









### 4.5 Cross-Laminated Timber (CLT) Diaphragms

### 4.5.1 Application Requirements

CLT diaphragms shall be permitted to be used to resist lateral forces provided the deflection in the plane of the diaphragm, a determined by calculations, tests, or analogies drawn therefrom, does not exceed the maximum permissible deflection initid attached load distributing or resisting elements. Permissible deflection shall be that deflection that will permit the diaphragm and any attached elements to maintain their structural integrity and continue to support their preserviced loads as determined by the applicable building code or standard.

### 4.5.2 Deflection

CLT diaphragm deflection shall be determined using principles of engineering mechanics.

### 4.5.3 Unit Shear Capacity

CLT diaphragms shall be designed in accordance with principles of engineering mechanics using design values for wood members and connections in accordance with NDS provisions.

The nominal unit shear capacity,  $v_{\rm in}$  of CLT diaphragms shall be based on the nominal shear capacity for dowel-type fastemer connections used to transfer diaphragm shear forces, as calculated per 4.5.4, hem 1.4SD allowable shear capacity or LRPD factored shear resistance for the CLT diaptargm and diaphragm shear connections shall be determined in accordance with 4.1.1

### 4.5.4 Additional CLT Diaphragm Design Requirements

CLT diaphragms shall meet the following additional requirements:

1. The nominal shear capacity for dowel-type fastener connections used to transfer diaphragm shear forces between CLT panels and between CLT panels and diaphragm boundary elements (chords and collectors) shall be taken as  $4.52^\circ$ , where  $2^*$  is 2 multiplied by all applicable NDS adjustment factors except  $C_r$ ,  $K_{0}$ ,  $and <math>\lambda$ , and 2shall be controlled by Mode IIIs or Mode IV fas-

- tener yielding in accordance with NDS 12.3.1. Connections used to transfer diaphragm shear forces shall not be used to resist diaphragm tension forces.
- Wood elements, steel parts, and wood or steel chord splice connections shall be designed for 2.0 times the diaphragm forces associated with the shear forces induced from the design loads.

### Exceptions:

- Wood elements and wood splice connections shall be permitted to be designed for 1.5 times the diaphragm forces associated with the shear forces induced by the wind design loads.
- 2. Where dowel-type fasteners are used in cherd splice connections and the connection is controlled by Model III, or Model YV fastener yielding in accordance with NDS 12.3.1, fasteners in the connection shall be permitted to be designed for 1.5 and 1.0 simes the diaphragm forces associated with the shear forces induced by the prescribed seimic and wind design loads, respectively.

Diaphragm chord elements and chord splice connections using materials other than wood or steel shall be designed using provisions in NDS 1.4.

### 4.5 Cross-Laminated Timber (CLT) Diaphragms

### 4.5.1 Application Requirements

CLT diaphragms shall be permitted to be used to resist lateral forces provided the deflection in the plane of the diaphragm. as determined by calculations, tests, or analogies drawn therefrom, does not exceed the maximum permissible deflection innut of athrachel load distributing or resisting elements. Permissible deflection shall be that deflection that will permit the diaphragm and any attached elements to maintain their structural integrity and continue to support their prescued loads as determined by the applicable building code or standard.

### 4.5.2 Deflection

CLT diaphragm deflection shall be determined using principles of engineering mechanics.

### 4.5.3 Unit Shear Capacity

CLT diaphragms shall be designed in accordance with principles of engineering mechanics using design values for wood members and connections in accordance with NDS provisions.

The nominal unit shear capacity,  $v_{\rm h}$  of CLT diaphragms shall be based on the nominal shear capacity for dowel-type fastemer connections used to transfer diaphragm shear forces, as calculated per 4.5.4, Hem 1.ASD allovable shear capacity or 1.RSD factored shear resistance for the CLT diaphragm and diaphragm shear contextom shall be determined in accordance with 4.1.1.

### 4.5.4 Additional CLT Diaphragm Design Requirements

CLT diaphragms shall meet the following additional requirements:

 The nominal shear capacity for dowel-type fastener connections used to transfer diaphragm shear forces between CLT panels and between CLT panels and diaphragm boundary elements (chords and collectors) shall be taken as 4.32", where 2" is 2 multiplied by all applicable NDS adjustment factors except Co, Ke, 4, and 3, and 2 shall be controlled by Mode IIIs or Mode IV fas-

- tener yielding in accordance with NDS 12.3.1.
   Connections used to transfer diaphragm shear forces shall not be used to resist diaphragm tension forces.
- 3. Wood elements, steel parts, and wood or steel chord splice connections shall be designed for 2.0 times the diaphragm forces associated with the shear forces induced from the design loads.

### Exceptions:

- Wood elements and wood splice connections shall be permitted to be designed for 1.5 times the diaphragm forces associated with the shear forces induced by the wind design loads.
- loads. Where dovel-type fastmers are used in chord splice connections and the connection is controlled by Mode III, or Mode IV fastener yielding in accordance with NDS 12.3.1, fasteners in the connection shall be permitted to be designed for 1.5 and 1.0 times the diaphragm forces associated with the share forces induced by the prescribed estimic and wind design loads, respectively.

Diaphragm chord elements and chord splice connections using materials other than wood or steel shall be designed using provisions in NDS 1.4.



# Organization

- Introduction
- Codes and Standards
- Methodology of CLT Diaphragm Design
- Diaphragm Shear Components
- Diaphragm Boundary Elements
- Diaphragm Deflections & Stiffness
- Special Design Considerations
- Design Examples (3 in total)
- References
- Appendix A Precalculated Design Capacities
- Appendix B Literature Review



### 7

# 1 Introduction

- Introduction
  - Overview
  - Purpose of the Design Guide
  - State of Practice prior to 2021 SDPWS



# 2 Codes and Standards

# • Basis of Design

- 2021 IBC
- 2019 ANSI/APA PRG 320
- 2018 NDS
- 2016 ASCE 7
- 2021 SWDPWS
  - Nominal Unit Shear Capacity
  - Calculated Method to Justify Rigid Diaphragm Analysis of Cantilevered Diaphragms
  - CLT Diaphragm Provisions

## TABLE 2.1: SDPWS 2021 design capacities

| Loading | ASD Design Capacity $v_n/\Omega_D$ | LRFD Design Capacity $\phi_{\mathrm{D}} v_{\mathrm{n}}$ |  |  |  |
|---------|------------------------------------|---------------------------------------------------------|--|--|--|
| Seismic | v <sub>n</sub> /2.8                | 0.50 v <sub>n</sub>                                     |  |  |  |
| Wind    | $v_n/2.0$                          | 0.80 v <sub>n</sub>                                     |  |  |  |

Where  ${\it \emptyset}_{\rm D}$  is the LRFD diaphragm resistant factor





• Diaphragm Design Forces per ASCE 7-16

 $F_{design} = max (F_{px}, F_x) + \Omega_0 * F_{x,transfer}$ 

# • CLT Diaphragm Design Provisions per SDPWS

### §4.5.1 – Applicable Requirements

CLT diaphragms shall be permitted to be used to resist lateral forces provided the deflection in the plane of the diaphragm, as determined by calculations, tests, or analogies drawn therefrom, does not exceed the maximum permissible deflection limit of attached load distributing or resisting elements. Permissible deflection shall be that deflection that will permit the diaphragm and any attached elements to maintain their structural integrity and continue to support their prescribed loads as determined by the opplicable building code or standard.

### §4.5.2 – Deflection

CLT diaphragm deflection shall be determined using principles of engineering mechanics.

### §4.5.3 – Unit Shear Capacity

CLT diaphragms shall be designed in accordance with principles of engineering mechanics using design values for wood members and connections in accordance with NDS provisions.

The nominal unit shear capacity,  $v_{n}$ , of CLT diaphragms shall be based on the nominal shear capacity for dowel-type fastener connections used to transfer diaphragm shear forces, as calculated per 4.5.4, Item 1. ASD allowable shear capacity or LRFD factored shear resistance for the CLT diaphragm and diaphragm shear connections shall be determined in accordance with 4.1.1.



# CLT Diaphragm Design Provisions per SDPWS (continued)

### §4.5.4 – Additional CLT Diaphraam Desian Requirements (Item 1) CLT diaphragms shall meet the following additional requirements:

§4.5.4, Item 1. The nominal shear capacity for dowel-type fastener connections used to transfer

diaphragm shear forces between CLT panels and between CLT panels and diaphragm boundary elements (chords and collectors) shall be taken as 4.5Z\*, where Z\* is Z multiplied by all applicable NDS adjustment factors except  $C_D$ ,  $K_F$ ,  $\phi$ , and  $\lambda$ ; and Z shall be controlled by Mode III<sub>s</sub> or Mode IV fastener yielding in accordance with NDS §12.3.1.

### 4.5.4 Additional CLT Diaphragm Design Requirements

CLT diaphragms shall meet the following additional requirements:

1. The nominal shear capacity for dowel-type fastener connections used to transfer diaphragm shear forces between CLT panels and between CLT panels and diaphragm boundary elements (chords and collectors) shall be taken as 4.5Z\*, where Z\* is Z multiplied by all applicable NDS adjustment factors except  $C_D,\,K_F,\,\varphi,\,and\,\lambda;\,and\,Z$ shall be controlled by Mode IIIs or Mode IV fastener yielding in accordance with NDS 12.3.1.

For Seismic 4.5/2.8 = 1.6!



# CLT Diaphragm Design Provisions per SDPWS (continued)

### §4.5.4 – Additional CLT Diaphragm Design Requirements (Item 1)

CLT diaphragms shall meet the following additional requirements:

§4.5.4, Item 1. The nominal shear capacity for dowel-type fastener connections used to transfer diaphragm shear forces between CLT panels and between CLT panels and diaphragm boundary elements (chords and collectors) shall be taken as 4.5Z\*, where Z\* is Z multiplied by all applicable NDS adjustment factors except  $C_D$ ,  $K_F$ ,  $\phi$ , and  $\lambda$ ; and Z shall be controlled by Mode III<sub>s</sub> or Mode IV fastener yielding in accordance with NDS §12.3.1.

### §4.5.4 – Additional CLT Diaphragm Design Requirements (Item 2)

§4.5.4, Item 2. Connections used to transfer diaphragm shear forces shall not be used to resist diaphragm tension forces.

### §4.5.4 – Additional CLT Diaphragm Design Requirements (Item 3)

\$4.5.4, Item 3. Wood elements, steel parts, and wood or steel chord splice connections shall be designed for 2.0 times the diaphragm forces associated with the shear forces induced from the desian loads

Exceptions:

- 1. Wood elements and wood splice connections shall be permitted to be designed for 1.5 times the diaphragm forces associated with the shear forces induced by the wind design loads.
- 2. Where dowel-type fasteners are used in chord splice connections and the connection is controlled by Mode IIIs or Mode IV fastener yielding in accordance with NDS 12.3.1, fasteners in the connection shall be permitted to be designed for 1,5 and 1,0 times the diaphraam forces associated with the shear forces induced by the prescribed seismic and wind design loads, respectively.

Diaphragm chord elements and chord splice connections using materials other than wood or steel shall be designed using provisions in NDS 1.4.

### TABLE 3.1: Summary of diaphragm force increase factors per SDPWS §4.5.4 Item 3

| Component                                                         |                                                                                                                     | γ                | D                | Design Guide |  |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------|------------------|--------------|--|
|                                                                   |                                                                                                                     | EQ               | Wind             | Eq. No.      |  |
| Diaphragm<br>shear connections<br>at CLT panel edges              | Dowel-type fasteners in shear in panel-to-panel<br>and panel-to-boundary element diaphragm<br>shear connections     | N/A <sup>a</sup> | N/A <sup>a</sup> | 3.2 or 3.3   |  |
| Chord splice connections                                          | Dowel-type fasteners in shear in wood<br>chord splice connections controlled by<br>Mode III <sub>s</sub> or Mode IV | 1.5 <sup>b</sup> | 1.5 <sup>b</sup> |              |  |
|                                                                   | Others                                                                                                              | 2.0              | 2.0              |              |  |
| Wood elements and<br>connections to wood not<br>meeting the above | Includes CLT panels, wood sheathing<br>used for splines, wood framing used as<br>chords and collectors              | 2.0              | 1.5              | 3.4 or 3.5   |  |
| Steel elements<br>and connections<br>between steel elements       | Includes steel framing, plates and rods used<br>as chords or collectors and steel splines                           | 2.0              | 2.0              |              |  |

Fasteners required to be controlled by Mode III<sub>5</sub> or Mode IV per SDPWS §4.5.4 Item 1.
 <sup>b</sup> Increase factors for fasteners controlled by Mode III<sub>2</sub> or Mode IV per Exception 2 of SDPWS §4.5.4 Item 3.























| <ul> <li>Diaphragm &amp; Collector Connections to Ste</li> </ul> | eel VLFRS                                                                                             |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| CLT panel per plan                                               | Panel to steel beam<br>fastener in shop piloted<br>flange holes, typ.<br>Wide flange<br>beam per plan |







# **6** Diaphragm Deflections & Stiffness

# • Classification of Diaphragm as Flexible or Rigid

TABLE 6.1: Diaphragm flexibility related to CLT diaphragms

| Category   | ASCE 7 §12.3.1                                                                                                | IBC §1604.4                                                                                                                                            | SDPWS §4.1.7                                                                                    |  |  |  |
|------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|--|--|
| Flexible   | $\frac{Permitted when}{\frac{\delta_{MDD}}{\Delta_{ADVE}}} > 2$                                               | N/A                                                                                                                                                    | Per ASCE 7                                                                                      |  |  |  |
| Rigid      | N/A                                                                                                           | $\frac{Permitted when}{\frac{\delta_{MDD}}{\Delta_{ADVE}}} \leq 2$                                                                                     |                                                                                                 |  |  |  |
| Semi-rigid | When not idealized as<br>flexible or rigid, analysis<br>shall include consideration<br>of diaphragm stiffness | Total lateral force shall be<br>distributed to elements of<br>VLFRS in proportion to their<br>rigidities, considering the<br>rigidity of the diaphragm | Shall consider relative<br>stiffnesses of VLFRS &<br>diaphragms; envelope<br>analysis permitted |  |  |  |

δ<sub>MDD</sub>: Maximum in-plane diaphragm deflection (in.)

 $\Delta_{ADVE}$ : Average drift of adjoining vertical elements of the VLFRS over the story below the diaphragm under consideration, under tributary lateral load equivalent to that used in the computation of  $\delta_{MDD}$  (in.)





# <section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item>



































# A Precalculated Design Capacities

- Individual Fasteners
- Spline Capacities
- Fasteners / Spline Capacities
- Steel Strap Capacities

| Spline Material                | Fastener        | Nominal Diaphragm Shear Capacity of Fasteners,<br>v <sub>n</sub> = 4.52*/S, @ Spacing, S <sup>a,c</sup> (plf) |            |            |            |            | Reference Spline<br>Shear Capacity,              |
|--------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------|------------|------------|------------|------------|--------------------------------------------------|
|                                |                 | 12-in. o.c.                                                                                                   | 6-in. o.c. | 4-in. o.c. | 3-in. o.c. | 2-in. o.c. | F <sub>v</sub> t <sub>v</sub> <sup>b</sup> (plf) |
| CLT SG = 0.50                  |                 |                                                                                                               |            |            |            |            |                                                  |
| General sheathing (23/32)      | 8d common nail  | 330                                                                                                           | 659        | 989        | 1,318      | 1,977      | 1,176                                            |
| General sheathing (23/32)      | 10d common nail | 388                                                                                                           | 776        | 1,164      | 1,552      | 2,328      | 1,176                                            |
| General sheathing (23/32)      | Example screw 1 | 363                                                                                                           | 726        | 1,089      | 1,452      | 2,178      | 1,176                                            |
| General sheathing (23/32)      | Example screw 2 | 428                                                                                                           | 857        | 1,285      | 1,714      | 2,571      | 1,176                                            |
| Structural 1 sheathing (23/32) | 8d common nail  | 397                                                                                                           | 793        | 1,190      | 1,586      | 2,379      | 1,512                                            |
| Structural 1 sheathing (23/32) | 10d common nail | 463                                                                                                           | 926        | 1,390      | 1,853      | 2,779      | 1,512                                            |
| Structural 1 sheathing (23/32) | Example screw 1 | 423                                                                                                           | 847        | 1,270      | 1,693      | 2,540      | 1,512                                            |
| Structural 1 sheathing (23/32) | Example screw 2 | 506                                                                                                           | 1,012      | 1,518      | 2,024      | 3,036      | 1,512                                            |
| General sheathing (7/8)        | 10d common nail | 423                                                                                                           | 847        | 1,270      | 1,694      | 2,540      | 1,440                                            |
| General sheathing (7/8)        | 16d common nail | 486                                                                                                           | 972        | 1,458      | 1,943      | 2,915      | 1,440                                            |
| General sheathing (7/8)        | Example screw 1 | 386                                                                                                           | 773        | 1,159      | 1,546      | 2,319      | 1,440                                            |
| General sheathing (7/8)        | Example screw 2 | 462                                                                                                           | 925        | 1,387      | 1,849      | 2,774      | 1,440                                            |
| Structural 1 sheathing (7/8)   | 10d common nail | 517                                                                                                           | 1,033      | 1,550      | 2,067      | 3,100      | 1,584                                            |
| Structural 1 sheathing (7/8)   | 16d common nail | 587                                                                                                           | 1,174      | 1,761      | 2,349      | 3,523      | 1,584                                            |
| Structural 1 sheathing (7/8)   | Example screw 1 | 461                                                                                                           | 923        | 1,384      | 1,845      | 2,768      | 1,584                                            |
| Structural 1 sheathing (7/8)   | Example screw 2 | 559                                                                                                           | 1,117      | 1,676      | 2,234      | 3,351      | 1,584                                            |
| General sheathing (1-1/8)      | 10d common nail | 484                                                                                                           | 968        | 1,452      | 1,936      | 2,904      | 1,920                                            |
| General sheathing (1-1/8)      | 16d common nail | 555                                                                                                           | 1,109      | 1,664      | 2,218      | 3,327      | 1,920                                            |
| General sheathing (1-1/8)      | Example screw 1 | 434                                                                                                           | 868        | 1,302      | 1,735      | 2,603      | 1,920                                            |
| General sheathing (1-1/8)      | Example screw 2 | 528                                                                                                           | 1,055      | 1,583      | 2,110      | 3,165      | 1,920                                            |
| Structural 1 sheathing (1-1/8) | 10d common nail | 529                                                                                                           | 1,058      | 1,586      | 2,115      | 3,173      | 2,112                                            |
| Structural 1 sheathing (1-1/8) | 16d common nail | 634                                                                                                           | 1,267      | 1,901      | 2,534      | 3,801      | 2,112                                            |
| Structural 1 sheathing (1-1/8) | Example screw 1 | 527                                                                                                           | 1,054      | 1,581      | 2,108      | 3,161      | 2,112                                            |
| Structural 1 sheathing (1-1/8) | Example screw 2 | 603                                                                                                           | 1.206      | 1.810      | 2.413      | 3,619      | 2.112                                            |

Tabulate values based on an agustment tactors applicable to  $L^{-1}$  in NuS Table (1.3.) equal to  $(M, U^{-2}, L)$  besigned All statence capacity values provided are controlled by Modelli, or IV forsater yielding. Adjusted design spline capacity to be calculated from reference spine capacity using NDS Table 9.3.1. Before using highlighted fostener capacity values, verify the adjusted design spline capacity is greater than the an SDPWS §4.5.4.

Verify adjusted spline capacity is greater than SDPWS §4.5.4.3 Exception 1 for wind design. Verify adjusted spline capacity is greater than SDPWS §4.5.4.3 for seismic design and SDPWS 4.5.4.3 Exception 1 for wind design

# **B** Literature Review

- Component Level Testing
- Full Scale Diaphragm Testing
- Diaphragm Design Literature
- Other References

### B.5 Summary of Significant Tests and Related References

TABLE B.1: Literature on small-scale CLT panel-panel connection tests

| Article Title                                                                                                             | Connection<br>Type                                       | Fastener<br>& Loading                                                                                                                        | Type of<br>Loading      | Loading<br>Direction                                | Reported<br>Results                                                                                                                                                 | Additional<br>Notes                                                                                                                          | Reported<br>Fastener Slip<br>Modulus                                          |
|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| [Sandhaas et al.,<br>2009]<br>Analysis of X-Lam<br>Panel-to-Panel<br>Connections Under<br>Monotonic and<br>Cyclic Loading | LVL surface<br>spline                                    | 8x80mm and 8x100mm<br>STS; fasteners loaded<br>in shear                                                                                      | Monotonic<br>and cyclic | Parallel to<br>shear plane                          | Load displacement<br>at monotonic and<br>cyclic loadings;<br>peak load; damping;<br>fastener initial and<br>plastic stiffness                                       | Test results<br>compared with<br>EC5 strength<br>and stiffness<br>prediction<br>equations;                                                   | K <sub>ser</sub> (0.4Fmax)<br>and K <sub>2</sub> (post<br>yielding stiffness) |
| [Follesa et al., 2010]<br>Mechanical In-Piane<br>Joints Between<br>Cross Laminated<br>Timber Panels                       | Internal<br>spline,<br>half-lap<br>and surface<br>spline | 6mm and 8mm STS<br>with and without<br>washer; 3.1mm smooth<br>nail and 3.1/3.4<br>threaded shank nails                                      | Monotonic               | Parallel to<br>shear plane                          | Load-carrying<br>capacity; stiffness                                                                                                                                | Authors observed<br>significant<br>difference<br>between tested<br>stiffness and<br>EN1995 method;                                           | K <sub>ser</sub> and K <sub>u</sub><br>(ultimate limit<br>state stiffness)    |
| [Joyce et al., 2011]<br>Mechanical<br>Behaviour of In-Plane<br>Shear Connections<br>Between CLT Wall<br>Panels            | Double<br>spline and<br>butt joints                      | 8x100mm and<br>10x100mm for double<br>spline; 8x160 partially-<br>threaded (PT) and<br>fully-threaded (FT)<br>for butt joint                 | Monotonic<br>and cyclic | Parallel to shear plane                             | Monotonic and<br>cyclic loadings;<br>peak load; allowable<br>load; ductility and<br>elastic fastener slip<br>modulus                                                | Fully-threaded<br>angled screw<br>option provides<br>a significantly<br>higher stiffness                                                     | Kelastic                                                                      |
| [Ashtari, 2012]<br>In-Plane Stiffness<br>of Cross-Laminated<br>Timber floors                                              | Butt joint                                               | 8mmx180-250mm<br>ASSY VG in shear and<br>withdrawal combination                                                                              | Monotonic               | Parallel to shear plane                             | Peak and ultimate<br>forces; fastener<br>stiffness                                                                                                                  | Author calibrated<br>the connection<br>model in ANSYS<br>and modeled<br>a Smxt0.8m<br>CLT diaphragm                                          | K <sub>S</sub> (0.4 to<br>0.7F <sub>max</sub> )                               |
| [Gavric et al., 2012]<br>Strength and<br>Deformation<br>Characteristics<br>of Typical X-Lam<br>Connections                | Lap and spline joints                                    | Wall-to-wall (paraliei);<br>8x80mm; wall-to-<br>wall (perpendicular);<br>10x180mm; floor-to-<br>floor: 10x140mm; wall-<br>to-floor: 10x260mm | Monotonic<br>and cyclic | Parallel and<br>perpendicular<br>to shear<br>planes | 12 tested<br>configurations;<br>15 reported tested<br>statistics for each<br>configuration                                                                          | Each<br>configuration<br>includes 1<br>monotonic and<br>6 cyclic tests;<br>perpendicular<br>to shear plane<br>test results also<br>available | $\kappa_{see}$ and $\kappa_2$                                                 |
| [Bratulic et al., 2014]<br>Monotonic and<br>Cyclic Behavior<br>of Joints with<br>Self-Tapping Screws<br>in CLT Structures | Surface<br>spline                                        | Fastemer type not<br>reportect loaded in<br>sheer                                                                                            | Monotonic<br>and cyclic | Parallel to<br>shear plane                          | For floor-wall<br>connection: load-<br>displacement at<br>monotonic and<br>cyclic loadings;<br>peak load; initial<br>stiffness; yield<br>displacement;<br>ductility | Load-carrying<br>capacity<br>calculated per<br>Johansen's yield<br>theory                                                                    | K <sub>ser</sub>                                                              |



