Wood Diaphragm Deflections and Flexibility

WOODWORKS

COUR

March 13, 2024

Presented by Terry Malone, PE, SE Scott Breneman, PhD, PE, SE WoodWorks – Wood Products Council

1430 Q / The HR Group Architects / Buehler Engineering / photo Greg Folkins Photography "The Wood Products Council" is a Registered Provider with The American Institute of Architects Continuing Education Systems (AIA/CES), Provider #G516.

Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request. This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

In the design of many wood buildings, the flexibility of horizontal forcedistributing diaphragms is given little consideration. However, in certain building configurations, diaphragm deflections are a critical aspect of structural design. This webinar will review the conditions under which designers should consider the deflections of structural wood panel-sheathed diaphragms, and how these deflections help determine the classification of a diaphragm as rigid, flexible, or semi-rigid. Another important consideration is the impact of the location and detailing of vertical shear walls on the horizontal distribution of forces in the diaphragms, which will be illustrated through the results of a design study. Finally, the speakers will review methods available to stiffen diaphragms and reduce total deflections when needed.

Learning Objectives

- Explain the conditions where diaphragm deflections are a significant consideration of a wood floor or roof design.
- Explore requirements in the International Building Code (IBC) and referenced standards for determining diaphragm flexibility for use with horizontal distribution of seismic and wind loads.
- Review the impact of the location and stiffness of vertical force-resisting elements (e.g., shear walls) on the distribution of forces within a horizontal diaphragm.
- Understand methods to stiffen a diaphragm to reduce total deflections.

Diaphragm Flexibility

and

Lirements

Introduction to diaphragm flexibility

near Wall Effect

Differe Linning

Sections

How

Lateral Forces on Diaphragms

Linear force (plf) on edge and/or area force – (psf) on diaphragm

Combine lateral wall loads ______ and (seismic) floor load into equivalent distributed forces

Wind forces Shear wall, or other vertical elements

- Seismic forces caused by ground movement and building mass.
- Wind forces caused by windward and leeward wind pressures.

How are the diaphragm force distributed to the vertical elements?

Two most common ways:

» Idealized as a Flexible Diaphragm» Idealized as Rigid Diaphragm

Flexible Diaphragm Assumptions

- Each diaphragm span is independent
- Forces distributed to wall lines using a tributary area or simply-supported, single-span "beam" models

It's just statics... use a free body diagram of the diaphragm

Rigid Diaphragm Assumptions

- Diaphragm idealized as single rigid element with 3 degrees of freedom (lateral displacements, and rotation)
- No consideration of <u>diaphragm</u> stiffness (or shape) to distribute loads

Find example of rigid diaphragm analysis in *Design Example of a Cantilever Wood Diaphragm* <u>https://www.woodworks.org/resources/design-example-of-a-cantilever-wood-diaphragm/</u>

Diaphragm Flexibility

a Wall Effects

Reachin

Now

Introduction to diap ragm flexibility Code Sections, Definitions, and Requirements

A matter of Stiffness

Diaphragm flexibility is based on the relative stiffnesses between the diaphragm and the vertical resisting elements

Seismic:

ASCE 7-16, 22 Section 12.3.1- Diaphragm flexibility-The structural analysis shall <u>consider</u> the relative stiffnesses of diaphragms and the vertical elements of the seismic force resisting system.

Wind:

ASCE 7-16 Section 27.4.5 Diaphragm flexibility-The structural analysis shall <u>consider</u> the relative stiffness of diaphragms and vertical elements of the MWFRS. (Section no longer in ASCE 7-22)- Diaphragm flexibility only mentioned in definitions "Diaphragms" in ASCE 7-22.

Flexible structures are susceptible to damage from wind or seismic forces

Can require engineering judgement

Diaphragm Flexibility

NEHRP Seismic Design Brief 10 and ASCE 7-16 commentary-"The diaphragms in most buildings braced by wood light-frame shear walls are semi-rigid".

• The diaphragm stiffness relative to the stiffness of the supporting vertical seismic force-resisting system is important to define.

ASCE 7-16, 22, 12.3.1.1 Flexible Diaphragm Condition is allowed provided:

- All light framed construction
- 1 ¹/₂" or less of non-structural concrete topping
- Each line of LFRS is less than or equal to allowable story drift Engineering judgement should be used.

Compliance with story drift limits along each line of shear walls is intended as an indicator that the shearwalls are substantial enough to share load on a tributary area basis and do not require torsional force redistribution.

Horizontal Distribution of Shear – Pros and Cons

Distribution of shear to vertical resisting elements shall be based on an analysis, where the diaphragm is modeled as:

- Idealized as flexible-based on tributary area.
 - Can under-estimate forces distributed to the corridor walls (long walls) and over-estimate forces distributed to the exterior walls (short walls).
 - Can inaccurately estimate diaphragm shear forces
- Idealized as rigid-Distribution based on relative lateral stiffnesses of vertical-resisting elements of the story below.
 - More conservatively distributes lateral forces to corridor, exterior and party walls
 - Allows easier determination of building drift
 - Can over-estimate torsional drift
 - Can also inaccurately estimate diaphragm shear forces
- Modelled as semi-rigid.
 - Not idealized as rigid or flexible
 - Distributed to the vertical resisting elements based on the relative stiffnesses of the diaphragm <u>and</u> the vertical resisting elements accounting for both shear and flexural deformations.
 - In lieu of a semi-rigid diaphragm analysis, it shall be permitted to use an enveloped analysis.

Note:

Offsets in diaphragms can also affect the distribution of shear in the diaphragm due to changes in the diaphragm stiffness.

ASCE7-16, 22 Section 12.3 Diaphragm Flexibility Seismic

Section 12.3.1- The structural analysis shall <u>consider</u> the relative stiffnesses of diaphragms and the vertical elements of the lateral force resisting system.

ASCE7-16, 22, Section 26.2 Diaphragm Flexibility Wind

Diaphragm Flexibility

Introduction to diaphragm flexibility

s Definiti

ear Wall Effects

a obras han

How do you calculate it?

Code Se

rrect

Diaphragm Flexibility Permitted to be idealized as flexible provided: $\delta_{MDD} > 2\Delta_{ADVE}$. Rigid 2021 IBC and 2021 SDPWS Semi-rigid Permitted to be Idealized as rigid when computed $\delta_{MDD} \leq 2\Delta_{ADVE}$ Flexible **Diaphragm Length** Δ_A SW SW Δ_{ADVE} $\Delta_{\boldsymbol{B}}$ δ_{Diaph} $\mathbf{2x} \Delta_{ADVE}$ **O**MDD SW **Rigid/Semi-rigid** $2x \Delta_{ADVE}$ >2x Δ_{ADVE} SW $\boldsymbol{\delta}_{Diaph}$ Flexible (a) ASCE 7-16, 22 Figure 12.3-1 Simple Span Diaphragm **Based on adjacent SW only** 2 3 **Diaphragm Deflection** SW SW Typ.(δ_{MDD}) Δ_3 $\boldsymbol{\delta}_{Diaph}$ SW **Rigid/Semi-rigid** SW $\boldsymbol{\delta}_{Diaph}$ Flexible (b) Corridor Walls Only-Cantilever Diaphragm

ASCE 7-16, 22 Calculated Flexible Diaphragm Condition.

•

٠

Example-Open Front Diaphragms

Corridor only shear walls

Diaphragm Flexibility

Introduction to diaphragm flexibility

lear Wall Effects

Code Sections, Definitions, and

Now do you calculated
 Irregularities Affecting Diaphragm Stiffness

Requirements

Conditions Affecting Diaphragm Stiffness

Diaphragms with Openings

Vertically Offset Diaphragms

Horizontally Offset Diaphragms

Irregular Shaped Diaphragms

Allowable Aspect Ratios for Rectangular and Irregular Shaped Diaphragms

Unacceptable Layout

4.2.2 Maximum Diaphragm Aspect Ratios

Diaphragm Sheathing Type	Maximum L/W Ratio
Wood structural panel, unblocked	3:1
Wood structural panel, blocked	4:1
Single-layer straight lumber sheathing	2:1
Single-layer diagonal lumber sheathing	3:1
Double-layer diagonal lumber sheathing	4:1

Courtesy, American Wood Council, Leesburg, VA.

SDPWS Table 4.2.2 Maximum Diaphragm Aspect Ratios (Horizontal or sloped diaphragms)

Excerpts from the 2nd Edition, 2022

Copyright McGraw-Hill, ICC, ICC SKGA Terry Malone, PE, SE Scott Breneman, PhD, PE, SE Robert Rice, CBO

Blocked/unblocked diaphragm combinations will decrease the diaphragm stiffness

Deflection Equations-Simply Supported Rectangular Diaphragm

$$\delta_{Diaph \, Unif} = \frac{3v_{max}L'^3}{EAW'} + \frac{0.5v_{max}L'}{1000G_a} + \frac{\Sigma A_C X_C}{W'} \qquad 3-\text{term eq.}$$

$$\delta_{Diaph \, Unif} = \frac{3vL'^3}{EAW'} + \frac{0.5vL'}{Gvtv} + 0.376 \, \text{L'} \, \text{e}_{n} + \frac{\Sigma x \Delta_C}{W'} \qquad 4-\text{term eq.}$$

- Modified nail slip constant = 0.188(Vn')/Vn .
- SDPWS 3-term equation and tables have an apparent shear stiffness value, Ga, for blocked and unblocked (seismic), However, no guidance for mixing blocked and unblocked portions of the diaphragm.

Both equations are based on:

- Uniform load full length of diaphragm.
- Uniform nailing and nail size full length of diaphragm.
- Blocking full length of diaphragm.

shears in the diaphragm.

1. If 3-term equation, Ga from Table 4.2C must be used

for unblocked diaphragm areas.

2. If 4-term equation, unblocked area deflection of

diaphragm might have to be increased per TT-064 for

Zone C. (e.g., 2.5x or 3.0x)

Virtual work can be used to solve for the shear deflection in zones of different shear stiffness. Also refer to ATC-7 for examples.

(Far too big)

4 - 15

BA

в

24'

32'

There is still insufficient guidance today. "Back in the days", the structures and diaphragms were simple rectangular in nature, and diaphragm deflection was rarely checked as long as allowable aspect ratios were met.

In today's structures checking diaphragm and shear wall stiffness's is becoming increasingly more important, especially with openfront diaphragms.

Diaphragm Flexibility

Introduction to diaphragm flexibility Code Sections Definitions, and Requirements Now do you calculated?

olitaelinni

Exterior Shear Wall Effects

rrect

Force Distribution Due to Diaphragm/SW stiffness

Diaphragm Flexibility

Introduction to diaphragm flexibility

Effects of Diaphragm Flexibility

Code Sections, Definitions, and

Now do you ga

Frechlanties Afreilies

Multi-Story Lateral Design

Multi-Story Lateral Design

Two More Diaphragm Approaches

Semi-Rigid Diaphragm Analysis

- » Neither idealized flexible nor idealized rigid
- » Explicit modeling of diaphragm deformations with shear wall deformations to distribute lateral loads
- » Not quick or easy

Enveloping Method

- » Idealized as BOTH flexible and rigid.
- » Individual components designed for worst case from each approach
- » Recognized in the SDPWS as alternative to semi-rigid

Simple example with a few numbers

Use 19/32" OSB Sheathing with 10d at 6" o.c. each way in 2" Doug-Fir Larch or Southern Pine framing

ASD design diaphragm shear at support line v = 10 psf (30 ft) = 300 plf

Table 4.2A Nominal Unit Shear Capacities for Sheathed Wood-Frame Diaphragms

Blocked Wood Structural Panel Diaphragms^{1,2,3,4,6}

Sheathing Grade		Minimum Nail		Minimum	Nail Spacing (in.) at diaphragm boundaries (all cases), at continuous panel edges pa load (Cases 3 & 4), and at all panel edges (Cases 5 & 6)											arallel to	
	Common Nail Size ⁵ Length (in.) x Shank diameter (in.) x Head	Length in Framing	Nominal Panel	Nailed Face at Adjoining Panel		0	Nai	Spacing	4] (in.) at	other pa	anel edg	es (Case	es 1,2,3,	8.4)	2		
	diameter (in.)	Blocking P	(in)	Edges and Boundaries		6			6			4			3		
		(in.)	(in.)	(in.)	Vn (plf)	G, (kips/in.)		Vn (plf)	G. (kips/in.)		Vn (plf)	G, (kips/in.)		Vn (plf)	G, (kips/in.)		
						OSB	PLY		OSB	PLY		OSB	PLY	1.00	OSB	PLY	
	64			2	600		10	700	0.6	76	1050	10	10	4475	20		
			E/1E	2	475	15	10	630	9.0	7.0	940	13	9.5	1065	21	13	
	6d	1-1/4	3/10	3	530	12	9.0	700	7.0	6.0	1065	10	8.0	1205	17	12	
	(2 x 0.113 x 0.266)		3/8	2	520	13	9.5	700	7.0	6.0	1050	10	8.0	1175	18	12	
				3	590	10	8.0	785	5.5	5.0	1175	8.5	7.0	1330	14	10	
			3/8	2	670	15	11	895	9.5	7.5	1345	13	9.5	1525	21	13	
	L			3	755	12	9.5	1010	7.5	6.0	1510	11	8.5	1710	18	12	
Sheathing and	8d	1-3/8	7/16	2	715	14	10	950	8.5	7.0	1415	12	9.5	1610	20	13	
Single-Floor	2-1/2 x 0.131 x 0.281)			3	800	11	9.0	1065	7.0	6.0	1595	10	8.0	1805	17	12	
			15/32	2	755	13	9.5	1010	7.5	6.5	1485	11	8.5	1680	19	13	
				3	840	10	8.5	1120	6.0	5.5	1680	9.0	7.5	1890	15	11	
			15/32	2	810	25	15	1080	15	11	1610	21	14	1835	33	18	
	10d	1.1/2	10102	3	910	21	14	1205	12	9.5	1820	17	12	2060	28	16	
	(3 x 0.148 x 0.312)		19/32	2	895	21	14	1190	13	9.5	1790	18	12	2045	28	17	
d				3	1010	17	12	1345	10	8.0	2015	14	11	2295	24	15	

Shear capacity check

v_n =895 plf

ASD Seismic Capacity = 895 plf / 2.8 = 319 plf > 300 plf

2.8 per SDPWS 2021 4.1.4

Flexible diaphragm assumption not valid per SDPWS 4.2.6 Does this diaphragm qualify at a Rigid Diaphragm? Check at LRFD level forces

$$\delta_{dia,cant} = \frac{3vL'^3}{EAW'} + \underbrace{\frac{0.5vL'}{1000G_a}}_{W'} + \frac{\Sigma(x'\Delta_C)}{W'} = 0.33 \text{ in}$$
Shear Wall design:
15/32" OSB Sheathing with 10d at 6" o.c.
on DF or SP framing near 100% Capacity $\delta_{wall} = \frac{8vh^3}{EAb} + \underbrace{\frac{vh}{1000G_a}}_{W'} + \frac{h}{b}\Delta_a = 0.16 \text{ in}$
Does not qualify as Rigid!!
(it's close)

How to stiffen a diaphragm: More nails?

Table 4.2A Nominal Unit Shear Capacities for Sheathed Wood-Frame Diaphragms

			Blocked	Wood Structur	al Pan	el Dia	phragi	ns'	•,0								
		Minimum Nail		Minimum	Nail (Spacing	(in.) at d loa	liaphragr d (Cases	n bound s 3 & 4),	laries (a and at a	ll cases) Il panel (, at cont edges (C	inuous j Cases 5	panel ed & 6)	ges para	allel to	
Sheathing	Common Nail Size ⁵ Length (in.) x Shank	Length in	Nominal	Nominal Width of Nailed Face at	-	6			4		\rightarrow	2-1/2			2		
Grade	diameter (in.) x Head	Framing Member or	Panel	Adjoining Panel	Nail Spacing (in.) at other panel edges (Cases 1,2,3, & 4)												
	diameter (in.)	Blocking, &m	(in.)	Boundaries		6			6			4			3		
		(in.)	2002/2	(in.)	Vn	G	3.	Vn	G,		Vn	G		Vn	0	3.	
					(plf)	(kips	s/in.)	(plf)	(kip	s/in.)	(plf)	(kips	s/in.)	(plf)	(kip	s/in.)	
					500	OSB	PLY	700	OSB	PLY	1050	OSB	PLY	4475	OSB	PLY	
	6d		5/16	2	475	15	10	630	9.0	7.0	940	13	9.5	1065	21	13	
		1.1/4	3/10	3	530	12	9.0	700	7.0	6.0	1065	10	8.0	1205	17	12	
	(2 x 0.113 x 0.266)	1-1/4	3/8	2	520	13	9.5	700	7.0	6.0	1050	10	8.0	1175	18	12	
			30	3	590	10	8.0	785	5.5	5.0	1175	8.5	7.0	1330	14	10	
		1 · · · · · · · · · · · · · · · · · · ·	3/8	2	670	15	11	895	9.5	7.5	1345	13	9.5	1525	21	13	
				3	755	12	9.5	1010	7.5	6.0	1510	11	8.5	1710	18	12	
Sheathing and	8d	1-3/8	7/16	2	715	14	10	950	8.5	7.0	1415	12	9.5	1610	20	13	
Single-Floor	2-1/2 x 0.131 x 0.281)			3	800	11	9.0	1065	7.0	6.0	1595	10	8.0	1805	17	12	
			15/32	2	755	13	9.5	1010	7.5	6.5	1485	11	8.5	1680	19	13	
				3	840	10	8.5	1120	6.0	5.5	1680	9.0	7.5	1890	15	11	
			15/32	2	810	25	15	1080	15	11	1610	21	14	1835	33	18	
	10d (3 x 0.148 x 0.312)	1-1/2		3	910	21	14	1205	12	9.5	1820	17	12	2060	28	16	
			19/32	2	895	21	-14	1100	13	0.5	1700	18	12	2045	28	17	
6				3	1010	17	12	1345	10	8.0	2015	14	11	2295	24	15	

Same framing with more nails often does not increase stiffness G_a, so often not helpful

How to stiffen a diaphragm: Plywood vs OSB?

Table 4.2A Nominal Unit Shear Capacities for Sheathed Wood-Frame Diaphragms

S			Dioeneu	ficed chactar	arran	or bru	Jinagi											
		Minimum Nail		Minimum	Nail S	spacing	(in.) at d Ioa	iaphragr d (Cases	n bound s 3 & 4),	laries (a and at a	ll cases), Il panel d	at cont	inuous j Cases 5	panel edg & 6)	jes para	illel to		
	Common Nail Size ⁵	Bearing	Minimum	Nominal Width of		6			4			2-1/2			2			
Sheathing Grade	Length (in.) x Shank diameter (in.) x Head	Length in Framing	Nominal Panel	Nailed Face at Adjoining Panel	Nail Spacing (in.) at other panel edges (Cases 1,2,3, & 4)													
	diameter (in.)	Blocking P	(in)	Edges and Boundaries		6			6			4			3			
		(in.)	()	(in.)	٧n	G. (kins/in.)		v _n G _a (plf) (kips/in.)		Vn Ga			Vn	G,				
					(plf)					s/in.)	(plf)) (kips/in.)		(plf)	(kips/in.)			
						OSB	PLY		OSB	PLY		OSB	PLY		OSB	PLY		
				2	600	ï	5	700			1050	10	10	4475	20			
	6d (2 x 0.113 x 0.266)		5/16	2	475	15	10	630	9.0	7.0	940	13	9.5	1065	21	13		
		1-1/4		3	530	12	9.0	700	7.0	6.0	1065	10	8.0	1205	17	12		
			3/8	2	520	13	9.5	700	7.0	6.0	1050	10	8.0	1175	18	12		
				3	590	10	8.0	785	5.5	5.0	1175	8.5	7.0	1330	14	10		
		1	3/8	2	670	15	11	895	9.5	7.5	1345	13	9.5	1525	21	13		
				3	755	12	9.5	1010	7.5	6.0	1510	11	8.5	1710	18	12		
Sheathing and	8d	1.3/8	7/16	2	715	14	10	950	8.5	7.0	1415	12	9.5	1610	20	13		
Single-Floor	2-1/2 x 0.131 x 0.281)	1.40		3	800	11	9.0	1065	7.0	6.0	1595	10	8.0	1805	17	12		
			15/32	2	755	13	9.5	1010	7.5	6.5	1485	11	8.5	1680	19	13		
			10.01	3	840	10	8.5	1120	6.0	5.5	1680	9.0	7.5	1890	15	11		
			15/32	2	810	25	15	1080	15	11	1610	21	14	1835	33	18		
	10d	1-1/2	10/02	3	910	21	14	1205	12	9.5	1820	17	12	2060	28	16		
	(3 x 0.148 x 0.312)		19/32	2	895	21	14	1190	13	9.5	1790	18	12	2045	28	17		
			3	1010	17	12	1345	10	8.0	2015	14	11	2295	24	15			

ad Churchurgh Danal Dianhanama 12346

Same framing with same nailing, plywood has lower stiffness than OSB, so higher deflection

How to <u>Soften</u> a Shear Wall: Plywood vs OSB?

Table 4.3A Nominal Unit Shear Capacities for Sheathed Wood-Frame Shear Walls 1,3,6

			Wood-based P	anels	s ⁴													
			Nail Type & Size ⁹	Panel Edge Nail Spacing (in.)														
Sheathing Material	Minimum	Minimum Nail Bearing Length in			6]		4		3				2				
	Thickness (in.)	Framing Member or Blocking, ℓ _m (in.)	Length (in.) x Shank diameter (in.) x Head diameter (in.)	v _n (plf)	G _a) (kips/in.)		v _n (plf)	Ga (kips/in.)		v _n (plf)	Ga (kips/in.)		v _n (plf)	G (kips	i _a s/in.)			
					OSB	PLY		OSB	PLY		OSB	PLY		OSB	PLY			
		1	······		て	>	1			1			1					
	5/16	1-1/4	6d common nail (2 x 0.113 x 0.266) ⁸	505	13	9.5	755	18	12	980	24	14	1260	37	18			
	3/8			560	11	8.5	840	15	11	1090	20	13	1430	32	17			
Wood Structural	3/8 2			615	17	12	895	25	15	1150	31	17	1485	45	20			
Panels -	7/16 2	1-3/8	8d common nail	670	15	11	980	22	14	1260	28	17	1640	42	21			
Sheathing 4,5	15/32		(2-1/2 X 0.131 X 0.201)	730	13	10	1065	19	13	1370	25	15	1790	39	20			
	15/32		10d common nail	870	22	14	1290	30	17	1680	37	19	2155	52	23			
	19/32	1-1/2	(3 x 0.148 x 0.312) ^{8,10}	950	19	10	1430	26	16	1860	33	18	2435	48	22			
							-						+					

Same framing with same nailing, plywood has lower stiffness than OSB, so higher deflection

Wall
$$\delta_{dia,cant} = \frac{3vL'^3}{EAW'} + \frac{0.5vL'}{1000G_a} + \frac{\Sigma(x'\Delta_C)}{W'} = 0.33 in$$
 $0.33 in < 2 (0.25) = 0.50 in$ G_a = 22 OSB $\delta_{wall} = \frac{8vh^3}{EAb} + \frac{vh}{1000G_a} + \frac{h}{b}\Delta_a = 0.25 in$ Diaphragm Does Qualify
as Rigid!!

How to stiffen a diaphragm: Different Calculations?

SDPWS Eq. 4.2-2 (3-term equation)

$$\delta_{dia,cant} = \frac{3\nu L'^3}{EAW'} + \frac{0.5\nu L'}{1000G_a} + \frac{\Sigma(x'\Delta_C)}{W'} = 0.33 \text{ in}$$

4-term equation for <u>uniformly</u> loaded cantilever diaphragm:

$$\delta_{dia,cant,4} = \frac{3vL'^3}{EAW'} + \frac{vL'}{2G_v t_v} + 0.375L'e_n + \frac{\Sigma(x'\Delta_c)}{W'} = 0.27 \text{ in}$$

$$\delta_{dia} < 2 \, \delta_{wall}$$
 ?

0.27 in < 2 (0.16 in) = 0.32 in

Diaphragm Qualifies as Rigid?

3-term deflection equations are conservative (low) stiffness values based on nail slip at LRFD capacity.

Calculated deflections at lower demands result in 4-term equation value less 3-term equation value.

Design Example of a Cantilever Wood Diaphragm

Covers diaphragm classification as rigid by calculation, rigid diaphragm analysis calculations, 3-term vs 4term deflection calculations of diaphragms and shear walls, torsional irregularities, story drift checks, etc.

<u>https://www.woodworks.org/resources/design-example-of-a-cantilever-wood-diaphragm/</u>

Design Example: Five-Story Wood-Frame Over Podium

Covers lateral design approaches, seismic emphasis, 2-stage analysis, Shrinkage considerations, Type III detailing, gravity detailing, etc.

<u>https://www.woodworks.org/resources/five-story-wood-frame-structure-over-podium-slab/</u>

Detailed book on wood diaphragm and shear walls

500+ pages of discussion and worked examples, many of complicated real world irregularly-shaped wood buildings.

Regional Directors: One-on-One Project Support

Solutions Team

Scott Breneman, PhD, PE, SE

Ashley Cagle, PE, SE

Karen Gesa, PE

Erin Kinder, PE, SE, LEED AP

Bruce Lindsey

Melissa Kroskey, AIA, SE

Terry Malone, PE, SE

Taylor Landry, PE, MLSE

Ricky McLain, PE, SE

woodworks.org

Need Project Support?

QUESTIONS?

This concludes The American Institute of Architects Continuing Education Systems Course

Terry Malone, PE, SE WoodWorks – Wood Products Council Senior Technical Director, Project Resources and Solutions Division terrym@woodworks.org | woodworks.org

Scott Breneman, PhD, PE, SE WoodWorks – Wood Products Council Senior Technical Director, Project Resources and Solutions Division <u>scott.breneman@woodworks.org</u> | <u>woodworks.org</u>

Copyright Materials

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

© The Wood Products Council 2024

Funding provided in part by the Softwood Lumber Board

Disclaimer: The information in this presentation, including, without limitation, references to information contained in other publications or made available by other sources (collectively "information") should not be used or relied upon for any application without competent professional examination and verification of its accuracy, suitability, code compliance and applicability by a licensed engineer, architect or other professional. Neither the Wood Products Council nor its employees, consultants, nor any other individuals or entities who contributed to the information make any warranty, representative or guarantee, expressed or implied, that the information is suitable for any general or particular use, that it is compliant with applicable law, codes or ordinances, or that it is free from infringement of any patent(s), nor do they assume any legal liability or responsibility for the use, application of and/or reference to the information. Anyone making use of the information in any manner assumes all liability arising from such use.