR	\$45 / RSF/YR
Rent type (e.g., NNN)		NNN & Gross	NNN	NNN
Expenses		\$7 -\$10 / RSF/YR	\$8 / RSF/YR	\$8 / RSF/YR
Tenant improvement allowance		\$40 -\$50 / RSF	\$150 / RSF	\$150/RSF
Occupancy after 12 months		60% -70%	90%	75%

*Market standard costs refer to normal cost to build for subject's use, irrespective of structural approach. **Realized metrics at stabilization

***Conversations with local building officials were held concurrent to land use entitlement approvals processes such that the overall building code review process was only slightly longer. This concurrent approach was essential given that Ohio was not adopting the 2021 IBC, so the Type 4 code path was performance-based, albeit a mirror of what other states have adopted.

Return Performance				
	Market	Pro Forma	Realized**	
Yield on cost – untrended	6.25%	7.00%	7.35%	Higher
Cap rate	4.75%	4.50%	TBD	
Value/rentable SF	\$550 / RSF	\$717/ RSF	TBD (\$800+ / RSF)	Higher
Leverage	65%	65%	N/A	
Timeline				
	Date		Context/Comment	
Date of conception (first dollar spent)	Mid 2018		Mid-cycle	
Date underwriting finalized (go/no-go decision)	Mid 2019		Mid-cycle	
Date equity capital secured	N/A		Developer is equity	
Permitting duration***	3 + 6 mo.	Demolitio	on permit first, then build	ding permit
GMP in place	Feb/March 2020		COVID	
Construction start	April 2020			
Duration of construction	24 months		Faster by about 2 month	ıs
Construction completed	April 2022		Early-cycle	
Date stabilized (80% occupancy, NOI, or at pro forma or refinanced)	June 2022		Faster	

Project Context

Unparalleled leasing velocities at significant premiums

- The project was 90% leased 4 months after completion
- The premium product drives both velocity and rates with rents significantly higher than market counterparts

• Leasing velocity allowed refinancing activities to start 3 months after completion

Unparalleled leasing velocities at significant premiums

Disclaimer: Information herein was provided by the developer and verified for reasonableness by a third-party expert. Market data and figures have been reviewed by an independent third party utilizing industry standard resources. For additional sources and disclaimers, see the *Basis of Information* page for this case study and the *Disclosures, Disclaimers and Confidentiality* page at the end of this case study package.

INTRO, Cleveland: Qualitative Overview

Exceptional Leasing Velocity and Premiums

Lessons Learned

- Schedule Savings: Anticipated schedule savings not fully achieved subcontractors had not shifted approaches
- Critical paths: Exterior cladding system required multiple subcontractors & erection did not keep up w/ speed of timber structure; faster (unitized) skin would be better

Challenges

- International shipping: Issues during COVID delayed delivery; assurances compromised by lowest cost bid
- Moisture Protection: Laborious repairs required due to insufficient water management

Successes

- Fast lease-up: 60% pre-leased & stabilized after 4 months
- Premiums: Achieved rent premiums in market

Architectural Connection to Forests

Biophilic Design Patterns Nature in the Space

Pattern	Stress Reduction	Cognitive Performance	Emotion, Mood & Preference
Visual Connection w/ Nature	\checkmark	\checkmark	\checkmark
Non-Visual Connection w/ Nature (smell, touch)	\checkmark	\checkmark	\checkmark
Non-Rhythmic Sensory Stimuli	\checkmark	\checkmark	
Thermal & Airflow Variability	\checkmark	\checkmark	\checkmark
Presence of Water	\checkmark	\checkmark	\checkmark
Dynamic & Diffuse Light	\checkmark		
Connection w/ Natural Systems			\checkmark

How Might Wood Buildings Contribute to Biophilic Design? Nature in the Space

Pattern	
Visual Connection w/ Nature	Design opportunity (glazing/ courtyards)
Non-Visual Connection w/ Nature (smell, touch)	Smell & touch – might the soft wood feel & wood scent contribute?
Non-Rhythmic Sensory Stimuli	Design opportunity (biomimicry)
Thermal & Airflow Variability	Wood is a living material & can help control temperature & humidity
Presence of Water	Design opportunity (water features)
Dynamic & Diffuse Light	Design opportunity (timber slats)
Connection w/ Natural Systems	Wood buildings support healthy forests

Source: Conversations and emails between Bill Browning (Terrapin Bright Green) and Melissa Kroskey (WoodWorks)

Material Connection to Nature (visual) Biophilic Pattern

- Wood is a natural material

 timber is sourced from
 trees in our forests.
- Exposing natural materials provides a connection to nature in this biophilic pattern

Material Connection to Nature (non-visual) Biophilic Pattern

Other sensory connections to nature:

- Soft feel of wood might this contribute to this biophilic pattern?
- Smell of wood in officesmight this contribute to this biophilic pattern?
- Smell of wood has surprised some designers who didn't consider it in design

Feature Stairs

Encouraging Exercise

People Pay More \$\$\$ for a Connection to Nature

- People pay more for good views of nature (obvious w/ real estate prices)
- Potential for leasing velocity and/ or higher leasing rates for offices w/ natural wood materials*

*Source: WoodWorks: Mass Timber Cost and Design Optimization Checklists https://www.woodworks.org/wpcontent/uploads/wood_solution_paper-Mass-Timber-Design-Cost-Optimization-Checklists.pdf

Office Buildings Biophilic Design

Wellness + Wood = Productivity Workplaces

"Those in workplaces with a higher proportion of **visible wood feel more connected to nature** and rate their working environment far more positively."

These people report:

- lower stress levels
- higher concentration
- improved overall mood

"Wood in the workplace is associated with higher productivity and reduced sick leave."

Report based on survey of 1,000 typical Australians working indoors

Workplaces: Wellness + Wood = Productivity

A report prepared for Forest & Wood Products Australia* by Andrew Knox, Howard Parry-Husbands, Pollinate** February 2018

Employee Retention Healthy Building/ Biophilia

Cost of losing an employee (assume: \$33/ hr):

\$ 1,000 termination
\$ 9,000 replacement
\$15,875 lost productivity
\$25,875 total

Sources by Terrapin Bright Green:

- Economics of Biophilia, 2012
- 14 Patterns of Biophilic Design, 2014 (includes list of testing citations)

Investing in Employees Pays off for Bank Case Study

ING Bank, Amsterdam HQ

Design focused on connections to nature to enhance productivity of workers.

Results:

- Absenteeism decreased 15%
- Employees voluntarily tended to natural features
- Employees looked forward to coming to the office & productivity increased

Natural Materials for Warm Gathering Spaces Amenity Spaces

- Modern amenities battle: Spaces for informal collaboration are in demand
- Amenities provide a place to recharge & interact
- Connection to nature proven most impactful through outdoor access*
- Connection to nature indoors through materials & views is beneficial*

 Source: 14 Patterns of Biophilic Design, Terrapin Bright Green, 2014 (includes list of testing citations)

Heavy Timber Revolution: California's Hip New Commercial Block ICE Block I

III-B

- 3 Story heavy timber over podium
- 87,460 sf
- Traditional heavy timber

"The building sold itself because of its unique character. There was no competition. A lot of the credit goes to the fact that it is a timber building."

– Mike Heller, Heller Pacific

Location: Sacramento, CA Architect: RMW Architecture & Interiors Engineer: Buehler Engineering

Tech Companies Invest in Healthy Corporate Campuses Microsoft Silicon Valley Campus

Biophilic Design Schools

Study of Wood vs. Non-wood Finishes Wood and Human Health

- Univ. of British Colombia & FP Innovations study
- 4 rooms: white furnishings vs. wood furnishings; plants vs. no plants

"Stress, as measured by sympathetic nervous system activation, was lower in the wood room in all periods of the study."

Source: *Wood and Human Health* https://www.woodworks.org/wp-content/uploads/2014-SE-WSF-Fell-Healthy-Buildings.pdf

Wood Grain Pattern – Can it Stimulate our Senses? Might Wood Help Increase Ability to Think and Learn?

A Living/ Learning Destination for Students Adohi Hall, University of Arkansas

Location: Fayetteville, AR Architect: Leers Weinzapfel Associates; Mackey Mitchell Architects; Modus Studio (AOR) Structural Engineer: Equilibrium Consulting; Engineering Consultants, Inc. III-B

- 202,000 sf
- 708 bed student housing
- CLT and glulam framing

"...the wood-based construction system we developed forges a bond between setting, human comfort, and sustainability." – Andrea Leers, Leers Weinzapfel

Healthier Learning Environment for the 2nd Generation Cottonwood Valley Charter School E-Pod

V-B

- 6,400 sf
- Wood trusses and framing w/ SIPs
- Operable wall extends multipurpose space outdoors
- Design echoes the simple shed structures of industrial and agricultural buildings in the area

Location: Socorro, NM Architect: Environmental Dynamics, Inc. Structural Engineer: Walla Engineering, Ltd.

Biophilic Design Multifamily Residential

Innovative, Sustainable, Tall Timber Multifamily Carbon 12

Location: Portland, OR Architect: Path Architecture Structural Engineer: Munzing Structural Engineering

- 42,000 sf
- 8-story tower
- 14 condos + 2 retail units
- CLT and glulam framing
- Each unit has light & ventilation from 3 sides

Green Building Rating Systems What are They?

Building certification system that rates or rewards relative levels of compliance or performance with specific environmental goals and requirements.

Analyze project as a whole, going beyond (but factoring in) performance of individual products used in the project.

Amtrak Cascades Station at Freighthouse Square, Architect: VIA Architecture, Photo: Chris Eden/Eden Photography

Green Building Rating Systems What is their main goal?

To clearly define, implement, and measure green strategies and their outcomes and impacts.

Amtrak Cascades Station at Freighthouse Square, Architect: VIA Architecture, Photo: Chris Eden/Eden Photography

Green Building Rating Systems Why target certification?

The reasons for pursuing a green building certification for a project are varied:

- Verification of the green nature of the project
- Valuable educational and marketing tool for owners and design and construction teams
- Provide an incentive for clients, owners, designers, and users to develop and promote highly sustainable construction practices
- It is important to note that a building does not have to be certified to be sustainable and well-built.

Green Building Rating Systems What are the benefits?

There are a wide range of economic and environmental benefits to sustainable design, often achieved through the use of standards, rating, and certification systems. Examples include:

- Reduced embodied carbon
- Reduced building energy and water use
- Reduced construction waste
- Increased occupant comfort/satisfaction
- Increased building value, lease rates, ROI

RISD North Hall, Architect: NADAAA Architects, Photo: John Horner

Green Building Rating Systems Single vs. multi-attribute

A few of these programs are single-attribute, focusing solely on water or energy, while others are multi-attribute addressing emissions, toxicity, and overall environmental performance in addition to water and energy. While the philosophy, approach, and certification method vary across these systems, a common objective is that projects awarded or certified within these programs are designed to reduce the overall impact of the built environment on human health and the natural environment.

and the second second second second	the number of a particle of the particular particular	stating in \$ 1 which many a state of the	NAME AND ADDRESS OF TAXABLE PARTY.	and the second se	The second	With the standard of the second second	And Personal Array and the second
Fossil Fuel Consumption	Weighted Resource Use	Global Warming Potential	Acidification Potential	Human Health Respiratory Effects Potential	Eutrophication Potential	Ozone Depletion Potential	Smog Potential
1.4x	1.02x	1.64	3.4×	1.34	3.0x	1.54	1.2×
		1.94	1.44	1.44		1.04	a constant
(Valu	COMPA es indicate ma	RISON OF ENV	IRONMENTAL IM	PACTS OF COI	ACRETE VS. WOO	D DESIGN wood design	impact)
(Valu Fossil Fuel Consumption	COMPA es indicate ma Weighted Resource Use	RISON OF ENV gnitude of imp Global Warming Potential	IRONMENTAL IM act associated wi Acidification Potential	PACTS OF COI th concrete des Human Health Respiratory Effects Potential	VCRETE VS. WOO sign as multiple of Eutrophication Potential	D DESIGN wood design Ozone Depletion Potential	impact) Smog Potential

Source: USGBC

Green Building Rating Systems Which one should I use?

Ultimately, the type of certification system pursued for a project depends upon that singular project; none of these certification systems are one-size-fits all. Project variables that can influence rating system choice include:

- Location
- Size
- Budget
- Overall project goals
- Rating system cost & ease of use

Rating systems are regularly updated & changed

Oregon Conservation Center, Photo: Jeremy Bittermann; Lara Swimmer; Shawn Records; LEVER Architecture

Green Building Rating Systems Credits for wood use

Generally, every prescriptive-based rating system offers a certain percentage of credits that can be achieved with the use of wood or wood products. In most cases, wood is recognized in the following areas:

- Certified wood
- Life Cycle Impacts
- Recycled/reused/salvaged materials
- Local sourcing of materials
- Materials efficiency
- Waste minimization
- Indoor air quality

Source: Green Building and Wood Products

ICE Block I, RMW Architecture & Interiors, Buehler Engineering, Bernard André Photography

Green Building Rating Systems Certified wood

Credits are awarded for wood that has been 3rd-party certified as coming from a sustainably managed forest. Different rating systems allow for different certification programs, with some more inclusive than others.

While rating systems commonly reward projects that use certified wood, they do not require any demonstration that other materials such as concrete, steel, or plastic have come from a sustainable resource.

Photo: Frank Rosenstein, Courtesy of Plum Creek

Green Building Rating Systems Life cycle impacts

Many rating systems give credits for the use of products with lower embodied energy and lifecycle carbon impacts. Wood products regularly perform well in embodied carbon comparisons of building materials.

Green Building Rating Systems Local material sourcing

Some systems place special emphasis on the use of local materials as an approach to reducing the environmental impacts of projects, rewarding materials sourced from within a certain radius commonly 500 miles.

However, simply tracking transportation distances ignores such critically important factors as mode of transportation and the type, efficiency, and impacts of manufacturing processes.

Richard Woodcock Education Center, Western Oregon University. Mahlum Architecture. Photo: DR Johnson

Green Building Rating Systems Material efficiency & waste minimization

Many rating systems reward use of lower quantities of building materials.

Credit is often awarded for avoiding or diverting construction waste—e.g., through jobsite protocols that include pre-cut packages or offsite production of building modules.

Green Building Rating Systems Indoor air quality

Most rating systems have strict limits on the use of products that contain volatile organic compounds (VOCs). Many wood products are available that verifiably meet or exceed these guidelines.

Adohi Hall, University of Arkansas, Leers Weinzapfel Associates, Photo: Timothy Hursley; Kiara Luers

Green Building Rating Systems Ancillary benefits of wood

Other key areas where wood may have further advantages that are currently not being considered in most of the ratings systems:

- Acoustics Wood panel products can be useful in sound abatement and control strategies
- New products in traditional applications i.e. wood fiber insulation
- **Thermal mass** Use of wood framing in wall and roof assemblies can result in less thermal bridging

ICE Block I, RMW Architecture & Interiors, Buehler Engineering, Bernard André Photography

Green Building Rating Systems System choices

...and many more

Wood in Green Globes

GREEN GLOBES RATINGS:

Once an assessment is verified by a third party, properties achieving a score of 35% or more receive a Green Globes rating based on the percentage of total points (up to 1,000) achieved.

85-100% FOUR GREEN GLOBES

Demonstrates national leadership and excellence in the practice of water, energy and environmental efficiency to reduce environmental impacts.

70-84% THREE GREEN GLOBES

Demonstrates leadership in applying the best practices regarding energy, water, and environmental efficiency.

55-69% TWO GREEN GLOBES

Demonstrates excellent progress in achieving reduction of environmental impacts and use of environmental efficiency practices.

35-54% ONE GREEN GLOBES

Demonstrates a commitment to environmental efficiency practices 4 tiers, up to 1,000 points possible

Multiple certification types available

Green Certification Types

Choose your project type to learn more about how Green Globes works

Wood in Green Globes Potential points applicable to wood

3.5.1.1 Path A: Performance Path for Building Core and Shell

Athena Impact Estimator for Buildings or other LCA tool used during design to evaluate a minimum of two different core and shell designs, based on life cycle assessment (LCA) in compliance with the assessment guidance and resulting in selection of the building core and shell with the least anticipated environmental impact? IF YES – 33 POINTS

The Athena Impact Estimator for Buildings is an LCA-based software package that helps designers easily incorporate environmental information while in the early stages of a project.

Wood in Green Globes Potential points applicable to wood

3.5.1.2 Path B - % products have third-party sustainable forestry certifications – 20 points max

- Canadian Standards Association (CSA)
- Sustainable Forestry Initiative (SFI)
- Forest Stewardship Council (FSC)
- American Tree Farm System (ATFS)
- ≥ 40% (20 points)25 39% (15 points)
- 10 24% (10 point)
- 0 9% (0 points)

Photo: Sustainable Forestry Initiative

Wood in LEED

Wood in LEED

Point Distribution in LEED v4 & v4.1 New Construction (NC)

Credit Category	Max Points	
Integrative Process	1	
Location and Transportation	16	
Sustainable Sites	10	
Water Efficiency	11	
Energy and Atmosphere	33	
Materials and Resources	13 🕇	 Pr
Indoor Environmental Quality	16 🗲	re
Innovation	6	
Regional Priority	4	
Total	110	

Primary areas of points related to use of wood

Source: Barbara Horwitz-Bennett & USGBC

Wood in LEED V4 & v4.1

The use of wood products can contribute up to 12 points, accounting for more than 10 percent of LEED v4's total credits.

According to USGBC's *Industry Materials Brief on Forest Products*, the "use of wood as a building material is among the most highly incentivized strategies in LEED."

Wood in LEED V4 & v4.1

Specifically, wood products qualify for credits in these categories:

- 1. Materials & Resources: **Building Life-Cycle Impact Reduction** (up to 5 points). Materials and products with comparatively low environmental impacts fare well in this whole building life-cycle credit.
- 2. Materials & Resources: **Environmental Product Declarations** (up to 2 points). Many wood EPDs are available.
- 3. Materials & Resources: **Sourcing of Raw Materials** (up to 2 points). Projects can either specify wood from suppliers and manufacturers with a Corporate Sustainability Report or choose new wood products certified by a Forestry Certification Program (*using the ACP) to contribute toward this credit.

An Alternative Compliance Path allows LEED projects to achieve an existing green building credit, using an alternative approach to what is specified in the existing rating tool.

An ACP pilot is used to test and work out any kinks with the new pathway. If the ACP pilot credit is adopted, it will become part of the LEED rating system.

In order to count towards a LEED point, the user must first know that:

- 100% of the forest products are from legal (non-controversial) sources, and
- 70% from responsible sources, and
- The remainder must be certified sources as evidenced • by a chain of custody certification (CoC).

Generates opportunity to use wood products certified to SFI, FSC, ATFS, CSA and PEFC

Point Distribution in LEED v4 & v4.1 NC – Materials and Resources – ACP for Certified Wood

Wood in LEED V4 & v4.1

WHAT IS AN ACP?

Wood in Living Building Challenge

The Living Building Challenge (LBC) is widely considered the most stringent green building standard in the world. It attempts to emulate a flower by encouraging net-zero or net-positive impact on virtually everything the built environment touches. Its requirements are categorized under seven petals:

- 1. Place
- 2. Water
- 3. Energy
- 4. Health
- 5. Materials
- 6. Equity
- 7. Beauty

LIVING BUILDING CHALLENGE PETALS

Wood in Living Building Challenge

Through detailed "imperatives" within each petal, LBC leaves little wiggle room. Everything is a prerequisite, unlike in LEED, where project teams can choose among credits.

Wood in Living Building Challenge

Projects can be 'Petal Certified' but can also extend to:

- Net Zero Energy Building
- Zero Carbon
- Living Community
- Petal Community

Many of the LBC petal-certified projects completed to date have implemented the use of wood and timber framing to meet the Materials Petal Imperatives

REGISTERED & CERTIFIED PROJECT MAP

Wood in Living Building Challenge R.W. Kern Center, Amherst, MA

- 17,000 SF
- Glulam frame with T&G decking
- The building is self-sustaining generating its own energy, capturing its own water, and processing its own waste

Architect: Bruner/Cott & Associates Photos: Robert Benson Photography

Whole Building LCA Tools Detailed LCA Analysis

		Acceptability for Green Building Credits/ Certificates				
WBLCA Tool	Analysis	LEED v4 credits	LEED v4.1 credits	ILFI Zero Carbon Certificate	Green Globes	
Athena Impact Estimator for Buildings	Detailed robust WBLCA	Yes	Yes	Yes	Yes	
Tally	Detailed robust WBLCA	Yes	Yes	Yes	Yes	
One-Click LCA	WBLCA w/ regionalized generic data & global EPD library	Yes	Yes	Yes	Yes	

WoodWorks LCA Expert Tip: https://www.woodworks.org/resources/calculating-the-embodied-carbon-of-different-structural-systems/

Case Studies

Bullitt Center Seattle, WA

Architect: The Miller Hull Partnership Structural Engineer: DCI Engineers

IV (HT)

- Designed for a **250-year** life span
- Met criteria for Living
 Building Challenge 2.0
- Rooftop photovoltaic cells generate electricity for the building; building recycles its own water
- 6 over 2 design; 52,000 sf
- Heavy timber frame: glulam and NLT panels
Bullitt Center Seattle, WA

Volume of wood used: 24,526 cubic feet

U.S. and Canadian forests grow this much wood in: 2 minutes

Carbon stored in the wood: 545 metric tons of CO₂

Avoided greenhouse gas emissions: 1,158 metric tons of CO₂

TOTAL POTENTIAL CARBON BENEFIT: 1,703 metric tons of CO₂

EQUIVALENT TO:

325 cars off the road for a year

Energy to operate a home for 145 years

CASE STUDY

BULLITT CENTER

Wood Shines in Sustainable 'Show & Tell'

Bullitt Center's heavy timber frame teaches environmental and structural lessons

Bullitt Center Seattle, WA

Volume of wood used: 24,526 cubic feet

U.S. and Canadian forests grow this much wood in: 2 minutes

Carbon stored in the wood: 545 metric tons of CO₂

Avoided greenhouse gas emissions: 1,158 metric tons of CO₂

TOTAL POTENTIAL CARBON BENEFIT: 1,703 metric tons of CO₂

EQUIVALENT TO:

325 cars off the road for a year

Energy to operate a home for 145 years

Volume of wood: Based on user inputs

Volume of Wood \rightarrow Volume of Logs \rightarrow Volume of Trees \rightarrow Tree Growth Rate

Volume of Wood \rightarrow Mass of Wood \rightarrow Mass of Carbon (50% of wood) \rightarrow **Mass of CO₂** (3.67 x mass of Carbon)

1430 Q Sacramento, CA

IIIA

- 6 stories of wood + mezzanine over 2-story concrete podium (IIIA over IA)
- 63,000 square feet
- **First** of its kind in USA
- Needed 6 floors of residential units to make the project viable
- Concrete and steel were too
 expensive

Architect: HRGA, The HR Group Architects Structural Engineer: Buehler

1430 Q Sacramento, CA

1430 Q

Volume of wood products used: 1,708 cubic meters (60,334 cubic feet)

U.S. and Canadian forests grow this much wood in: 5 minutes

Carbon stored in the wood: 1,426 metric tons of CO₂

Avoided greenhouse gas emissions: 3,031 metric tons of CO₂

US EPA

TOTAL POTENTIAL CARBON BENEFIT: 4,457 metric tons of CO₂

EQUIVALENT TO:

942 cars off the road for a year

Energy to operate 471 homes for a year

Estimated by the Wood Carbon Calculator for Buildings, based on research by Sarthre, R. and J. O'Connor, 2010, A Synthesis of Research on Wood Products and Greenhouse Gas Impacts, FPInnovations. Note: CO₂ on this chart refers to CO₂ equivalent.

Crescent Terminus Atlanta, GA

IIIA

- 5 stories wood over 3 stories of concrete parking (Type IA podium)
- Savings by using wood could be spent on **luxury amenities**
- Dedication to sustainable
 investments
- Flexibility in design
- Rooftop gardens supported by wood trusses

Project Architect: Lord Aeck Sargent Structural Engineer: SCA Consulting Engineers

Crescent Terminus Atlanta, GA

Project Architect: Lord Aeck Sargent Structural Engineer: SCA Consulting Engineers

Estimated by the Wood Carbon Calculator for Buildings, based on research by Sarthre, R. and J. O'Connor, 2010, A Synthesis of Research on Wood Products and Greenhouse Gas Impacts, FPInnovations. Note: CO₂ on this chart refers to CO₂ equivalent.

Arena Stage at the Mead Center for American Theater Washington, DC

Photo: Nic Lehoux

- First modern structure to use heavy timber in DC
- Hybrid wood & glass enclosure around 2 existing historic structures
- Wood columns did double-duty to support roof gravity loads and façade wind loads
- Exposed wood saved money on finishes

Architect: Bing Thom Architects Base Building Structural Engineer: Fast+Epp Structural Engineers Specialty Timber Façade Design-Builder: StructureCraft Builders, Inc.

Arena Stage at the Mead Center for American Theater Washington, DC

Bing Thom Architects | Fast + Epp | Photo: Nic Lehoux

Volume of wood used: 8,800 cubic feet of panel and engineered wood products

U.S. and Canadian forests grow this much wood in: 1 minute

Carbon stored in the wood: 215 metric tons of CO₂

Avoided greenhouse gas emissions: 460 metric tons of CO₂

TOTAL POTENTIAL CARBON BENEFIT: 675 metric tons of CO₂

EQUIVALENT TO:

129 cars off the road for a year

Energy to operate a home for 58 years

Estimated by the Wood Carbon Calculator for Buildings, based on research by Sarthre, R. and J. O'Connor, 2010, A Synthesis of Research on Wood Products and Greenhouse Gas Impacts, FPInnovations. Note: CO₂ on this chart refers to CO₂ equivalent.

APEX PLAZA CHARLOTTESVILLE, VA

187,000 SF

Photo: WoodWorks | Architect: William McDonough + Partners

APEX P CHARLOT TESVILLE, VA

8 STORIES 6 TIMBER OVER 2 PODIUM, 100 FT

PRIMARILY OFFICE SPACE

Gleason st

Photo: William McDonough + Partners | Architect: William McDonough + Partners

Forest to Cities A Systemic Solution in Action

www.ForesttoCities.org

Questions? Ask us anything.

John O'Donald II, PE Regional Director | VA, DC, DE, MD, WV

(814) 880-5636 john.odonald@woodworks.org WOODWORKS

901 East Sixth, Thoughtbarn-Delineate Studio, Leap!Structures, photo Casey Dunn