

Demystifying Timber Construction Types

March 7, April 11, May 9

3 Part Series 3:30pm-5:30 pm in person at AIA San Francisco Center for Architecture + Design

March 7

Mid-Rise Design: Optimizing Size, Maximizing Value

April 11

Mid-Rise Mass Timber: Navigating Construction Type Selection

May 9

New Code Provisions for Tall Timber Structures in California

Mid-Rise Mass Timber

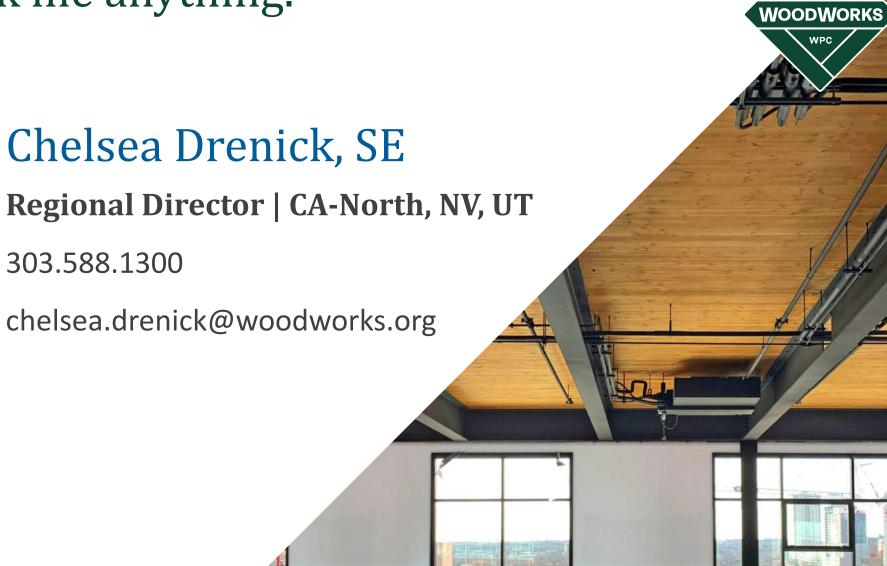
Navigating Construction Type Selection

Chelsea Drenick, SE April 11, 2024

Designing a wood building? Ask us anything.

FREE PROJECT SUPPORT / EDUCATION / RESOURCES

Nationwide support for the code-compliant design, engineering and construction of non-residential and multi-family wood buildings.


- Allowable Heights/Areas
- Construction Types
- · Structural Detailing
- Wood-Framed & Hybrid Systems
- Fire/Acoustic Assemblies

- Lateral System Design
- Alternate Means of Compliance
- · Energy-Efficient Detailing
- Building Systems & Technologies

Questions? Ask me anything.

Sustaining Partners —

Market Development Partners

Industry Advantage Partners _____

Channel Partner _____

Resources

WOOD SOLUTION PAPERS

Acoustics and Mass Timber:

Room-to-Room Noise Control

Covers key aspects of mass timber acoustical design. Companion to WoodWorks' Inventory of Acoustically-Tested Mass Timber Assemblies

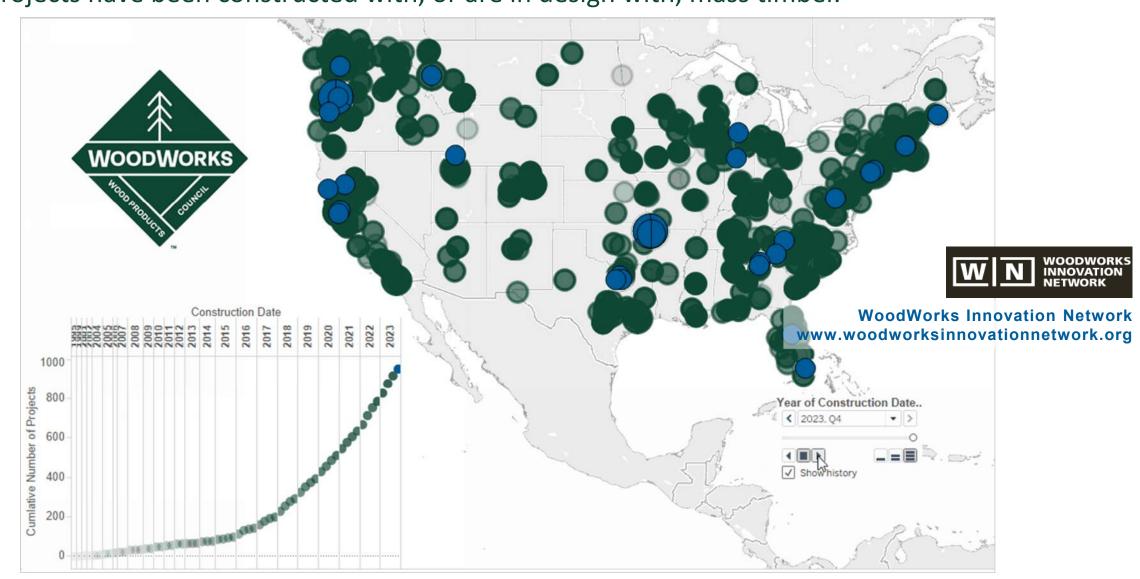
Mass Timber Cost and Design Optimization Checklists

Guides coordination between designers and builders (GCs, construction managers, estimators, fabricators, installers, etc.) as they estimate and make cost-related decisions on mass timber projects

Upcoming Events

Demystifying Timber Construction Types AIA San Francisco Series March 7, April 11, May 9

3 Part Series 3:30pm-5:30 pm in person at AIA SF


The Financial Dynamics of Designing with Mass Timber (virtual)
April 17

1.0 AIA/CES HSW LUs, 1.0 PDH credits, 0.10 ICC credits

Current State of Mass Timber Projects

As of **year-end 2023**, in the US, **2,035** multi-family, commercial, or institutional projects have been constructed with, or are in design with, mass timber.

"The Wood Products Council" is a Registered Provider with The American Institute of Architects Continuing Education Systems (AIA/CES), Provider #G516.

Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request.

This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

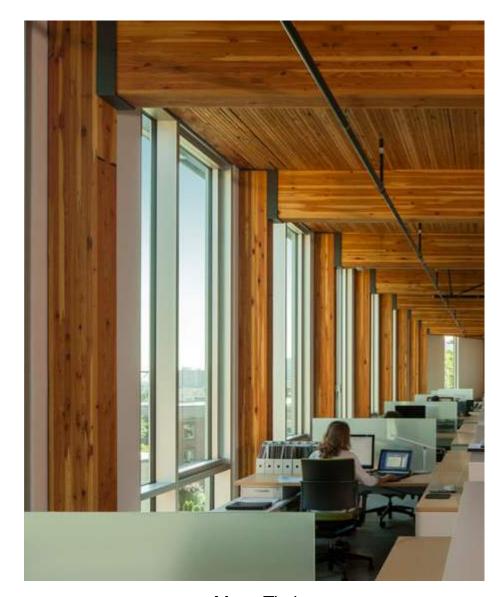
Course Description

Opportunities for using mass timber construction for new building projects have never been greater now that the International Building Code (IBC) allows up to 18 stories with these materials. However, with expanded code options, selecting the right construction type is crucial to making a project pencil. This course focuses on mid-rise mass timber construction, highlighting examples in the five- to eight-story range—including office, mixed-use, and multi-family projects. Discussion will help to inform decisions on how to incorporate mass timber based on a project's intended height, area, and occupancies. The presentation will also cover decisions that need to be made early in the design process, including grid layout, approach to achieving fire ratings, and lateral system selection.

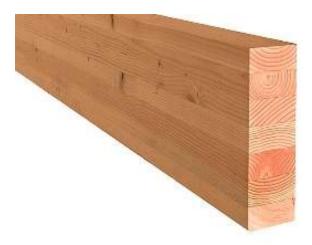
Learning Objectives

- 1. Review mass timber products, framing options, and the potential benefits of utilizing mass timber in mid-rise construction.
- 2. Discuss the various building construction types identified in the International Building Code (IBC) and where opportunities exist for mass timber use.
- 3. Highlight key considerations during the design of mass timber buildings, including grid layout, fire ratings, acoustics, and lateral design.
- 4. Evaluate the impact of design decisions on providing cost-effective, code-compliant buildings and highlight methods of meeting project goals.

MASS TIMBER OVERVIEW


Wood Construction Terminology

Light-Frame Wood Photo: WoodWorks


Heavy Timber Photo: Benjamin Benschneider

Mass Timber Photo: John Stamets

Wood Construction Terminology

Glue Laminated Timber (Glulam)
Beams & columns

Cross-Laminated Timber (CLT)
Solid sawn laminations

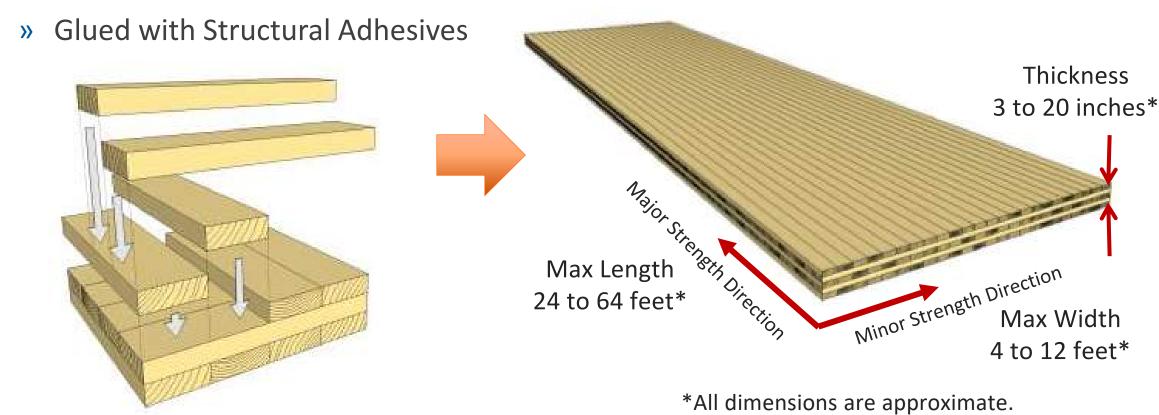
Cross-Laminated Timber (CLT)
SCL laminations

Wood Construction Terminology

Dowel-Laminated Timber (DLT)

Nail-Laminated Timber (NLT)

Glue-Laminated Timber (GLT)
Plank orientation



What is CLT?

- » 3+ layers of laminations
- » Solid Sawn or Structural Composite Lumber Laminations
- » Cross-Laminated Layup

Consult with manufacturers.

Common CLT Layups

Mass Timber Building Options

Post and Beam

Flat Plate

Honeycomb

Mass Timber Building Options

Hybrid: Light-frame

Hybrid: Steel framing

Potential Benefits	Project Goal ✓	Value Add ✓
Fast construction/shorter schedules; pre-fabricated and precise		
Exposed wood (structure is finish!) • Aesthetic value; potential for faster leasing and lease premiums; portfolio distinction • Biophilia; healthy indoor environment		
Lightweight structure, especially beneficial on sites with poor soils		
Labor shortage solutions Small crews for timber frame erection Utilize more entry-level laborers when MEP and fire protection systems are fully designed, coordinated and pre-planned		
Just-in-time delivery and small staging/lay-down areas; ideal for dense urban areas		
Natural, renewable material; environmentally friendly with a lighter carbon footprint		
 Support healthy forests and rural economies Mass timber can be made from relatively small-diameter trees and those affected by insects or disease; creates a market incentive for forest thinning and other landscape restoration efforts that reduce the risk of high-severity wildfires 		

MASS TIMBER IN THE CODE

Mass Timber in the IBC: Cross-Laminated Timber (CLT)

- » CLT was first recognized in the 2015 IBC
- » CLT in the 2021 IBC:
 - » Chapter 2: Definitions

[BS] CROSS-LAMINATED TIMBER. A prefabricated engineered wood product consisting of not less than three layers of solid-sawn lumber or *structural composite lumber* where the adjacent layers are cross oriented and bonded with structural adhesive to form a solid wood element.

» Chapter 23: Wood

2303.1.4 Structural glued cross-laminated timber. Cross-laminated timbers shall be manufactured and identified in accordance with ANSI/APA PRG 320.

Which Construction Type?

- » Many buildings use higher construction type than necessary
 - » Traditional practice
 - » Fire ratings
 - » Materials
 - » Cost!

Which Construction Type?

- » Start with lowest common denominator and work up
- » Don't assume construction type, occupancy separation, etc. required simply because of materials or occupancies

Construction Types – Allowable Materials

IBC/CBC defines 5 construction types: I, II, III, IV, V A building must be classified as one of these

	TYI	ΈΙ	TYPE II		TYPE III		TYPE IV				TYPE V	
	Α	В	Α	В	Α	В	Α	В	С	HT	Α	В
Exterior Wall Material	Non- combu	stible	Non- combustible		FRTW		CLT (protected)			FRTW (LF, MT), CLT (protected)	LF, MT), otected) Any wood	
Interior Elements	Non- combu	stible	Non- combu	stible	Any wood		Heavy Timber			Heavy Timber	Any woo	

Construction Types I-B, II-A, II-B

Where does the code allow wood to be used?

- » Mass Timber Roof Construction
- » IBC/CBC Table 601, Footnote c:
 - In all occupancies, heavy timber complying with Section 2304.11 shall be allowed for roof construction, including primary structural frame members, where a 1-hour or less fire-resistance rating is required.

Wellesley College, Wellesley, MA

Mid-Rise Construction Types

Type III

- » Exterior walls non-combustible (may be light frame FRTW)
- » Interior elements any allowed by code

Type V

» All building elements any allowed by code

Types III and V can be subdivided:

- » A (protected)
- » B (unprotected)

Type IV (C & HT)

- » All building elements mass timber or non-combustible
 - » For IV-HT, interior elements may also be 1-hour FRR light-frame
 - » For IV-HT, exterior walls may also be fire retardant treated (FRT) light-frame

Construction Types – Allowable Materials

	TYPE I		TYPE II		TYPE III			Т	TYPE V			
	Α	В	Α	В	Α	В	Α	В	С	HT	Α	В
Exterior Wall Material	Non- combu	n- Non- mbustible combustible		FRTW		CLT (protected)			FRTW (LF, MT), CLT (protected)	Any wood		
Interior Elements	Non- combus	Non- ustible combustible		Any wood		Heavy Timber			Heavy Timber	Any wood		

Construction Types V-A, V-B

IBC/CBC Section 602.5:

- » Structural Elements, Exterior Walls, and Interior Walls
 - » Any material permitted by code

Cedar Speedster, Seattle, WA

Construction Types V-A, V-B

Type V Construction:

- » Interior Elements (Floors, Roofs, Partitions/Shafts, Etc.)
 - » Any material permitted by code, including light frame and mass timber
- » Exterior Walls
 - » Non-combustible walls: light-gauge steel, curtainwall systems
 - » Light-frame walls
 - » Mass Timber

Star Lofts, Des Moines, IA

Construction Types V-A, V-B

Type V Construction:

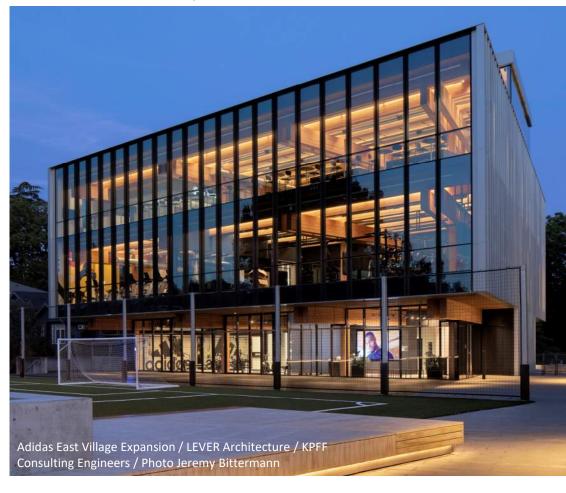
- » Interior Elements (Floors, Roofs, Partitions/Shafts, Etc.)
 - » Any material permitted by code, including light frame and mass timber

» Exterior Walls

- » Non-combustible walls: light-gauge steel, curtainwall systems
- » Light-frame walls
- » Mass Timber

340+ Dixwell Ave, New Haven, CT

Construction Types – Allowable Materials

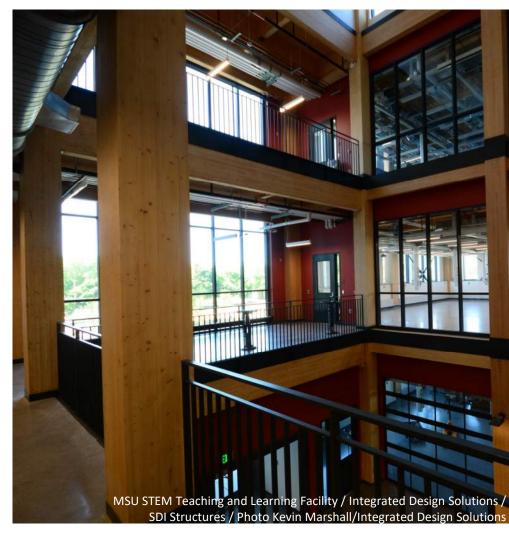

	TYPE I		TYPE II		TYPE III			Т	TYPE V			
	Α	В	Α	В	Α	В	Α	В	С	HT	Α	В
Exterior Wall Material	Non- combu	Non- ustible combustible		FRTW		CLT (protected)			FRTW (LF, MT), CLT (protected)	Any wood		
Interior Elements	Non- combu	Non- Non- combustible		Any wo	ood	Heavy Timber			Heavy Timber	Any wood		

Construction Types III-A, III-B

IBC/CBC Section 602.3:

- » Interior elements
 - » Any material permitted by code
- » Exterior walls
 - » Noncombustible materials or
 - » Fire-retardant-treated wood (FRTW) framing and sheathing shall be permitted within exterior wall assemblies
 - » Note: CLT not allowed

Adidas Headquarters, Portland, OR



Construction Types III-A, III-B

Type III Construction:

- » Interior Elements (Floors, Roofs, Partitions/Shafts, Etc.)
 - » Any material permitted by code, including light frame and mass timber
- » Exterior Walls
 - » Non-combustible walls: light-gauge steel, curtainwall systems
 - » FRTW light-frame walls

MSU STEM Facility, East Lansing, MI

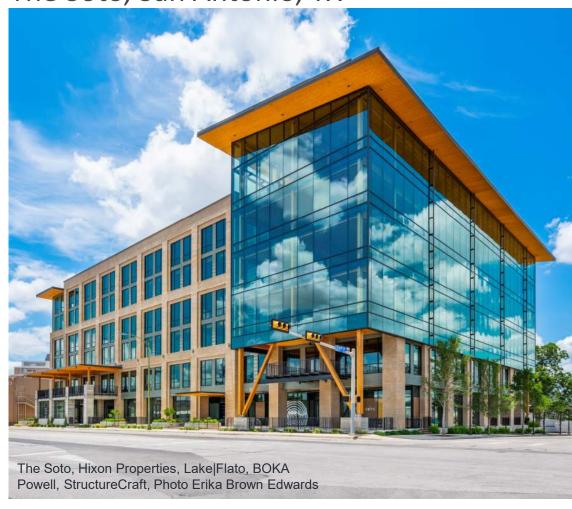
Construction Types III-A, III-B

Type III Construction:

- » Interior Elements (Floors, Roofs, Partitions/Shafts, Etc.)
 - » Any material permitted by code, including light frame and mass timber
- » Exterior Walls
 - » Non-combustible walls: light-gauge steel, curtainwall systems
 - » FRTW light-frame walls

The Canyons, Portland, OR

Construction Types – Allowable Materials


	TYPE I		TYPE II		TYPE III			Т	TYPE V			
	Α	В	Α	В	Α	В	Α	В	С	HT	А	В
Exterior Wall Material	Non- Non- combustible		stible	FRTW		CLT (protected)			FRTW (LF, MT), CLT (protected)		ood	
Interior Elements	Non- combustible combus		stible	Any wo	ood	Heavy Timber			Heavy Timber	Any wood		

Construction Types IV-HT and IV-A, B, and C

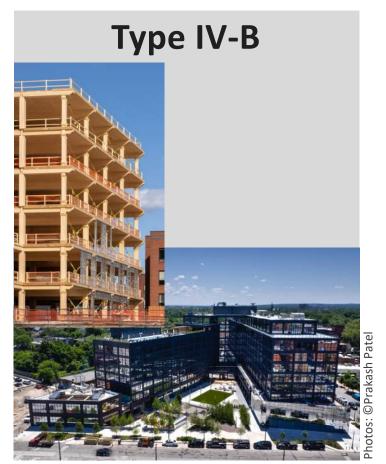
Type IV-HT Construction:

- » Interior Elements
 - » Mass timber, non-combustible, or 1-hour rated light-frame walls
- » Exterior Walls
 - » Non-combustible
 - » CLT covered at exterior face with FRTW or noncombustible sheathing
 - » FRTW walls (light-frame)

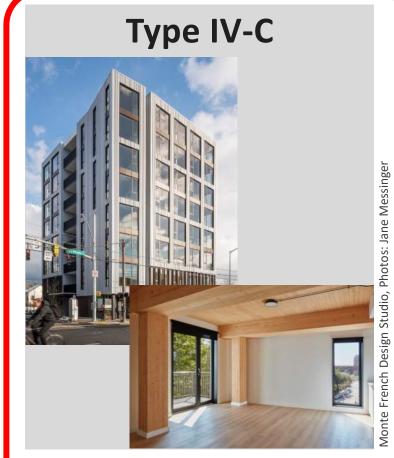
The Soto, San Antonio, TX

Construction Type IV-A, B, and C

- U.S. Building Codes, Tall Wood Ad Hoc Committee (2016-2018)
- » Development of code change proposal for prescriptive code allowance of tall wood buildings.


Mass Timber Fire Testing at ATF Lab (2017)

Construction Types IV-A, B, and C

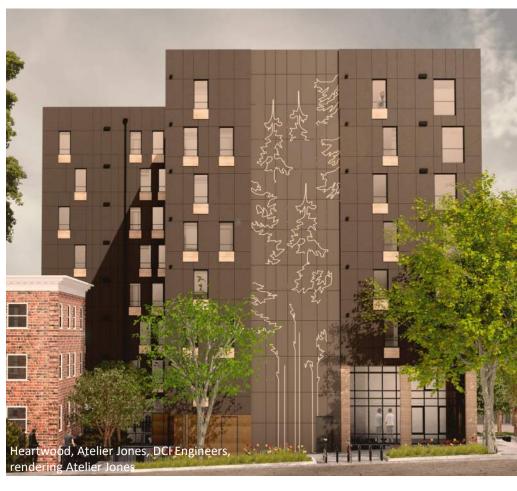

18 STORIES BUILDING HEIGHT PER STORY AREA BUILDING AREA

270′ 324,000 SF 972,000 SF

12 STORIES
BUILDING HEIGHT
PER STORY AREA
BUILDING AREA

180′ 216,000 SF 648,000 SF

9 STORIES BUILDING HEIGHT PER STORY AREA BUILDING AREA


85′ 135,000 SF 405,000 SF

Construction Types IV-HT and IV-A, B, and C

Type IV-A, B, and C Construction:

- » Interior Elements
 - » Mass timber or non-combustible
 - » No light frame
- » Exterior Walls
 - » Non-combustible
 - » CLT covered at exterior face with noncombustible sheathing
 - » No light frame

Heartwood, Seattle, WA

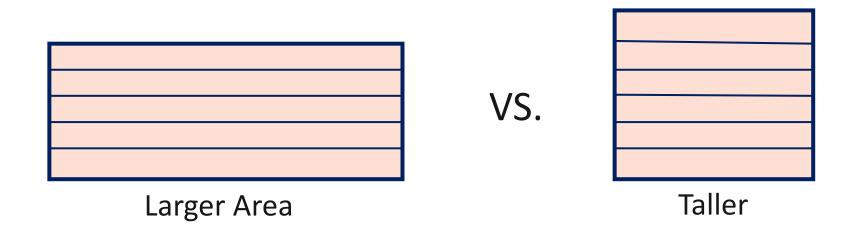
Construction Types IV-HT and IV-A, B, and C

Type IV Minimum Dimensions (IBC/CBC Section 2304.11):

TABLE 2304.11
MINIMUM DIMENSIONS OF HEAVY TIMBER STRUCTURAL MEMBERS

			NOMINAL AWN SIZE		I GLUED- D NET SIZE		RUCTURAL MBER NET SIZE
SUPPORTING	HEAVY TIMBER STRUCTURAL ELEMENTS	Width, inch	Depth, inch	Width, inch	Depth, inch	Width, inch	Depth, inch
Floor loads only or combined floor and roof loads	Columns; Framed sawn or glued- laminated timber arches that spring from the floor line; Framed timber trusses	8	8	63/4	81/4	7	71/2
	Wood beams and girders	6	10	5	$10^{1}/_{2}$	51/4	91/2
	Columns (roof and ceiling loads); Lower half of: wood-frame or glued- laminated arches that spring from the floor line or from grade	6	8	5	81/4	51/4	71/2
Roof loads only	Upper half of: wood-frame or glued- laminated arches that spring from the floor line or from grade	6	6	5	6	51/4	51/2
	Framed timber trusses and other roof framing; ^a Framed or glued-laminated arches that spring from the top of walls or wall abutments	4 ^b	6	3 ^b	6 ⁷ / ₈	3 ¹ / ₂ ^b	51/2

Which Construction Type? - Building Size & Occupancy


» Building size by construction type (sprinklered construction)

	IV-A	IV-B	IV-C	IV-HT	III-A	III-B	V-A	V-B					
Occupancies		Allowable Height (IBC Table 504.3)											
A, B, R	270	180	85	85	85	75	70	60					
			Allowa	able Stories									
A-2, A-3, A-4	18	12	6	4	4	3	3	2					
В	18	12	9	6	6	4	4	3					
R-2	18	12	8	5	5	5	4	3					
		A	llowable	Area per S	tory (IBC 1	able 506.	2)						
A-2, A-3, A-4	135,000	90,000	56,250	45,000	42,000	28,500	34,500	18,000					
В	324,000	216,000	135,000	108,000	85,500	57,000	54,000	27,000					
R-2	184,500	123,000	76,875	61,500	72,000	48,000	36,000	21,000					

CALIFORNIA SPECIFIC: CBC Size Limits

CBC has historically not allowed "double-dipping" for sprinkler increases of building area and height for occupancies A, E, H-4, H-5, I, R-1 and R-2

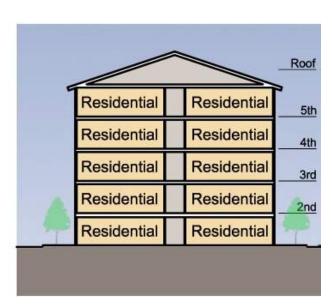
Also, for multi-story buildings that are occupancy group A, E, H, I, L or R, the total building area is equal to the allowable floor area multiplied by the number of stories not to exceed 2. In IBC, this value is not to exceed 3.

CALIFORNIA SPECIFIC: Which Construction Type? – Building Size & Occupancy

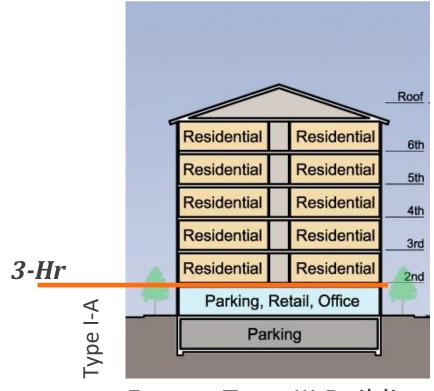
» Building size by construction type (sprinklered construction)

	IV-A	IV-B	IV-C	IV-HT	III-A	III-B	V-A	V-B						
Occupancies		Allowable Height (CBC Table 504.3) – without area increases												
A, B, R	270	180	85	85	85	75	70	60						
		Allowable	Stories (CBC Table 5	505.4) – wi	thout area	increases							
A-2, A-3, A-4	18	12	6	4	4	3	3	2						
В	18	12	9	6	6	4	4	3						
R-2	18	12	8	5	5	5	4	3						
	Allov	wable Area	per Story	(CBC Tabl	e 506.2) –	including h	neight incre	eases						
A-2, A-3, A-4	45,000	30,000	18,750	15,000	14,000	9,500	11,500	6,000						
В	324,000	216,000	135,000	108,000	85,500	57,000	54,000	27,000						
R-2	61,500	41,000	25,675	20,500	24,000	16,000	12,000	7,000						

CALIFORNIA SPECIFIC: Which Construction Type? – Building Size & Occupancy

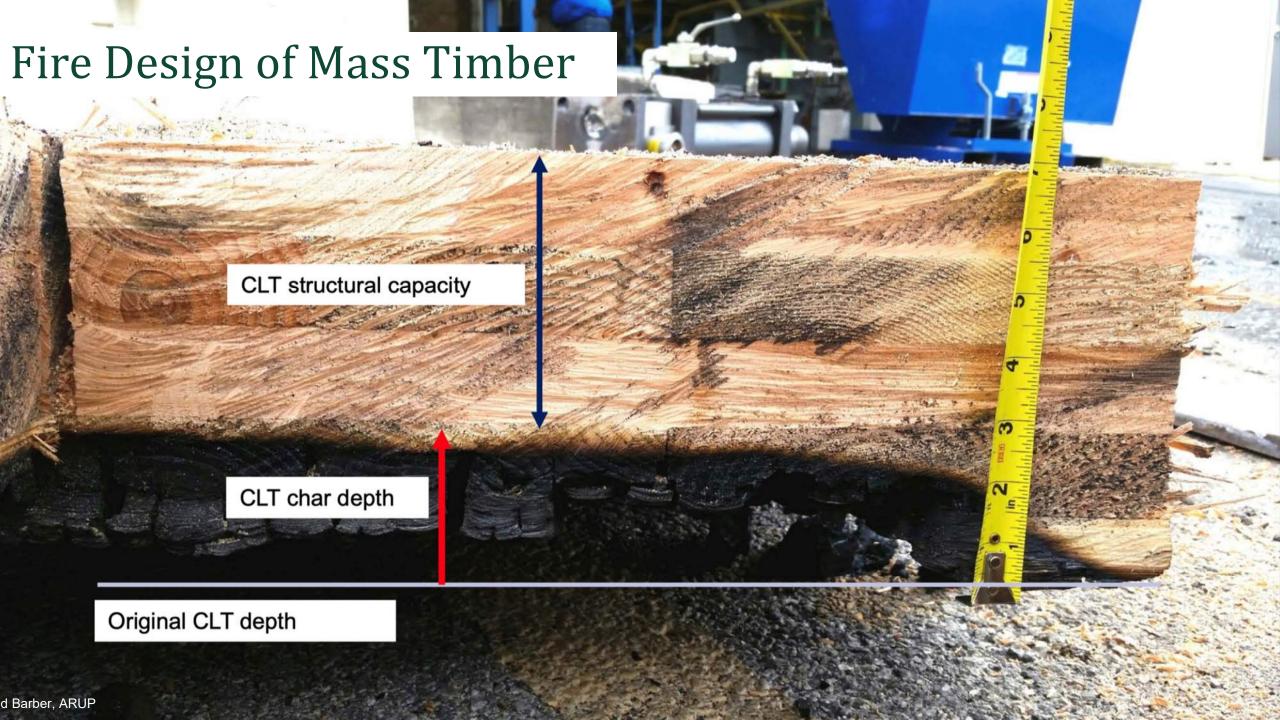

» Building size by construction type (sprinklered construction)

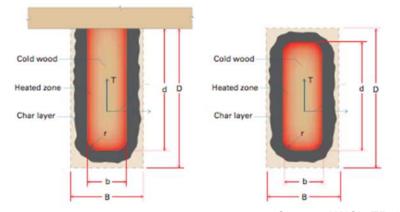
	IV-A	IV-B	IV-C	IV-HT	III-A	III-B	V-A	V-B				
Occupancies	Allowable Height (CBC Table 504.3) – includes area increases											
A, R-2	250	160	65	65	65	55	50*	40				
В	270	180	85	85	85	75	70	60				
	Allowable Stories (CBC Table 505.4) – includes area increases											
A-2, A-3, A-4	17	11	5	3	3	2	2	1				
В	18	12	9	6	6	4	4	3				
R-2	17	11	7	4	4	4	4	2				
	Allo	wable Area	per Stor	y (CBC Tab	le 506.2) –	without h	eight incre	ases				
A-2, A-3, A-4	135,000	90,000	56,250	45,000	42,000	28,500	34,500	18,000				
В	324,000	216,000	135,000	108,000	85,500	57,000	54,000	27,000				
R-2	184,500	123,000	76,875	61,500	72,000	48,000	36,000	21,000				
							* See Table 504.3 fo	or R-2 height increase				


Which Construction Type? - Podium Provisions

Special provisions for podiums (IBC/CBC 510.2)

» Increases allowable stories.... not allowable building height


5 story Type III Building


5 story Type III Building on Top of a Type I-A Podium

Which Construction Type? - Fire Rating

	ntial (R-2) Occupancy NFPA 13 sprinklers	IV-C	III-A	IV-HT	III-B
nts	Area per story (ft²)	76,875	72,000	61,500	48,000
	Max stories	8	5	5	5
He	Max height (ft)	85	85	85	75
	Primary structural frame	2-hr	1-hr	HT	0-hr
ıts	Exterior bearing walls	2-hr	2-hr	2-hr	2-hr
g	Interior bearing walls	2-hr	1-hr	1-hr or HT	0-hr
Rating uireme	Nonbearing exterior walls		Table	705.5	
Rating Requirements	Nonbearing interior walls	0-hr	0-hr	2304.11.2 (1-hr or HT)	0-hr
Re	Floor construction	2-hr	1-hr	HT	0-hr
	Roof construction	1-hr	1-hr	HT	0-hr

» Mass Timber char depths

Source: AWC's TR 10

Sawn lumber, glulam, LVL, LSL, PSL

Table 16.2.1A Char Depth and Effective Char Depth (for $\beta_n = 1.5$ in./hr.)

Required Fire Resistance (hr.)	Char Depth, a _{char} (in.)	Effective Char Depth, a _{eff} (in.)
1-Hour	1.5	1.8
1½-Hour	2.1	2.5
2-Hour	2.6	3.2

» CLT

Table: 16:2:18 Effective Char Depths (for CLT with $\beta_n = 1.5$ in./hr.)

Required Fire Resistance		Effective Char Depths, a _{eff} (in.) lamination thicknesses, h _{lam} (in.)										
(hr.)	5/8	3/4	7/8	1	1-1/4	1-3/8	1-1/2	1-3/4	2			
1-Hour	2.2	2.2	2.1	2.0	2.0	1.9	1.8	1.8	1.8			
1½-Hour	3.4	3.2	3.1	3.0	2.9	2.8	2.8	2.8	2.6			
2-Hour	4.4	4.3	4.1	4.0	3.9	3.8	3.6	3.6	3.6			

Source: AWC's NDS Source: AWC's NDS

» Construction Type dictates fire resistance rating (FRR)

TABLE 601
FIRE-RESISTANCE RATING REQUIREMENTS FOR BUILDING ELEMENTS (HOURS)

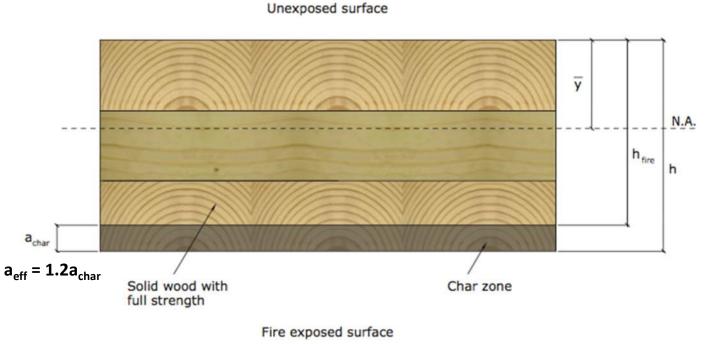
BUILDING ELEMENT		PEI	TYF	PE II	TYP	EIII		Т	YPE IV		TYP	EV
BOILDING ELEMENT	Α	В	Α	В	Α	В	A	В	С	HT	Α	В
Primary structural frame ^f (see Section 202)	3a, b	2ª,b,c	1 ^{b, c}	O ^c	1 ^{b, c}	0	3ª	2ª	2ª	HT	1 ^{b, c}	0
Bearing walls												
Exterior ^{e, f}	3	2	1	0	2	2	3	2	2	2	1	0
Interior	3ª	2 ³	1	0	1	0	3	2	2	1/HT ^g	1	0
Nonbearing walls and partitions Exterior						See 7	Table 70	5.5				
Nonbearing walls and partitions Interior ^d	0	0	0	0	0	0	0	0	0	See Section 2304.11.2	0	0
Floor construction and associated secondary structural members (see Section 202)	2	2	1	0	1	0	2	2	2	HT	1	0
Roof construction and associated secondary structural members (see Section 202)	11/ ₂ b	1 ^{b,c}	1 ^{b,c}	Oc	1 ^{b,c}	0	11/2	1	1	HT	1 ^{b,c}	0

Source: 2021 IBC

Dwelling Unit Separation Requirements

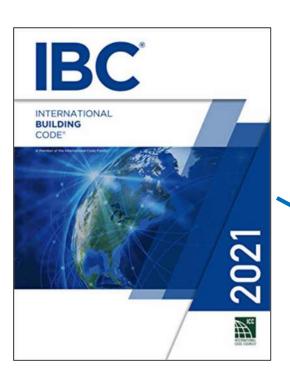
IBC/CBC 708.3 (711 for horizontal assembly reqs):

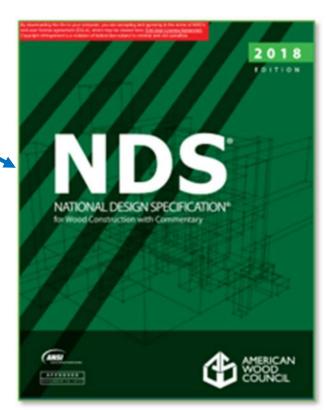
Fire-resistance = 1 hour except = 0.5 hour in IIB, IIIB and VB


> 708.3 Fire-resistance rating. Fire partitions shall have a fire-resistance rating of not less than 1 hour.

Exceptions:

- Corridor walls permitted to have a ¹/₂-hour fireresistance rating by Table 1020.1.
- Dwelling unit and sleeping unit separations in buildings of Types IIB, IIIB and VB construction shall have fire-resistance ratings of not less than 1/2 hour in buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1.


- » Demonstrating FRR of mass timber:
 - » 1. Calculations in accordance with IBC/CBC 722 (NDS Chapter 16)
 - » 2. Tests in accordance with ASTM E119



Calculated FRR of Exposed MT:

» IBC to NDS code compliance path

Code Path for Exposed Wood Fire-Resistance Calculations

IBC 703.2.2

Methods for determining fire resistance

- Prescriptive designs per IBC 721.1
- Calculations in accordance with IBC 722
- · Fire-resistance designs documented in sources
- · Engineering analysis based on a comparison
- Alternate protection methods as allowed by 104.11

IBC 722

Calculated Fire Resistance

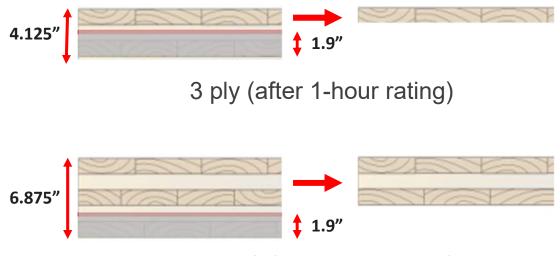
"The calculated fire resistance of exposed wood members and wood decking shall be permitted in accordance with Chapter 16 of ANSI/AWC National Design Specification for Wood Construction (NDS)

NDS Chapter 16

Fire Design of Wood Members

- · Limited to calculating fire resistance up to 2 hours
- Char depth varies based on exposure time (i.e., fire-resistance rating), product type and lamination thickness. Equations and tables are provided.
- TR 10 and NDS commentary are helpful in implementing permitted calculations.

WoodWorks Inventory of Fire Tested Mass Timber Assemblies


Table 1: North American Fire Resistance Tests of Mass Timber Floor / Roof Assemblies

CLT Panel	Manu factu rer	CLT Grade or Major x Minor Grade	Ceiling Protection	Panel Connection in Test	Floor Topping	Load Rating	Fire Resistance Achieved (Hours)	Source	Testing Lab
3-ply CLT (114mm 4.488 in)	Nordic	SPF 1650 Fb 1.5 EMSR x SPF #3	2 layers 1/2" Type X gypsum	Half-Lap	None	Reduced 36% Moment Capacity	i	1 (Test 1)	NRC Fire Laboratory
3-ply CLT (105 mm 4.133 in)	Structurlam	SPF #1/#2 x SPF #1/#2	1 layer 5/8" Type Xgypsum	Half-Lap	None	Reduced 75% Moment Capacity	1	1 (Test 5)	NRC Fire Laboratory
5-ply CLT (175mm6.875*)	Nordic	E	None	Tops ide Spline	2 staggered layers of 1/2* cement boards	Loaded, See Manufacturer	2	2	NRC Fire Laboratory March 2016
5-ply CLT (175mm6.875*)	Nordic	EI	1 layer of 5/8" Type Xgyp sum under Z- channels and furring strips with 3 5/8"	Topside Spline	2 staggered layers of 1/2" cement boards	Lo aded, See Manufacturer	2.	.5	NRC Fire Laboratory Nov 2014
5-ply CLT (175mm6.875*)	Nordic	El	None	Tops ide Spline	3/4 in. proprietary gypcrete over Maxx on acoustical mat	Reduced 50% Moment Capacity	1.5	3	UL
5-ply CLT (175mm6.875*)	Nordic	El	1 layer 5/8" normal gyp sum	Tops ide Spline	3/4 in. proprietary gypcrete over Maxxon acoustical mat or proprietary sound board	Reduced 50% Moment Capacity	2	4	UL
5-ply CLT (175mm6.875*)	Nordic	El	l layer 5/8" Type X Gyp under Resilient Channel under 7 7/8" I-Joists with 3 1/2" Mineral Wool beween Joists	Half-Lap	None	Loaded, See Manufacturer	2	21	Intertek 8/24/2012
5-ply CLT (175mm6.875*)	Structurlam	E1 M5 MSR 2100 x SPF#2	None	Topside Spline	1-1/2* Maxxon Cyp-Grete 2 000 over Maxxon Reinforcing Mesh	Lo aded, See Manufacturer	2.5	6	Intertek, 2/22/2016
5-ply CLT (175mm6.875*)	DR Johnson	VI	None	Half-Lap & Topside Spline	2" gypsumtopping	Loaded, See Manufacturer	2	7	SwRI (May 2016)
5-ply CLT (175mm6.875*)	Nordic	SPF 1950 Fb MSR x SPF #3	None	Half-Lap	None	Reduced 59% Moment Capacity	1.5	1 (Test 3)	NRC Fire Laboratory
5-ply CLT (175mm6.875*)	Structurlam	SPF #1/#2 x SPF #1/#2	1 layer 5/8" Type Xgyp sum	Half-Lap	None	Unreduced 101% Moment Capacity	2	1 (Test 6)	NRC Fire Laboratory
7-ply CLT (245mm 9.65°)	Structurlam	SPF #1/#2 x SPF #1/#2	None	Half-Lap	None	Unreduced 101% Moment Capacity	2.5	1 (Test 7)	NRC Fire Laboratory
5-ply CLT (175mm6.875*)	SmartLam	SL-V4	None	Half-Lap	nominal 1/2* ply wood with 8 d nails.	Loaded, See Manufacturer	2	12 (Test 4)	Western Fire Center 10/26/2016
5-ply CLT (175mm6.875*)	SmartLam	VI	None	Half-Lap	nominal 1/2* ply wood with 8d nails.	Loaded, See Manufacturer	2	12 (Test 5)	Western Fire Center 10/28/2016

- » Fire Resistance Ratings (FRR)
 - » Thinner panels (i.e. 3-ply) can be difficult to achieve 1+ hour FRR
 - » 5-ply CLT panels can usually achieve 1- or 2-hour FRR
 - » Construction Type -> FRR -> Member size -> Grid (order as needed)

Panel	Example Floor Span Ranges
3-ply CLT (4-1/8" thick)	Up to 12 ft
5-ply CLT (6-7/8" thick)	14 to 17 ft
7-ply CLT (9-5/8")	17 to 21 ft
2x4 NLT	Up to 12 ft
2x6 NLT	10 to 17 ft
2x8 NLT	14 to 21 ft
5" MPP	10 to 15 ft

5 ply (after 1-hour rating)

- » 0-Hour FRR: Consider 3-ply panel
 - » Efficient spans: 10-12 feet
 - » Efficient grids:
 - » 20' x 20' (1 purlin)
 - » to 30' x 30' (2 purlins)

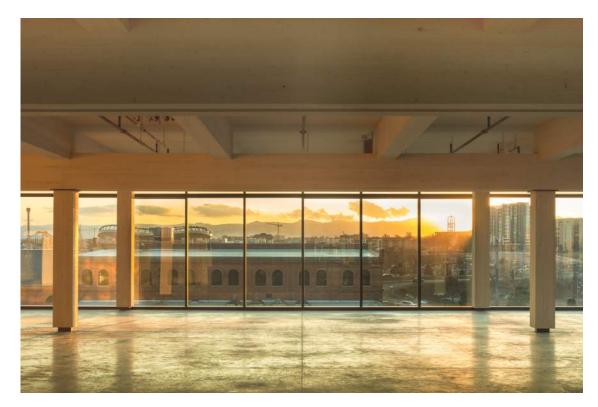
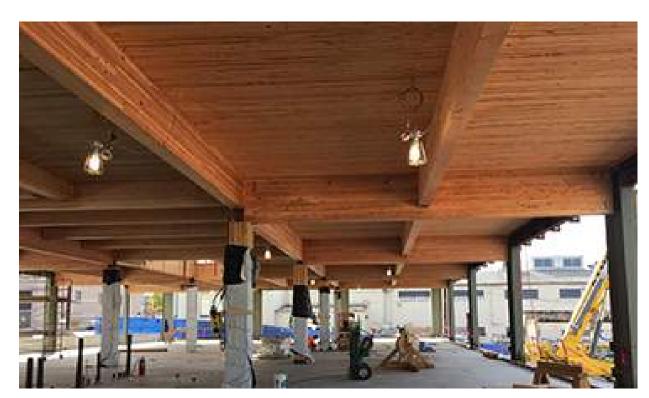

Albina Yard, Portland, OR
Type III-B Construction
20x20 Grid, 1 purlin per bay
3-ply CLT

Image: Lever Architecture

- » 0-Hour FRR: Consider 3-ply panel
 - » Efficient spans: 10-12 feet
 - » Efficient grids:
 - » 20' x 20' (1 purlin)
 - » to 30' x 30' (2 purlins)

Platte Fifteen, Denver, CO
Type III-B Construction
30x30 Grid, 2 purlins per bay
3-ply CLT
Image: JC Buck

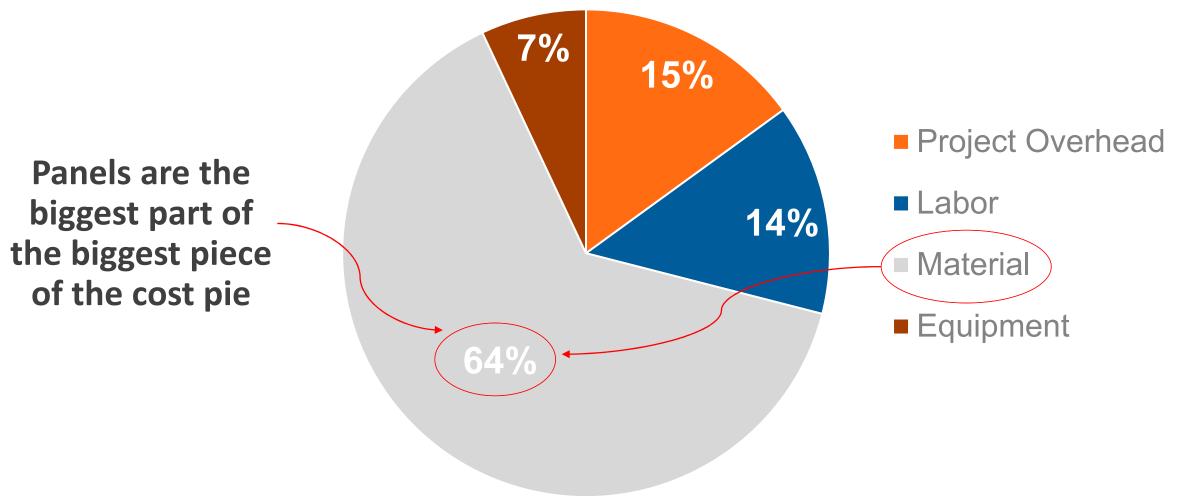
- » 1- or 2-Hour FRR: Likely 5-ply panel
 - » Efficient spans: 14-17 feet
 - » Efficient grids:
 - » 15' x 30' (no purlins)
 - » to 30' x 30' (1 purlin)


First Tech Credit Union, Hillsboro, OR
Type III-A Construction
12x32 Grid, One-Way Beams
5-ply (5.5") CLT
Image: Swinerton

- » 1- or 2-Hour FRR: Likely 5-ply panel
 - » Efficient spans: 14-17 feet
 - » Efficient grids:
 - » 15' x 30' (no purlins)
 - » to 30' x 30' (1 purlin)

Clay Creative, Portland, OR Type III-A Construction 30x30 Grid, 1 purlin per bay 2x6 NLT

Image: Mackenzie


Structural Grid - Panels

» Why so much focus on panel thickness?

Structural Grid - Panels

» Typical Mass Timber Package Costs

Structural Grid - Panels

» Cost and Construction Type – Panel selection

TABLE 601
Fire Resistance Rating Requirements for Building Elements (Hours)

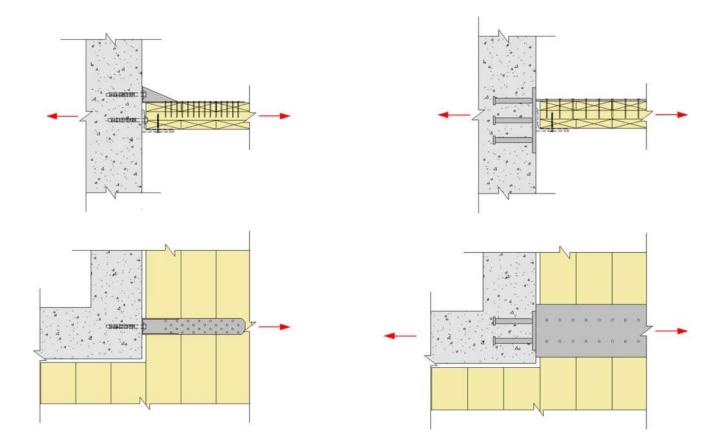
Building Element	I-A	I-B	III-A	III-B	IV-A	IV-B	IV-C	IV-HT	V-A	V-B
Primary Structural Frame	3*	2*	1	0	3*	2	2	HT	1	0
Ext. Bearing Walls	3*	2*	2	2	3*	2	2	2	1	0
Int. Bearing Walls	3*	2*	1	0	3*	2	2	1/HT	1	0
Floor Construction	2	2*	1	0	2	2	2	HT	1	0
Roof Construction	1.5*	1*	1	0	1.5	1	1	HT	1	0
Exposed Mass Timber Elements					None	20-40%	Most	All		
			nseline r & HT		+\$10,			\$12-15/SF 2hr FRR		

Baseline +\$10/SF +\$12-15/SF
Ohr & HT 1hr & maybe 2hr
2hr FRR

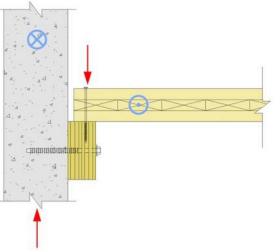
Cost Source: Swinerton

^{*}These values can be reduced based on certain conditions in IBC 403.2.1, which do not apply to Type IV buildings.

LATERAL DESIGN OPTIONS



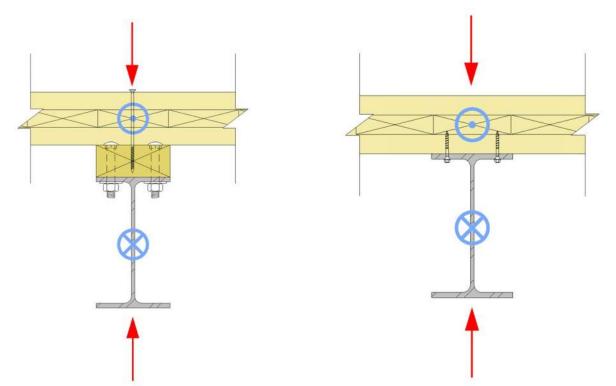
Lateral System Options – Concrete Shear Wall



Lateral System Options – Concrete Shear Wall

- » Connections to concrete core
 - » Tolerances & adjustability
 - » Drag / collector forces




Lateral System Options – Steel Braced Frame

Lateral System Options – Steel Braced Frame

- » Connections to steel frame
 - » Tolerances & adjustability
 - » Consider temperature fluctuations
 - » Rust staining (paint the steel!)

Tolerance Solutions

Solution	Gap Between Mass Timber Beam and Concrete Wall	Grouting Below Sill Plate at Mass Timber Panel to Concrete Wall	Adjustable Column Base at Mass Timber Column to Concrete
Connection example	GAP BETWEEN MASS TIMBER AND CONCRETE	GROUTING BELOW SILL PLATE	ADJUSTABLE COLUMN BASE
	Beam Perpendicular to Wall Connected to Face of Wall	Panel Bears at Top of Wall	Column Bears on Concrete with Adjustable Standoff Base

Lateral System Options – Light-Frame Wood Shear Walls

Lateral System Options – Light-Frame Wood Shear Walls

- » Code compliance
- » Standard of construction practice well know
- » Limited to 65' shear wall height, 85' overall building height (Type III-A)

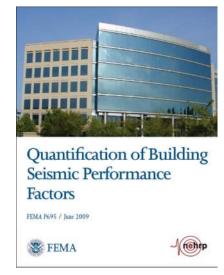
Lateral System Options – Platform Framed CLT Shear Walls

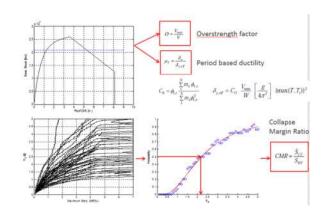
2021 SDPWS Update

Platform Frame CLT Shear Walls

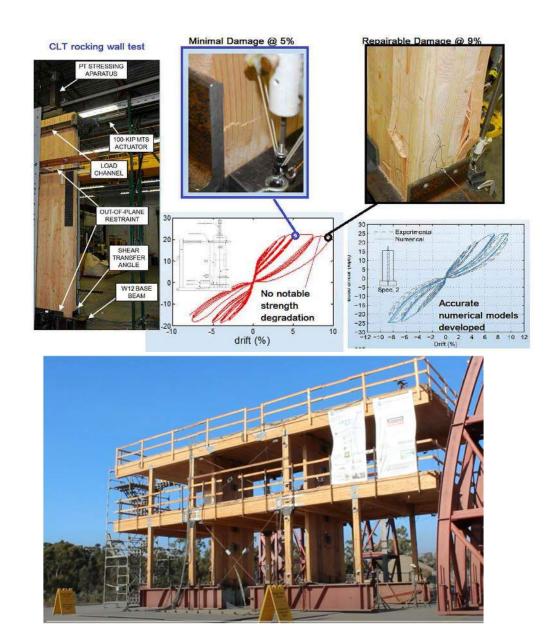
Prescribed nailed metal plate connectors

Panel aspect ratio, h:b_p from 2:1 to 4:1


2022 ASCE 7 Update


Include Platform Frame CLT Shear Walls

R = 3 to 4


65 ft height limit – all Seismic Design Categories

Lateral System Options - CLT Rocking Shear Walls

Source: S. PEI et al. http://nheritallwood.mines.edu/

Lateral System Options – Code Permitted Options

		Lateral Systems Permitted by Construction Type			
	Max Height	Type IV-C	Type IV-HT	Type III (A & B)	Type V (A & B)
Concrete Shear Wall	> 85'				
Steel Braced Frame	> 85'			/	
Light Frame Wood Shear Wall	≤ 65' (SDC D,E,F) 85' (SDC B,C)	×	(FRTW at exterior, ≥1-hr FRR at interior)	(FRTW at exterior)	
Platform CLT Shear Wall	≤ 65' (SDPWS 2021 & ASCE 7-22)	(shafts require noncombustible covering)		(interior walls only)	

Code requirements only address residential occupancies:

For unit to unit or unit to public or service areas:

Min. STC of 50 (45 if field tested):

Walls, Partitions, and Floor/Ceiling Assemblies

Min. IIC of 50 (45 if field tested) for:

Floor/Ceiling Assemblies

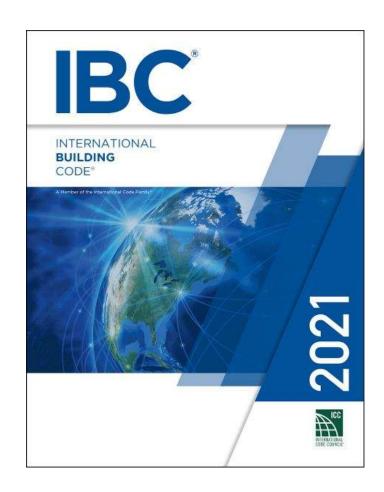
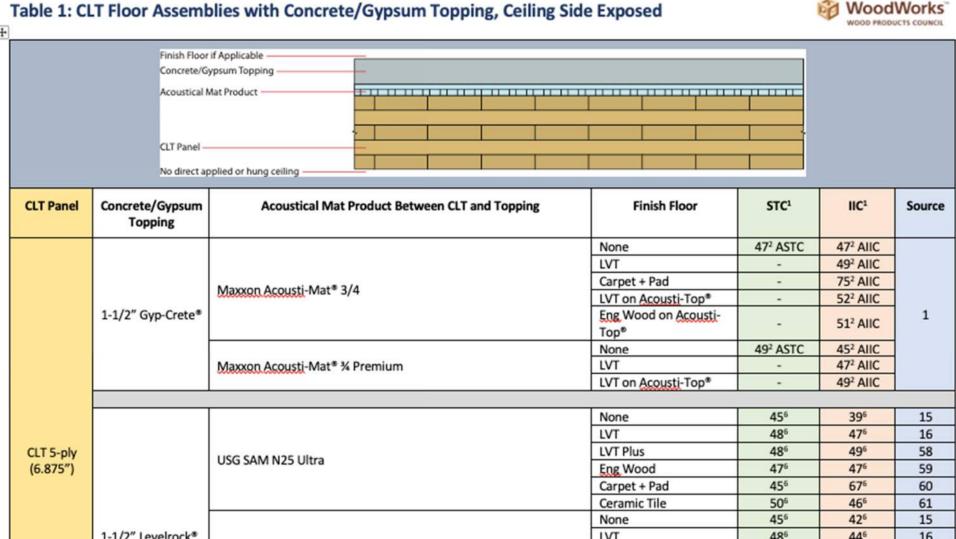
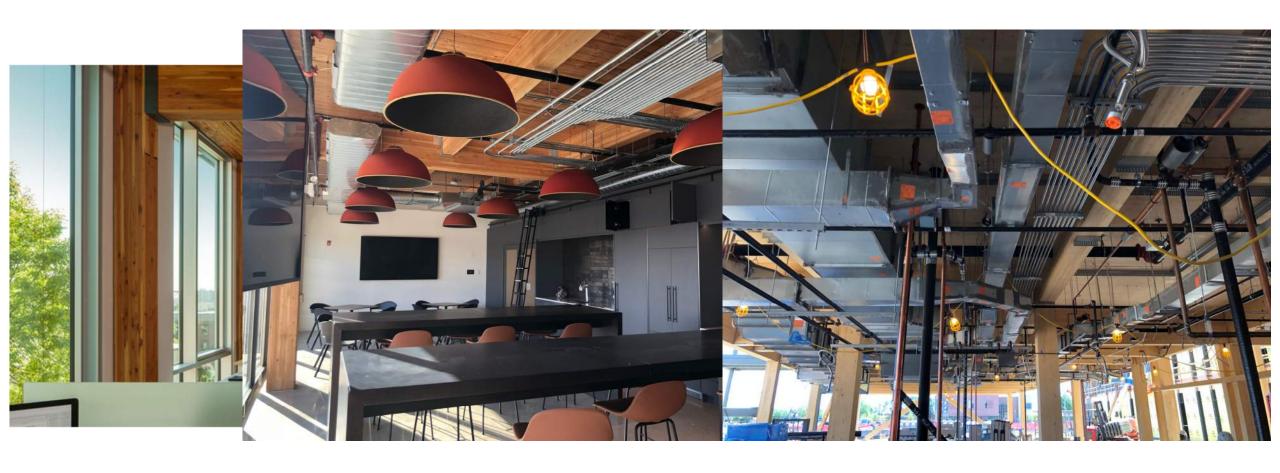


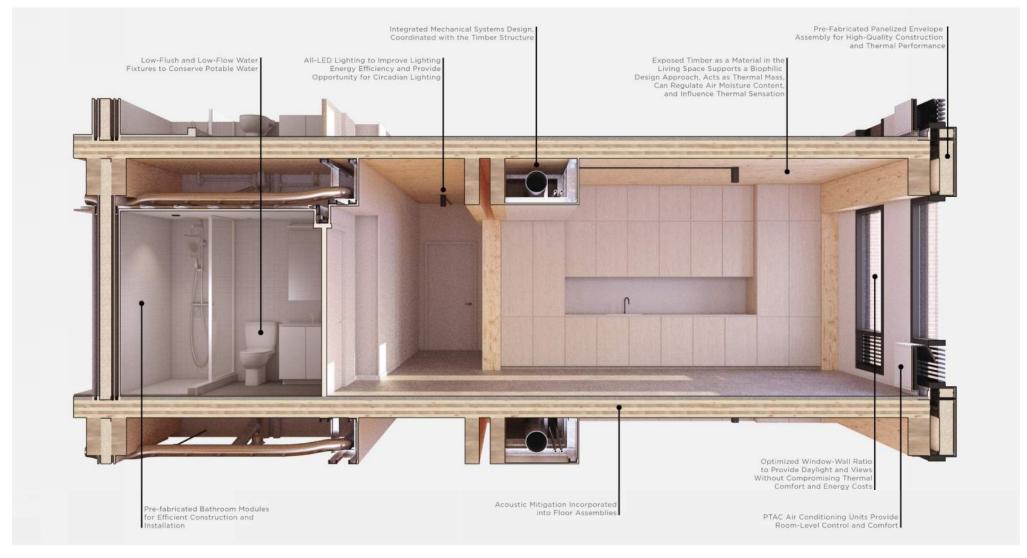
TABLE 1: Examples of Acoustically-Tested Mass Timber Panels


Mass Timber Panel	Thickness	STC Rating	IIC Rating
3-ply CLT wall⁴	3.07"	33	N/A
5-ply CLT wall⁴	6.875"	38	N/A
5-ply CLT floor⁵	5.1875"	39	22
5-ply CLT floor⁴	6.875"	41	25
7-ply CLT floor ⁴	9.65"	44	30
2x4 NLT wall ⁶	3-1/2" bare NLT 4-1/4" with 3/4" plywood	24 bare NLT 29 with 3/4" plywood	N/A
2x6 NLT wall ⁶	5-1/2" bare NLT 6-1/4" with 3/4" plywood	22 bare NLT 31 with 3/4" plywood	N/A
2x6 NLT floor + 1/2" plywood ²	6" with 1/2" plywood	34	33

Common mass timber floor assembly:

- Finish floor (if applicable)
- Underlayment (if finish floor)
- 1.5" to 4" thick concrete/gypcrete topping
- Acoustical mat
- Mass timber floor panels

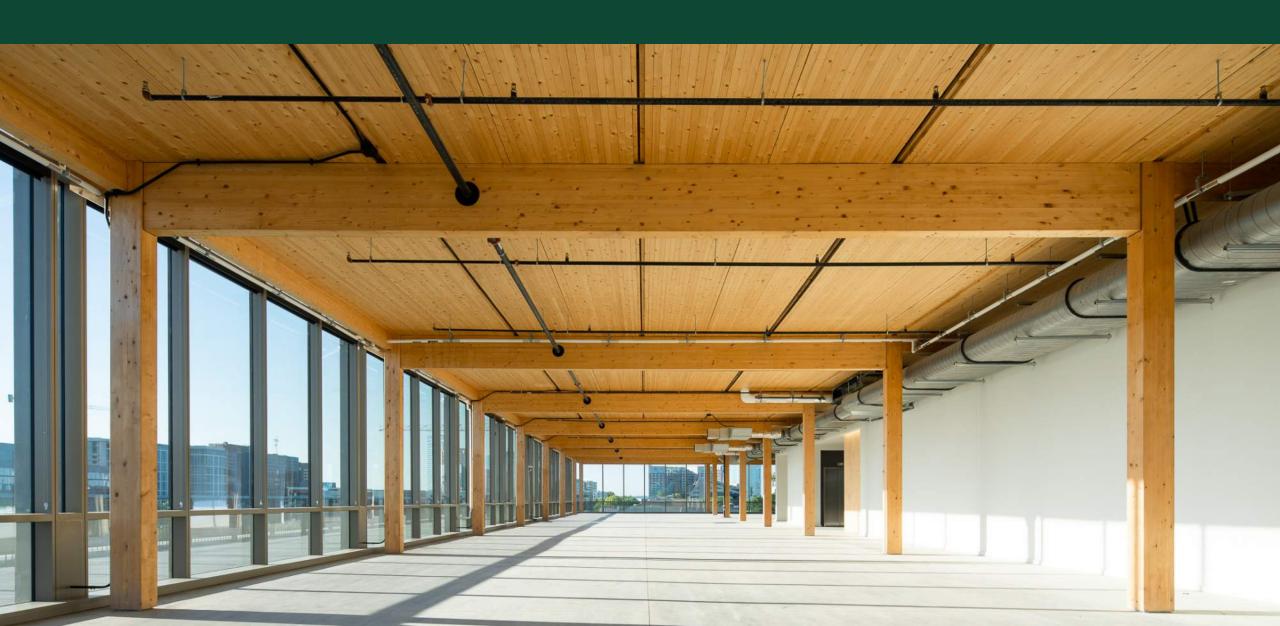

Inventory of Tested Assemblies


MEP Layout & Integration

Set Realistic Owner Expectations About Aesthetics

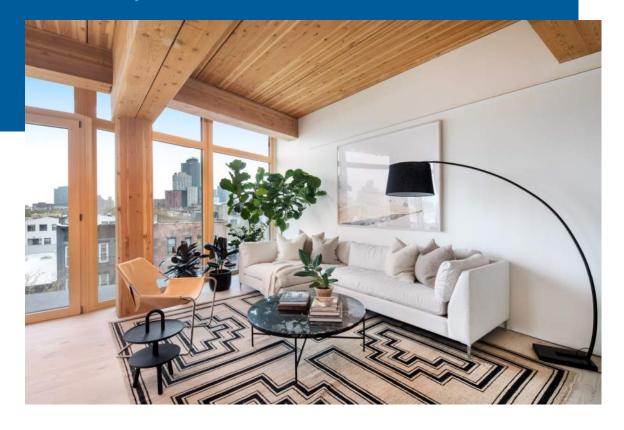
MEP fully exposed with mass timber structure, or limited exposure?

MEP SYSTEMS, ROUTING, INTEGRATION


INTEGRATED SYSTEMS

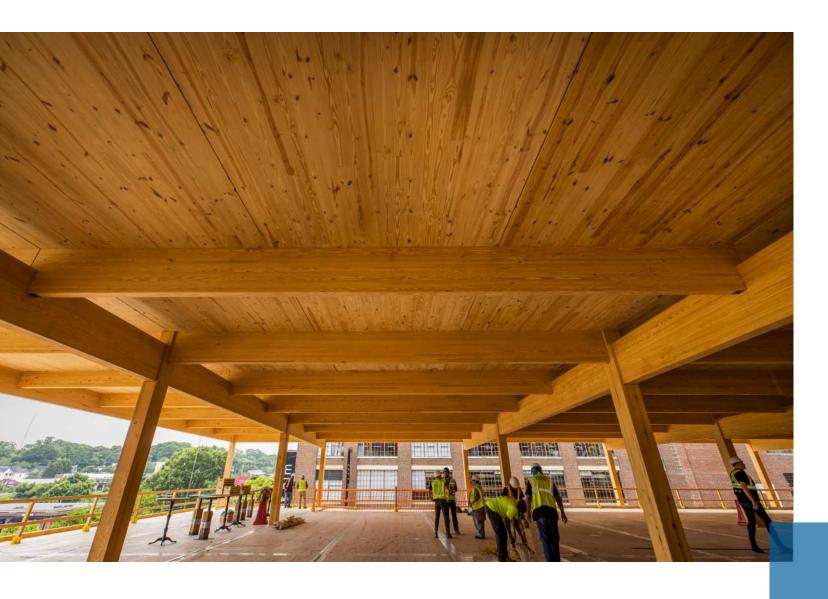
Credit: John Klein, Generate Architecture

The Tallhouse building system prioritizes the integration of design, engineering, and construction. This results in a high performance building finely tuned to meet energy, comfort, acoustic, and design criteria that has been vetted by constructability experts to ensure fast, efficient production.


Utilizing Pre-Fabricated Facade Panels and Bathroom Modules that are manufactured off-site in factories allows for reducing construction time on-site, higher quality control practices, and safer labor conditions for construction workers. Efficient routing of duct-work conserves material, and associated embodied carbon, allowing more exposed timber all while providing the air quality needed for healthy living. Water conserving fixtures reduce potable water use as a precious resource, while maintaining reliable performance.

CASE STUDIES

Timber House

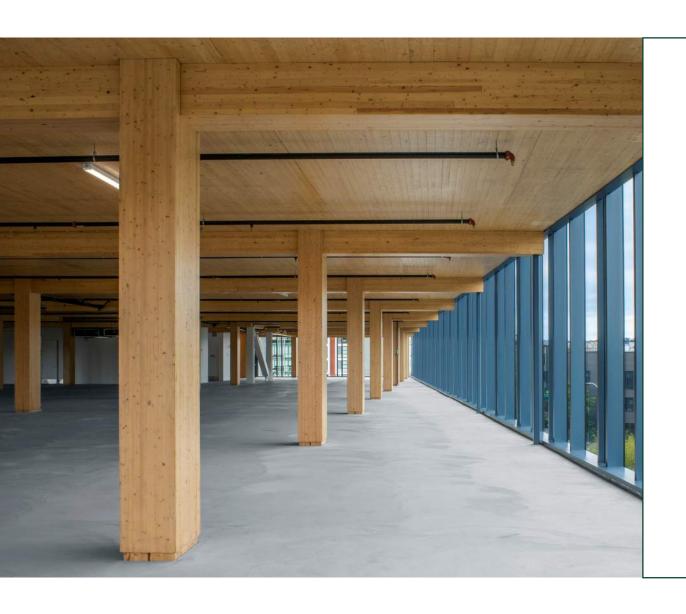

Brooklyn, NY

- » 24,000 sf, 6 stories
- » Type III-A

Photos: Travis Mark

619 Ponce St.

Atlanta, GA


120,000 sf, 4 stories

Type III-B

Office / Retail

Handel Architects
StructureCraft
Photo: StructureCraft

1 De Haro

San Francisco, CA

Perkins&Will DCI Engineers Photo: David Wakely

134,000 sf, 4 stories

Type IV-HT

Office

Completed 2021

MT / CLT

Hotel Magdalena

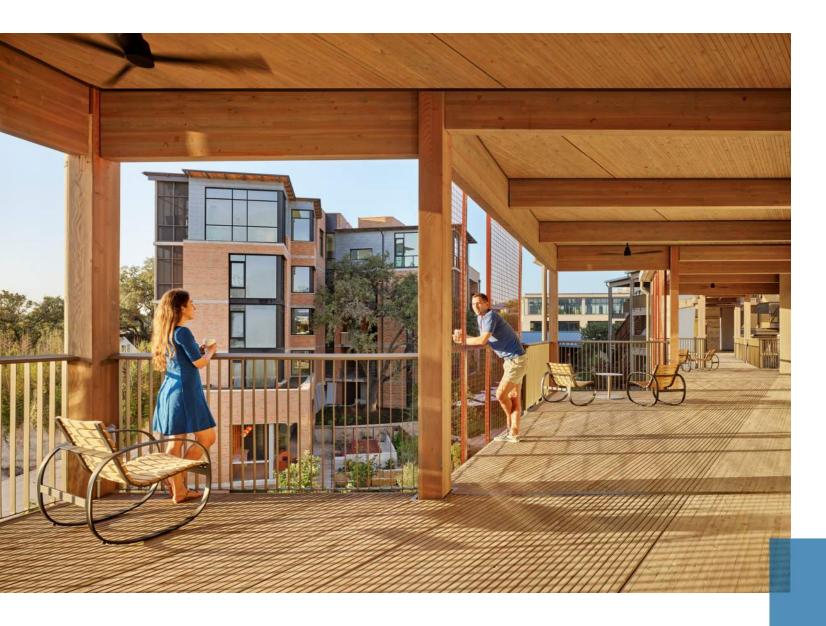
Austin, TX

Building Facts 100,000 sf

3 buildings: 5, 4, and 3 stories

Type V-A for MT structures

Hotel


Completed 2020

Developer Bunkhouse Group

Architect Lake | Flato

Engineer StructureCraft

General Contractor MYCON

Hotel Magdalena

Austin, TX

100,000 sf

3 buildings: 5, 4, and 3 stories

Type V-A for MT structures

Hotel

Completed 2020

Lake | Flato Architecta StructureCraft Photo: Casey Dunn

1030 Music Row

Nashville, TN

Building Facts 110,000, 5 Stories

Type IV-HT

Office

Completed 2022

Developer Panattoni Development

Architect Anecdote

Engineer StructureCraft

General Contractor Turner Construction

Timber Supplier StructureCraft and Hasslacher

Heartwood

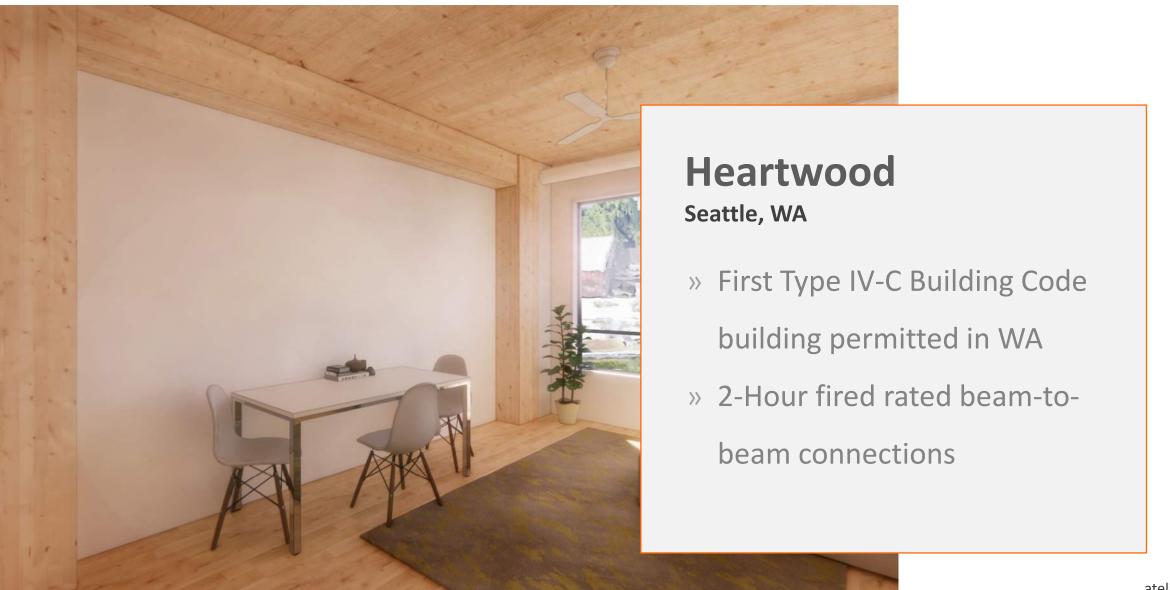
Seattle, WA

Building Facts 66,000 sf, 8 stories

Type IV-C

Workforce Housing

Completed 2023


Developer Skipstone Development / Community

Roots Housing

Architect atelierjones LLC

Engineer DCI Engineering

General Contractor Swinerton Construction

atelierjones LLC DCI Engineers Image: atelierjones LLC

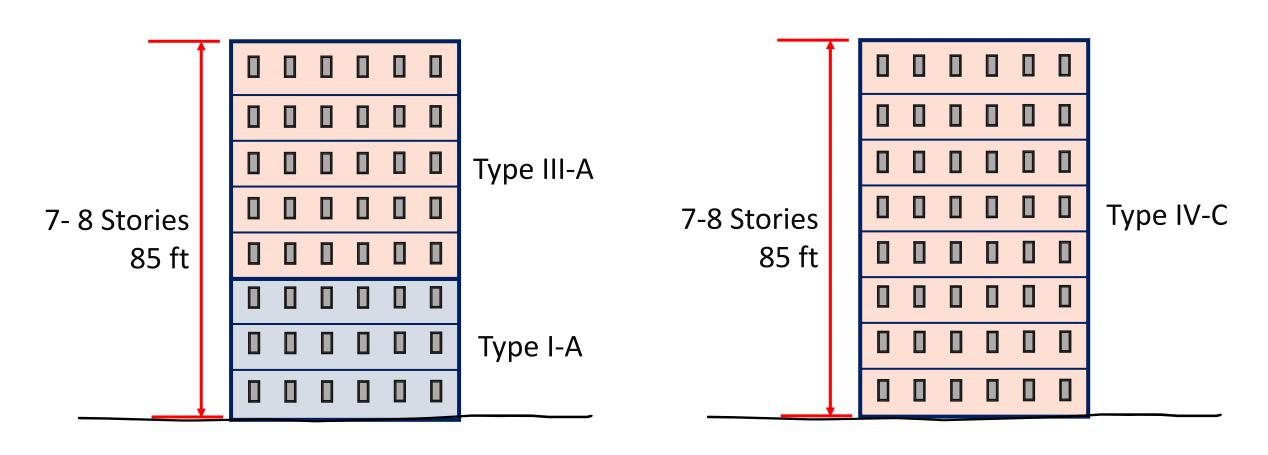
CANYONS, PORTLAND, OR

Credit: Jeremy Bittermann & Kaiser + Path

1510 Webster

Oakland, CA

- > 18 stories mass timber over one-level concrete
- Designed with Tall Wood code provisions in the 2021IBC. Mass Timber with concrete cores and staircases.


Photos: Flor Projects

Which Construction Type?

- » Start with lowest common denominator and work up
- » Don't assume construction type, occupancy separation, etc. required simply because of materials or occupancies

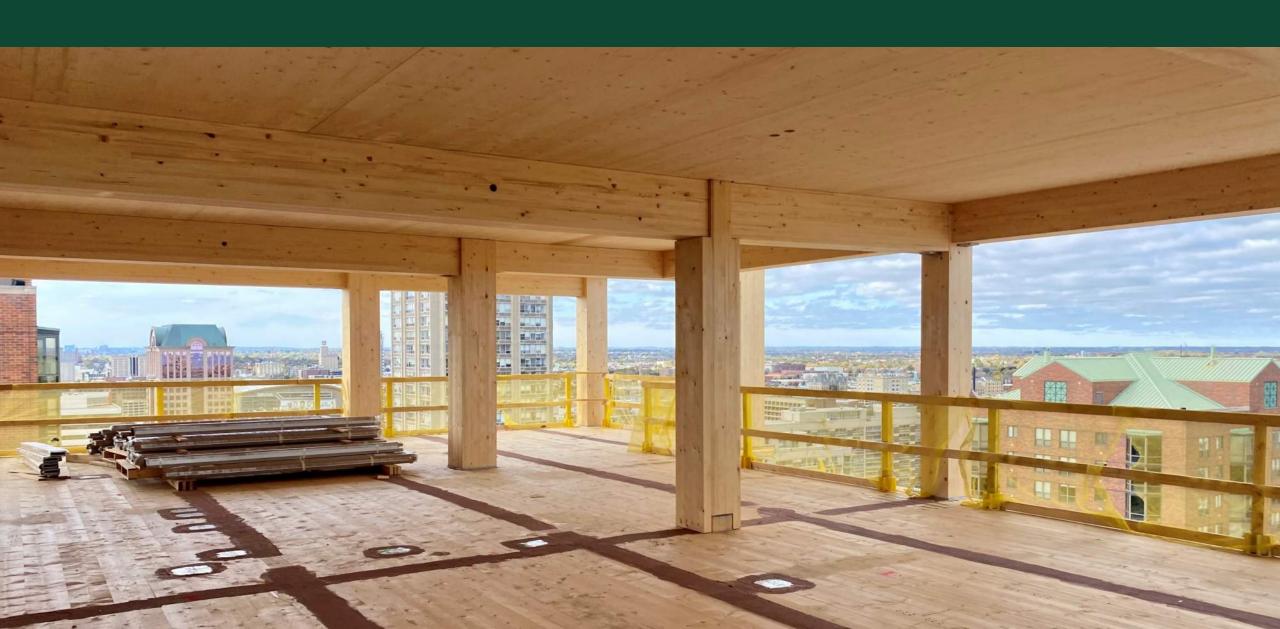
R-2 Occupancy, Type III-A vs Type IV-C

Type III-A

Type IV-C

QUESTIONS?

This concludes The American
Institute of Architects Continuing
Education Systems Course


Chelsea Drenick, SE

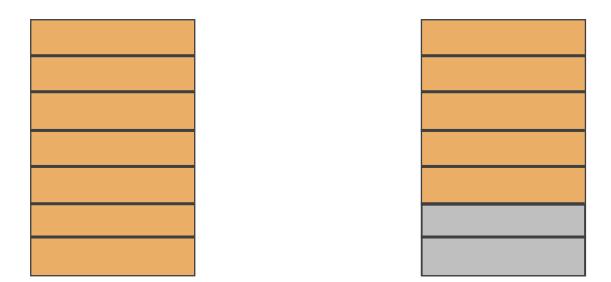
Regional Director | CA-North, NV, UT

(303) 588-1300

chelsea.drenick@woodworks.org

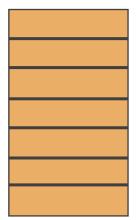
EARLY DESIGN EXAMPLE

7-story, 84 ft tall multi-family building


- Parking & Retail on 1st floor, residential units on floors 2-7
- NFPA 13 sprinklers throughout
- Floor plate = 18,000 SF
- Total Building Area = 126,000 SF

Construction Type Options:

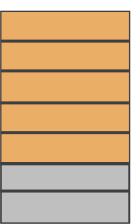
- 7 stories of IV-C (mass timber)
- 5 stories of IIIA over 2 stories of IA podium (mass timber or light-frame)
- 5 stories of IV-HT over 2 stories of IA podium (mass timber)


Timber Construction Type Options:

- 7 stories of IV-C
- 5 stories of IIIA over 2 stories of IA podium
- 5 stories of IV-HT over 2 stories of IA podium

Implications of Type IV-C:

- 2 hr FRR, all exposed floor panels, beams, columns (+min sizes)
- Likely will need at least 5-ply CLT (maybe 7-ply)
- Efficient spans in the 14-17 ft range (5 ply)
- Efficient grids of that or multiples of that (i.e. 30x25, etc)
- No podium required
- CLT exterior walls permitted
- Exposed CLT ceilings aesthetic value
- Materials are mass timber or non-combustible (no light-frame wood permitted!)
- Lateral System: likely steel or concrete


Timber Construction Type Options:

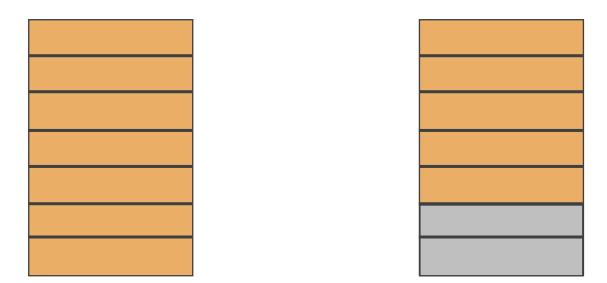
- 7 stories of IV-C
- 5 stories of IIIA over 2 stories of IA podium
- 5 stories of IV-HT over 2 stories of IA podium

Implications of Type IIIA:

- 1 hr FRR floors, interior bearing walls, 2 hr exterior bearing walls
- Light frame wood (joists, trusses, prefab option) OR 5-ply CLT
- 2 story Type IA podium required
- CLT exterior walls not permitted, non-combustible or FRT wood only
- Can use light-frame wood framing for interior walls
- Lateral System: If <65 feet for wood portion, light frame wood shear walls are an option

Timber Construction Type Options:

- 7 stories of IV-C
- 5 stories of IIIA over 2 stories of IA podium
- 5 stories of IV-HT over 2 stories of IA podium


Implications of Type IV-HT:

- 1 hr FRR (dwelling separation) and min. sizes
- Likely 5-ply CLT (no light-frame floor, must meet min. sizes)
- 2 story Type IA podium required
- Essentially the same panel and grid options as IIIA
- CLT exterior walls permitted
- Exposed CLT ceilings aesthetic value
- All walls require 1-hr rating (non-bearing included) (IBC/CBC Table 601 -> 2304.11.2)
- Lateral System: light frame wood permitted up to 65 ft, 1-hour minimum.

Construction Type Options:

- 7 stories of IV-C (mass timber)
- 5 stories of IIIA over 2 stories of IA podium (mass timber or light-frame)
- 5 stories of IV-HT over 2 stories of IA podium (mass timber)

Copyright Materials

This presentation is protected by US and International Copyright laws.
Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

© The Wood Products Council 2024

Funding provided in part by the Softwood Lumber Board

Disclaimer: The information in this presentation, including, without limitation, references to information contained in other publications or made available by other sources (collectively "information") should not be used or relied upon for any application without competent professional examination and verification of its accuracy, suitability, code compliance and applicability by a licensed engineer, architect or other professional. Neither the Wood Products Council nor its employees, consultants, nor any other individuals or entities who contributed to the information make any warranty, representative or guarantee, expressed or implied, that the information is suitable for any general or particular use, that it is compliant with applicable law, codes or ordinances, or that it is free from infringement of any patent(s), nor do they assume any legal liability or responsibility for the use, application of and/or reference to the information. Anyone making use of the information in any manner assumes all liability arising from such use.