A New Path Forward for Tall Wood Construction + INTRO Cleveland Tour

WOODWORKS

October 3, 2023

Presented by Anthony Harvey, PE WoodWorks

Apex Plaza / Courtesy William McDonough + Partner

Tall Timber Building Design: Acoustics, Connections and Fire Protection

Anthony Harvey Regional Director

80 M St | Photo: Hickok Cole | Architect: Hickok Cole

13 tall wood projects already under construction or built.

Portland, OR 8 stories mass timber

Heartwood Seattle, WA

8 stories mass timber

Minnesota Places

Portland, OR 8 stories – 7 mass timber

? TimberView

Portland, OR 8 stories mass timber

9 1510 Webster

Oakland, CA 18 stories – 16 mass timber

2057 SW Park

Portland, OR 12 stories mass timber

Ascent

Milwaukee, WI 25 stories – 19 mass timber

Bakers Place

Madison, WI 15 stories – 12 mass timber

INTRO

Cleveland, OH 9 stories – 8 mass timber

 \bigcirc

11 E Lenox

Boston, MA 7 stories mass timber

80 M Street

Washington DC 10 stories – 3-story mass timber vertical addition

🕈 Apex Plaza

Charlottesville, VA 8 stories – 6 mass timber

Q Bunker Hill Housing

ΓΑΙ

= 20 in-design tall wood

= tall wood project in

construction or completed

WOODWORKS

Boston, MA 6 stories mass timber

projects

WoodWorks is supporting 207 tall wood projects in design

TALL MASS TIMBER CODE ADOPTIONS

Photos: Baumberger Studio/PATH Architecture/Marcus Kauffman | Architect: PATH Architecture

CARBON12, PORTLAND, OR

8 STORIES | 85 FT

INTRO, CLEVELAND

9 Stories | 115 ft 8 Timber Over 1 Podium

512,000 SF III CARE HAMANA 297 Apartments, Mixed-Use

Photo: Harbor Bay Real Estate Advisors, Image Fiction | Architect: Hartshorne Plunkard Architecture

BOOKING FOR EARLY 202

ASCENT, MILWAUKEE

Photo: Korb & Associates Architects | Architect: Korb & Associates Architects

ASCENT, MILWAUKEE

25 STORIES 19 TIMBER OVER 6 PODIUM, 284 FT

Photo: Korb & Associates Architects | Architect: Korb & Associates Architects

ASCENT, MILWAUKEE

493,000 SF 259 APARTMENTS, MIXED-USE

Photo: Korb & Associates Architects | Architect: Korb & Associates Architects

80 M ST, WASHINGTON, DC

Photo: Hickok Cole | Architect: Hickok Cole

80 M ST, WASHINGTON, DC

3 STORY OVER-BUILD ON EXISTING 7 STORY BUILDING

Photo: Hickok Cole | Architect: Hickok Cole

80 M ST, WASHINGTON, DC

100,000 SF 2 NEW LEVELS OF CLASS A OFFICE SPACE OCCUPIED PENTHOUSE 17'-0" CEILING HEIGHTS

NIR CENTER, PORTLAND, OR

10 STORIES

Type IV-B Construction Hybrid Mass Timber + Steel

Photo: Hennebery Eddy Architects | Architect: Hennebery Eddy Architects

Hennebery Eddy

Architects

NIR-CENTER, PORTLAND, OR

~400,000 SF

235,000 SF Laboratory Space 25,000 SF Office Space Ground Floor Retail

Photo: Hennebery Eddy Architects | Architect: Hennebery Eddy Architects

Hennebery Eddy Architects

APEX CLEAN ENERGY HQ CHARLOTTESVILLE, VA

187,000 SF

Photo: William McDonough + Partners | Architect: William McDonough + Partners

APEX CLEAN ENERGY HQ CHARLOTTESVILLE, VA

8 STORIES 6 TIMBER OVER 2 PODIUM, 100 FT

Photo: William McDonough + Partners | Architect: William McDonough + Partners

PRIMARILY OFFICE SPACE

1510 WEBSTER, OAKLAND 19 STORIES 17 TIMBER OVER 2 PODIUM

Photo: WoodWorks Architect/Developer: oWOW

Type IV-A Point Supported Mass Timber Floors

1510 WEBSTER, OAKLAND 17 TIMBER OVER 2 PODIUM

Photo: WoodWorks & oWOW Architect/Developer: oWOW

Type IV-A Point Supported Mass Timber Floors

2057 SW PARK, PORTLAND

12 STORIES Affordable Housing

DOES TALL WOOD = HIGH RISE?

Photo: Ema Peter

Mid-Rise vs. High-Rise

FIGURE 6-6 Determination of high-rise building

Sprinklers in High Rises

Two Water Mains Required if:
Building Height Exceeds 420 ft, or
Type IV-A and IV-B buildings that exceed 120 ft in height

LATERAL SYSTEMS IN TALL WOOD

Photo: Panzica Construction

CARBON12, PORTLAND Buckling-Restrained Braced Frame

(- DON

Photos: Marcus Kauffmann, ODF

ASCENT, MILWAUKEE Concrete Core Shearwalls

Photos: Korb + Associates, Thornton Tomasetti

BROCK COMMONS, VANCOUVER Concrete Core Shearwalls

Photos: Acton Ostry Architects

FUTURE POTENTIAL LATERAL SYSTEM FOR TALL WOOD

Image: KPFF

Mass Timber Rocking Shearwalls

CONSIDERATIONS FOR LATERAL SYSTEMS

Prescriptive Code ComplianceConcrete ShearwallsSteel Braced FramesCLT Shearwalls (65 ft max)✓CLT Rocking Walls✓

ASCE

CONSIDERATIONS FOR LATERAL SYSTEMS

Connections to concrete core

- Tolerances & adjustability
- Drag/collector forces

PLAN VIEW

CONSIDERATIONS FOR LATERAL SYSTEMS

Connections to steel frame

- Tolerances & adjustability
- Ease of installation

SHAFT ENCLOSURES

6

Shaft Enclosures in Tall Timber...

- When can shaft enclosures be MT?
- What FRR requirements exist?
- If shaft enclosure is MT, is NC req'd?

Image: Generate Architecture and Technologies + MIT – John Klein

Tall Wood Shaft Enclosures

E&H Enclosures FRR

2 HR (not less than FRR of floor assembly penetrated, IBC 713.4)

Shaft Wall Requirements in Tall Mass Timber Buildings

Richard McLain, PE, SE • Senior Technical Director • Tall Wood, WoodWorks

The 2021 International Building Code (IBC) introduced three new construction types—Type IV-A, IV-B and IV-C—which allow tall mass timber buildings. For details on the new types and their requirements, see the WoodWorks paper, *Tall Wood Buildings in the 2021 IBC – Up to 18 Stories of Mass Timber.*¹ This paper builds on that document with an in-depth look at the requirements for shaft walls, including when and where wood can be used.

Shaft Enclosure Requirements in the 2021 IBC

A shaft is defined in Section 202 of the 2021 IBC as "an enclosed space extending through one or more stories of a building, connecting vertical openings in successive floors, or floors and roof." Therefore, shaft enclosure requirements apply to stairs, elevators, and mechanical/electrical/plumbing (MEP) chases in multi-story buildings. While these applications may be similar in their fire design requirements, they tend to differ in terms of their assemblies, detailing, and construction constraints.

Shaft enclosures are specifically addressed in IBC Section 713. However, because shaft enclosure walls must be constructed as fire barriers per Section 713.2, many shaft wall requirements reference provisions for fire barriers found in Section 707.

Allowable Shaft Wall Materials

Provisions addressing materials permitted in shaft wall

Wood Works[™] wood products council

A relatively new category of wood products, mass timber can

Shaft Enclosure Design in Tall Timber

utilizing construction Types IV-A, IV-B, or IV-C is that they

Structural elements of Type IV construction primarily of

CONNECTIONS IN TALL WOOD

In Construction Types <u>IV-A, IV-B & IV-C</u>, building elements are required to be FRR as specified in IBC Tables 601 and 602. Connections between these building elements must be able to maintain FRR no less than that required of the connected members.

16.3 Wood Connections

Wood connections, including connectors, fasteners, and portions of wood members included in the connection design, shall be protected from fire exposure for the required fire resistance time. Protection shall be provided by wood, fire-rated gypsum board, other approved materials, or a combination thereof.

Steel hangers/hardware fully concealed within a timber to timber connection is a common method of fire protection

Fire Resistance of Connections

2304.10.1 Connection fire resistance rating. Fire resistance ratings in <u>Type IV-A, IV-B, or IV-C</u> construction shall be determined by one of the following:

1. Testing in accordance with Section 703.2 where the connection is part of the fire resistance test.

2. Engineering analysis that demonstrates that the temperature rise at any portion of the connection is limited to an average temperature rise of 250° F (139° C), and a maximum temperature rise of 325° F (181° C), for a time corresponding to the required fire resistance rating of the structural element being connected. For the purposes of this analysis, the connection includes connectors, fasteners, and portions of wood members included in the structural design of the connection.

Many ways to demonstrate connection fire protection: calculations, prescriptive NC, test results, others as approved by AHJ

2017 Glulam Beam to Column Connection Fire Tests under standard ASTM E119 time-temperature exposure

Fire Test Results

Test	Beam	Connector	Applied Load	FRR
1	8.75" x 18" (222mm x 457mm)	1 x Ricon S VS 290x80	3,905lbs (17.4kN)	1hr
2	10.75" x 24" (273mm x 610mm)	Staggered double Ricon S VS 200x80	16,620lbs (73.9kN)	1.5hrs
3	10.75" x 24" (273mm x 610mm)	1 x Megant 430	16,620lbs (73.9kN)	1.5hrs

Softwood Lumber Board	Southwest Research Institute			
Softwood Lumber Board	6220 CULEBRA ROAD 78238-5166 + PO DRAWER 28510 78228 0510 + SAN ANTONIO, TEXAS, USA + (210) 884-5111 + WWW SWRI ORG			
Glulam Connection Fire Test	CHEMISTRY AND CHEMICAL ENGINEERING DIVISION	FIRE TECHNOLOGY DEPARTMENT WWW.FIRE.SWRI.ORG FAX (210) 522-3377		
Summary Report		Proved St.		
Issue June 5, 2017	FIRE PERFORMANCE EVALUATION OF A LOAD BEARING GLULAM BEAM TO COLUMN CONNECTION, INCLUDING CLT PANEL, TESTED IN GENERAL ACCORDANCE WITH ASTM E119-16a, STANDARD TEST METHODS FOR FIRE TEST OF BUILDING CONSTRUCTION AND MATERIALS	A H		

Full Report Available at:

FINAL REPORT **Consisting of 32 Pages**

https://www.thinkwood.com/wp-content/uploads/2018/01/reThink-Wood-Arup-SLB-Connection-Fire-Testing-Summary-web.pdf

Tall Mass Timber Inspections

Wood Connection Coverings for Fire-Resistance

110.3.5 <u>Type IV-A, IV-B, and IV-C</u> connection protection inspection. In buildings of Type IV-A, IV-B, and IV-C Construction, where connection fire resistance ratings are provided by wood cover calculated to meet the requirements of Section 2304.10.1, inspection of the wood cover shall be made after the cover is installed, but before any other coverings or finishes are installed.

Inspection of Wood Coverings

Tall Mass Timber Special Inspections

TABLE 1705.5.3 REQUIRED SPECIAL INSPECTIONS OF MASS TIMBER CONSTRUCTION

Туре	Continuous Special Inspection	Periodic Special Inspection
1. Inspection of anchorage and connections of mass timber construction to timber deep foundation systems.		×
2. Inspect erection of mass timber construction		X
3. Inspection of connections where installation methods are required to meet design loads		
3.1. Threaded fasteners		
3.1.1. Verify use of proper installation equipment.		X
3.1.2. Verify use of pre-drilled holes where required.		X
3.1.3. Inspect screws, including diameter, length, head type, spacing, installation angle, and depth.		×
3.2. Adhesive anchors installed in horizontal or upwardly inclined orientation to resist sustained tension loads	×	
3.3. Adhesive anchors not defined in 3.2.		X
3.4. Bolted connections		X
3.5. Concealed connections		X

Table is only required for Type IV-A, IV-B, and IV-C

Source: International Building Code

NEW MASS TIMBER CONNECTIONS INDEX

ARCHITECTURE URBAN DESIGN INTERIOR DESIGN

A library of commonly used mass timber connections with designer notes and information on fire resistance, relative cost and load-carrying capacity.

WoodWorks Index of Mass Timber Connections

PENETRATIONS IN TALL WOOD

Although not a new code requirement or specific to tall wood, more testing & information is becoming available on firestopping of penetrations through MT assemblies

Most firestopping systems include combination of fire safing (eg. noncombustible materials such as mineral wool insulation) plus fire caulk

Inventory of Fire Tested Penetrations in MT Assemblies

Table 3: North American Fire Tests of Penetrations and Fire Stops in CLT Assemblies

CLT Panel	Exposed Side Protection	Pen etrating Item	Penetrant Centered or Offset in Hole	Firestopping System Description	F Rating	T Rating	Stated Test Protocal	Source	Testing Lab
3-ply (78mm 3.07*)	None	1.5* diameter data cable bun ch	Centered	3.5 in diameter hole. Mineral wool was installed in the 1in. annular space around the data cables to a total depth of approximately 2 – 5/64 in. The remaining 1in. annular space from the top of the mineral wool to the top of the floor assembly was filled with Hilti FS-One Max caulking.	1 hour	0.5 hour	CANULC S115	26	In tert ek March 30, 2016
3-ply (78mm3.07*)	None	2* copper pipe	Centered	4.375 in diameter hole. Pipe wrap was installed around the copper pipe to a total depth of approximately 2 - 5/64in. The remaining 1in. annular space starting at the top of the mineral wool to the top of the floor assembly was filled with Hilti FS-One Max caulking.	1 hour	N.A.	CANULC S115	26	In tert ek March 30, 2016
3-ply (78mm3.07*)	None	2.5* sch ed. 40 pip e	Cen tere d	4.92 in diameter hole. Pipe wrap was installed around the schedule 40 pipe to a total depth of approximately 2 - 5/64 in. The remaining 1 in. an nular space starting at the top of the pipe wrap to the top of the floor assembly was filled with HiltiFS-One Max caulking.	1 hour	N.A.	CANULC S115	26	In tert ek March 30, 2016
3-ply (78mm 3.07*)	None	6" cast iron pipe	Centered	8.35 in diameter hole. Mineral wool was installed in the lin. annular space around the cast iron pipe to a total depth of approximately 2 – 5/64 in. The remaining lin. annular space starting at the top of the pipe wrap to the top of the floor assembly was filled with Hilti FS-One Max caulking.	1 hour	N.A.	CANULC S115	26	In tert ek March 30, 2016
3-ply (78mm3.07*)	None	Hilti 6 in drop in device. System No.: F- B-2049	Centered	9.01* diameter hole. Mineral wool was installed in the 1 – 1/4in. annular space around the drop-in device to a total depth of approximately 1 – 7/64in and the remaining 1 in. annular space from the top of the mineral wool to the top edge of the 9 – 1/64in. hole in the CLT was filled with Hilti FS-One Max caulking.	1 hour	0.75 hour	CANULC S115	26	In tert ek March 30, 2016
5-ply CLT (131mm 5.16*)	None	1.5* diameter data cable bun ch	Centered	3.5" diameter hole. Mineral wool was installed in the 1 in. annular space around the data cables to a total depth of approximately 4 – 5/32 in. The remaining 1 in. annular space from the top of the mineral wool to the top of the floor assembly was filled with Hilti FS-One Max caulking.	2 hours	1.5 hours	CANULC S115	26	In tert ek March 30, 2016
5-ply CLT (131 mm 5.16*)	None	2 * copper pi pe	Centered	4.375 in diameter hole. Pipe wrap was installed around the copper pipe to a total depth of approximately 4 – 5/32 in. The remaining 1 in. an nular space starting at the top of the mineral wool to the top of the floor as sembly was filled with Hilti FS-One Max caulking.	2 hours	N.A.	CANULC S115	26	In tert ek March 30, 2016
5-ply CLT (131 mm 5.16*)	None	2.5" sched.40 pipe	Centered	4.92 in diameter hole. Pipe wrap was installed around the schedule 40 pipe to a total depth of approximately 4 – 5/32 in. The remaining 1 in. annular space starting at the top of the pipe wrap to the top of the floor assembly was filled with Hilti FS-One Max caulking.	2 hours	0.5 hour	CANULC S115	26	In tert ek March 30, 2016
5-ply CLT (131 mm 5.16*)	None	6" cast iron pipe	Centered	8.35 in diameter hole. Mineral wool was installed in the lin. annular space around the cast iron pipe to a total depth of approximately $4 - 5/32$ in. The remaining lin. annular space starting at the top of the pipe wrap to the top of the floor assembly was filled with Hilti FS- On e Max caulking.	2 hours	N.A.	CANULC S115	26	In tert ek March 30, 2016
5-ply CLT (131mm 5.16*)	None	Hilti 6 in drop in device. System No.: F- B-2049	Centered	9.01" diameter hole. Mineral wool was installed in the 1 – 1/4in. annular space around the drop-in device to a total depth of approximately 1 – 7/64in and the remaining 1 in. annular space from the top of the mineral wool to the top edge of the 9 – 1/64in. hole in the CLT was filled with Hilti FS-One Max caulking.	2 hours	1.5 hours	CANULC S115	26	In tert ek March 30, 2016
5-ply (175mm6.875*)	None	1 * nominal PVC pipe	Centered	4.21 in diameter with a 3/4 in plywood reducer flush with the top of the slab reducing the opening to 2.28 in. Two wraps of Hilti CP 648-E W45/1-3/4" Firest op wrap strip at two locations with a 30 gauge steel sleeve which extended from the top of the slab to 1 in below the slab. The first location was with the bottom of the wrap strip flush with the bottom of the steel sleeve and the second was with the bottom of the wrap strip 3 in. from the bottom of the slab. The void between the steel sleeve and the CLT and between the steel sleeve and pipe at the top was filled with Roxul Safe mineral wool leaving a 3/4 in deep void at the top of the assembly. Hilti FS-One Max Intumescent Firestop Sealant was applied to a depth of 3/4 in on the top of the assembly between the plywood and steel sleeve as well as the steel sleeve and pipe.	2 hours	2 hours	ASTM E814	24	QAI Laboratories March 3, 2017

SEALANTS AT MT PANEL EDGES

Photos: ARUP

Sealants at MT Panel Edges

703.9 Sealing of adjacent mass timber elements. In buildings of <u>Type IV-A</u>, <u>IV-B</u>, and IV-C construction, sealant or adhesive shall be provided to resist the passage of air in the following locations:

- At abutting edges and intersections of mass timber building elements required to be fire resistance-rated
- 2. At abutting intersections of mass timber building elements and building elements of other materials where both are required to be fire resistance-rated.

Sealants at MT Panel Edges

Sealants shall meet the requirements of ASTM C920 (elastomeric joint sealants). Adhesives shall meet the requirements of ASTM D3498 (gap filling construction adhesives, i.e. not fire caulk).

Exception: Sealants or adhesives need not be provided where they are not a required component of a fire resistance- rated assembly.

Sealants at MT Panel Edges

Several MT fire tested assemblies have successfully been completed w/o adhesives/sealants at abutting panel edges

2021 IBC will require <u>periodic special inspections</u> of adhesive/sealant installation (when required to be installed)

FIRE SAFETY DURING CONSTRUCTION

New code provisions in International Fire Code (IFC) address construction fire safety of tall wood buildings

3308.4 Fire safety requirements for buildings of Types IV-A, IV-B, and IV-C construction. Buildings of Types IV-A, IV-B, and IV-C construction designed to be greater than six stories above grade plane shall meet the following requirements during construction unless otherwise approved by the fire code official.

- 1. Standpipes shall be provided in accordance with Section 3313.
- 2. A water supply for fire department operations, as approved by the fire chief.

IFC 3313 Standpipe Requirements

SECTION 3313 STANDPIPES

3313.1 Where required.

In buildings required to have standpipes by Section 905.3.1, not less than one standpipe shall be provided for use during construction. Such standpipes shall be installed prior to construction exceeding 40 feet (12 192 mm) in height above the lowest level of fire department vehicle access. Such standpipe shall be provided with fire department hose connections at accessible locations adjacent to usable stairways. Such standpipes shall be extended as construction progresses to within one floor of the highest point of construction having secured decking or flooring.

3313.2 Buildings being demolished.

Where a building is being demolished and a standpipe is existing within such a building, such standpipe shall be maintained in an operable condition so as to be available for use by the fire department. Such standpipe shall be demolished with the building but shall not be demolished more than one floor below the floor being demolished.

3313.3 Detailed requirements.

Standpipes shall be installed in accordance with the provisions of Section 905.

Exception: Standpipes shall be either temporary or permanent in nature, and with or without a water supply, provided that such standpipes comply with the requirements of Section 905 as to capacity, outlets and materials.

IFC 3308.4 Cont'd

- 3. Where building construction exceeds six stories above grade plane, at least one layer of noncombustible protection where required by Section 602.4 of the International Building Code shall be installed on all building elements more than 4 floor levels, including mezzanines, below active mass timber construction before erecting additional floor levels.
- 4. Where building construction exceeds six stories above grade plane required exterior wall coverings shall be installed on all floor levels more than 4 floor levels, including mezzanines, below active mass timber construction before erecting additional floor level.

Exception: Shafts and vertical exit enclosures

Figure 1

Figure 2

Examples of Protection During Construction For Mass Timber Buildings Greater Than 6 Stories Above Grade Plane

50 60

\$0

30

10

EVEL EVEL

150

Air-Borne Sound:

Sound Transmission Class (STC)

- Measures how effectively an assembly isolates air-borne sound and reduces the level that passes from one side to the other
- Applies to walls and floor/ceiling assemblies

Structure-borne sound:

Impact Insulation Class (IIC)

- Evaluates how effectively an assembly blocks impact sound from passing through it
- Only applies to floor/ceiling assemblies

Code requirements only address residential occupancies:

For unit to unit or unit to public or service areas:

Min. STC of 50 (45 if field tested):

• Walls, Partitions, and Floor/Ceiling Assemblies

Min. IIC of 50 (45 if field tested) for:

• Floor/Ceiling Assemblies

STC	What can be heard
25	Normal speech can be understood quite easily and distinctly through wall
30	Loud speech can be understood fairly well, normal speech heard but not understood
35	Loud speech audible but not intelligible
40	Onset of "privacy"
42	Loud speech audible as a murmur
45	Loud speech not audible; 90% of statistical population not annoyed
50	Very loud sounds such as musical instruments or a stereo can be faintly heard; 99% of population not annoyed.
60+	Superior soundproofing; most sounds inaudible

Tall Timber: Structure Often is Finish

Photos: Baumberger Studio/PATH Architecture/Marcus Kauffman | Architect: Kaiser + PATH

But by Itself, Not Adequate for Acoustics

TABLE 1:

Examples of Acoustically-Tested Mass Timber Panels

Mass Timber Panel	Thickness	STC Rating	IIC Rating
3-ply CLT wall ⁴	3.07"	33	N/A
5-ply CLT wall ⁴	6.875"	38	N/A
5-ply CLT floor⁵	5.1875"	39	22
5-ply CLT floor⁴	6.875"	41	25
7-ply CLT floor⁴	9.65"	44	30
2x4 NLT wall ⁶	3-1/2" bare NLT 4-1/4" with 3/4" plywood	24 bare NLT 29 with 3/4" plywood	N/A
2x6 NLT wall ⁶	5-1/2" bare NLT 6-1/4" with 3/4" plywood	22 bare NLT 31 with 3/4" plywood	N/A
2x6 NLT floor + 1/2" plywood ²	6" with 1/2" plywood	34	33

Source: Inventory of Acoustically-Tested Mass Timber Assemblies, WoodWorks⁷

Acoustical Detailing

Regardless of the structural materials used in a wall or floor ceiling assembly, there are 3 effective methods of improving acoustical performance:

- 1. Add Mass
- 2. Add noise barriers
- 3. Add decouplers

Common mass timber floor assembly:

- Finish floor (if applicable)
- Underlayment (if finish floor)
- 1.5" to 4" thick concrete/gypcrete topping
- Acoustical mat
- WSP (if applicable)
- Mass timber floor panels

Solutions Paper

Acoustics and Mass Timber: Room-to-Room Noise Control

Richard McLain, PE, SE • Senior Technical Director • WoodWorks

The growing availability and code acceptance of mass timber—i.e., large solid wood panel products such as crosslaminated timber (CLT) and nail-laminated timber (NLT) for floor, wall and roof construction has given designers a low-carbon alternative to steel, concrete, and masonry for many applications. However, the use of mass timber in multi-family and commercial buildings presents unique acoustic challenges. While laboratory measurements of the impact and airborne sound isolation of traditional building assemblies such as light wood-frame, steel and concrete are widely available, fewer resources exist that quantify the acoustic performance of mass timber assemblies. Additionally, one of the most desired aspects of mass timber construction is the ability to leave a building's structure exposed as finish, which creates the need for asymmetric assemblies. With careful design and detailing, mass timber buildings can meet the acoustic performance expectations of most building types.

http://www.woodworks.org/wp-content/uploads/wood_solution_paper-MASS-TIMBER-ACOUSTICS.pdf

Mass Timber Assembly Options: Walls

Mass timber panels can also be used for interior and exterior walls-both bearing and non-bearing. For interior walls, the need to conceal services such as electrical and plumbing is an added consideration. Common approaches include building a chase wall in front of the mass timber wall or installing gypsum wallboard on resilient channels that are attached to the mass timber wall. As with bare mass timber floor panels, bare mass timber walls don't typically provide adequate noise control, and chase walls also function as acoustical improvements. For example, a 3-ply CLT wall panel with a thickness of 3.07" has an STC rating of 33.4 In contrast. Figure 3 shows an interior CLT partition wall with chase walls on both sides. This assembly achieves an STC rating of 58, exceeding the IBC's acoustical requirements for multi-family construction. Other examples are included in the inventory of tested assemblies noted above.

Acoustical Differences between Mass Timber Panel Options

The majority of acoustically-tested mass timber assemblies include CLT. However, tests have also been done on other mass timber panel options such as NLT and dowel-laminated timber (DLT), as well as traditional heavy timber options such as tongue and groove decking. Most tests have concluded that CLT acoustical performance is slightly better than that of other mass timber options, largely because the crossorientation of laminations in a CLT panel limits sound flanking.

For those interested in comparing similar assemblies and mass timber panel types and thicknesses, the inventory noted above contains tested assemblies using CLT, NLT, glued-laminated timber panels (GLT), and tongue and groove decking.

6

Improving Performance by Minimizing Flanking

Even when the assemblies in a building are carefully designed and installed for high acoustical performance, consideration of flanking paths—in areas such as assembly intersections, beam-to-column/wall connections, and MEP penetrations—is necessary for a building to meet overall acoustical performance objectives.

One way to minimize flanking paths at these connections and interfaces is to use resilient connection isolation and sealant strips. These products are capable of resisting structural loads in compression between structural members and connections while providing isolation and breaking hard, direct connections between members. In the context of the three methods for improving

acoustical performance noted above, these strips act as decouplers. With airtight connections, interfaces and penetrations, there is a much greater chance that the acoustic performance of a mass timber building will meet expectations.

Acoustical isolation strips

ps: Homoblaas

Inventory of Tested Assemblies

Acoustically-Tested Mass Timber Assemblies

Following is a list of mass timber assemblies that have been acoustically tested as of January 23, 2019. Sources are noted at the end of this document. For free technical assistance on any questions related to the acoustical design of mass timber assemblies, or free technical assistance related to any aspect of the design, engineering or construction of a commercial or multi-family wood building in the U.S., email help@woodworks.org or contact the WoodWorks Regional Director nearest you: http://www.woodworks.org/project-assistance

Contents:

Table 1: CLT Floor Assemblies with Concrete/Gypsum Topping, Ceiling Side Exposed	2
Table 2: CLT Floor Assemblies without Concrete/Gypsum Topping, Ceiling Side Exposed	7
Table 3: CLT Floor Assemblies without Concrete/Gypsum Topping, with Wood Sleepers, Ceiling Side Exposed	9
Table 4: NLT, GLT & T&G Decking Floor Assemblies, Ceiling Side Exposed	11
Table 5: Mass Timber Floor Assemblies with Ceiling Side Concealed	14
Table 6: Single CLT Wall	21
Table 7: Single NLT Wall	26
Table 8: Double CLT Wall	
Sources	32
Disclaimer	

http://bit.ly/mass-timber-assemblies

Table 1: CLT Floor Assemblies with Concrete/Gypsum Topping, Ceiling Side Exposed

	Finish Floor	if Applicable				
		ypsum Topping				
	Acoustical	Mat Product				
				-		
	CLT Panel -					
	No direct a	oplied or hung ceiling				
CLT Panel	Concrete/Gypsum Topping	Acoustical Mat Product Between CLT and Topping	Finish Floor	STC1	IIC1	So
			None	47 ² ASTC	47 ² AIIC	
			LVT	-	49 ² AIIC	
		Maxxon Acousti-Mat® 3/4	Carpet + Pad	-	75 ² AIIC	
		Waxou Acoust - Mat - 5/4	LVT on Acousti-Top®	-	52 ² AIIC	
	1-1/2" Gyp-Crete®		Eng Wood on <u>Acousti</u> - Top®	-	51 ² AIIC	
			None	49 ² ASTC		
		Maxxon Acousti-Mat® ¾ Premium	LVT	-	47 ² AIIC	
			LVT on Acousti-Top®	-	49 ² AIIC	
				45 ⁶	39 ⁶	1
			LVT	48 ⁶	47 ⁶	1
CLT 5-ply		USG SAM N25 Ultra	LVT Plus	48 ⁶	49 ⁶	
(6.875")			Eng Wood	47 ⁶	47 ⁶	
			Carpet + Pad	45 ⁶	676	(
	1-1/2" Levelrock® Brand 2500		Ceramic Tile	50 ⁶	46 ⁶	(
			None	45 ⁶	42 ⁶	1
			LVT	48 ⁶	44 ⁶	1
			LVT Plus	48 ⁶	47 ⁶	5
		Soprema® Insonomat	Eng Wood	47 ⁶	45 ⁶	5
			Carpet + Pad	45 ⁶	71 ⁶	6
			Ceramic Tile	50 ⁶	46 ⁶	6
			None	45 ⁶	38 ⁶	1
			LVT	48 ⁶	47 ⁶	1
		USG SAM N75 Ultra	LVT Plus	48 ⁶	49 ⁶	5
			Eng Wood	47 ⁶	49 ⁶	5

Tall Mass Timber Acoustics

Table 2: Impact of Direct Applied Ceiling Gypsum and Dropped Ceiling on Mass Timber Floor Panels⁷

Base Assembly (top to b	ottom)	Base assembly plus 2 layers direct	Base assembly plus 2 layers
		applied 5/8" gyp on underside of	direct applied gyp plus dropped
		mass timber	ceiling
1" poured gypsum,	STC 50	STC 52	STC 63
acoustical mat, 5-ply CLT	IIC 40	IIC 46	IIC 60
LVT, 1" poured gypsum,	STC 51	STC 52	STC 63
acoustical mat, 5-ply CLT	IIC 43	IIC 48	IIC 63
2" concrete, acoustical	STC 52	STC 59	Not tostad
mat, 5-ply CLT IIC 46		IIC 52	Not tested
LVT, 2" concrete, STC 53		STC 58	Not tostad
acoustical mat, 5-ply CLT IIC 52		IIC 55	Not tested

Base Assembly	
Exposed Timber	

With Direct Applied Ceiling Gyp With Direct Applied Ceiling Gyp & Dropped Ceiling

NEW MASS TIMBER DESIGN MANUAL

80+ pages of mass timber technical resources, case studies and more. Links directly to many additional resources.

Jointly Produced By:

https://info.thinkwood.com/masstimberdesignmanual

NEW MASS TIMBER BUSINESS CASE STUDIES

Download online at

<u>www.woodworks.org/mass-</u> timber-business-case-studies

- Includes financial return performance data on mass timber projects
- Developers share lessons learned, challenges and successes

MASS TIMBER CONSTRUCTION MANAGEMENT RESOURCES

In Progress/Development Image: Stress of the stre

Stay up to date with training for construction managers, GC's, and installers at our website:

https://www.woodworks.org/mass-timberconstruction-management-program/

In Planning

Brandon Brooks Construction Management Program Manager

p: (760) 271-3722 e: <u>brandon.brooks@woodworks.org</u>

QUESTIONS?

Anthony Harvey, PE

Regional Director

anthony.harvey@woodworks.org

This concludes The American Institute of Architects Continuing Education Systems Course

Questions? Ask us anything.

Anthony Harvey, PE

Regional Director | OH, IN, KY, MI (513) 222-3038 anthony.harvey@woodworks.org

WOODWORKS

Copyright Materials

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

© The Wood Products Council 2021

Disclaimer: The information in this presentation, including, without limitation, references to information contained in other publications or made available by other sources (collectively "information") should not be used or relied upon for any application without competent professional examination and verification of its accuracy, suitability, code compliance and applicability by a licensed engineer, architect or other professional. Neither the Wood Products Council nor its employees, consultants, nor any other individuals or entities who contributed to the information make any warranty, representative or guarantee, expressed or implied, that the information is suitable for any general or particular use, that it is compliant with applicable law, codes or ordinances, or that it is free from infringement of any patent(s), nor do they assume any legal liability or responsibility for the use, application of and/or reference to the information. Anyone making use of the information in any manner assumes all liability arising from such use.