

Building Sustainably: Wood's Role in Healthy Forests and Healthy Buildings

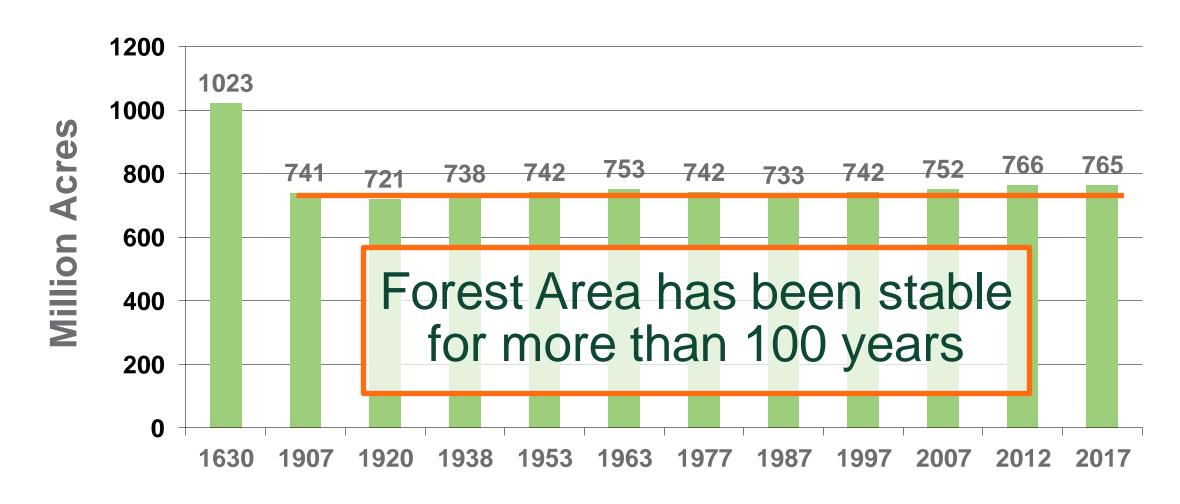
August 17, 2023

Presented by Laura Cullen, PE WoodWorks "The Wood Products Council" is a Registered Provider with The American Institute of Architects Continuing Education Systems (AIA/CES), Provider #G516.

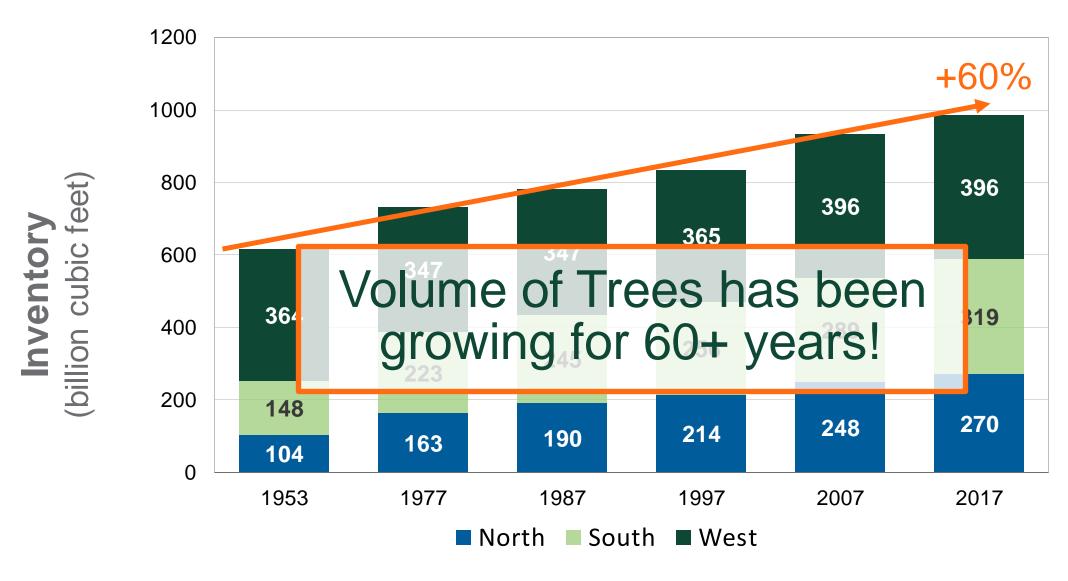
Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request.

This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.



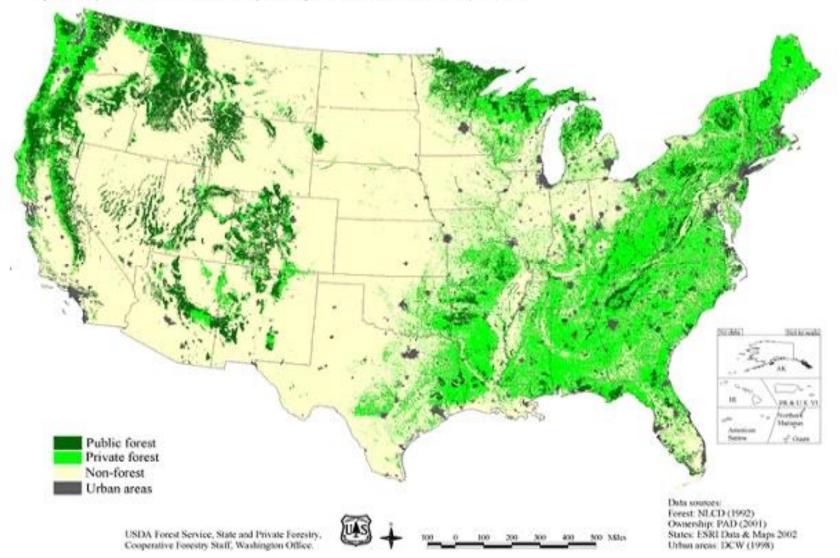
Common Environmental Concerns About Specifying Wood


- 1. Is North America running out of forests?
- 2. Does specifying wood products contribute to deforestation?
- 3. Is wood a renewable resource?

U.S. Forest Land: Forest **Area** in the United States 1630 – 2017

Source: USDA-Forest Service, Forest Resources of the United States, 2017 (2018)

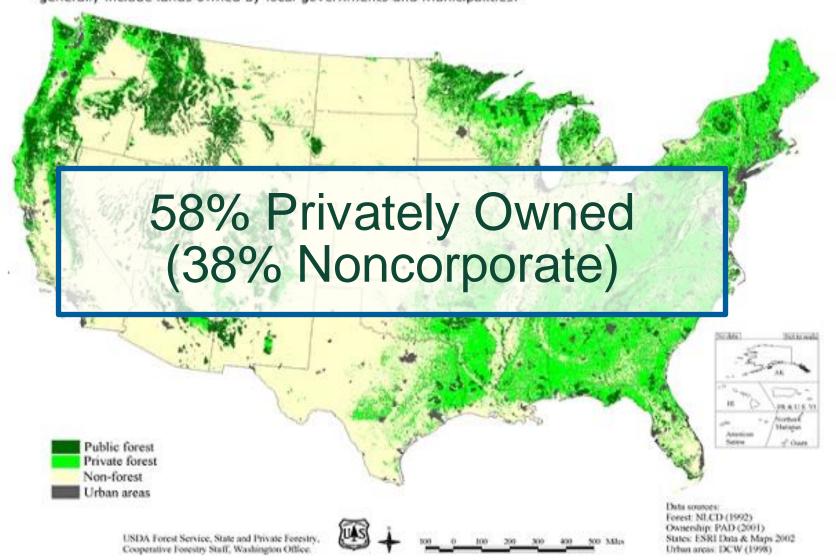
State of our Forests: US Timber Volume on Timberland



Source: USDA-Forest Service, Forest Resources of the United States, 2017 (2018)

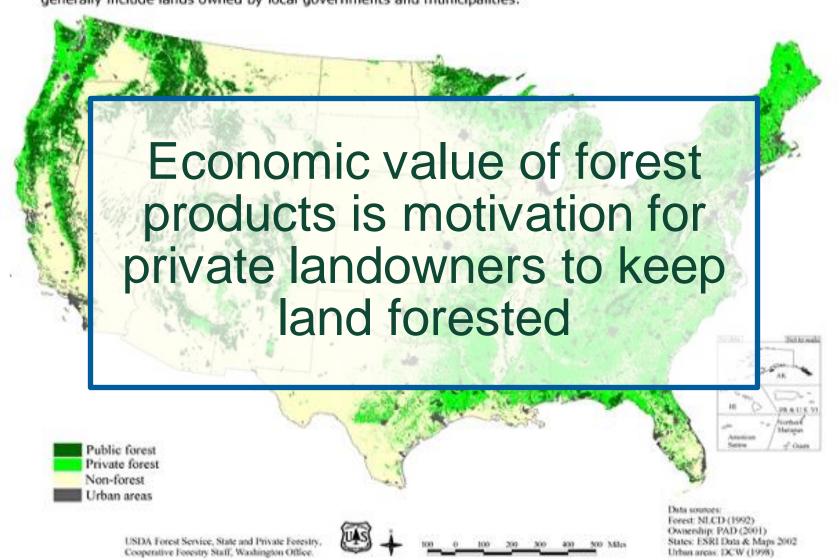
US Forest Lands

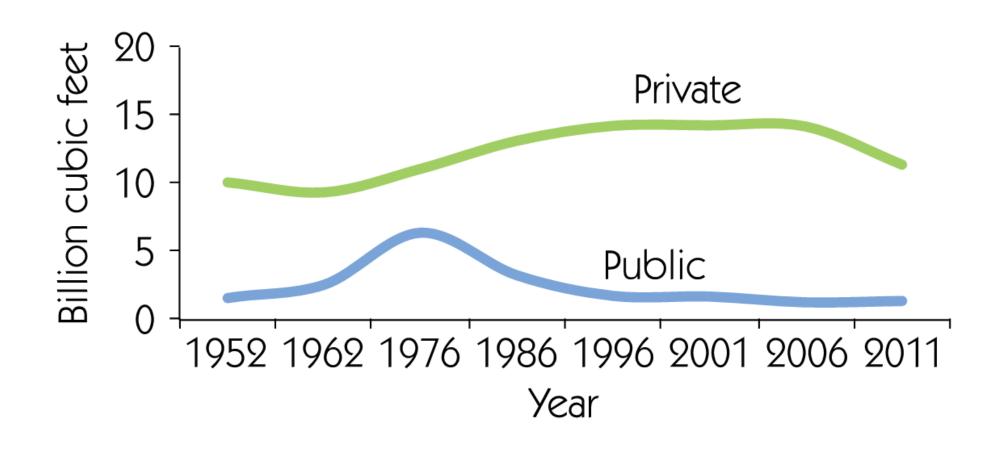
Forest Land Ownership


This map displays the basic vegetation (forest vs. non-forest) of the conterminous United States as well as ownership (private vs. public). The lands displayed as "public" include Federal and State lands but do not generally include lands owned by local governments and municipalities.

US Forest Lands

Forest Land Ownership


This map displays the basic vegetation (forest vs. non-forest) of the conterminous United States as well as ownership (private vs. public). The lands displayed as "public" include Federal and State lands but do not generally include lands owned by local governments and municipalities.


US Forest Lands

Forest Land Ownership

This map displays the basic vegetation (forest vs. non-forest) of the conterminous United States as well as ownership (private vs. public). The lands displayed as "public" include Federal and State lands but do not generally include lands owned by local governments and municipalities.

US Forest Harvest by Owner

Source: USDA-Forest Service, US Forest Resource Facts and Historical Trends FS-1035. (2014).

Regeneration vs. Deforestation

Deforestation is the permanent conversion of forest land to nonforest land uses. Worldwide, agricultural expansion is the main driver of deforestation, but in the U.S., the rate of deforestation has been virtually zero for decades.

Forests are more than Lumber Factories

Photo: Green Diamond Resource Company

- We can balance the long-term and short-term desires and the multiple uses through responsible forest management.
- Best Management Practices (BMPs)
- State, Federal and Provincial monitoring and forest inventory programs
- Forestry Practices and Laws
- Professional Logger Training and Certification
- Sustainable Forest Management Systems

Sustainable Forestry Management Systems

- Wood from well-managed forests is sustainable over the long term.
- Forest certification shows that the wood comes from well-managed forests
- The major North American programs are:

FSC

SFI

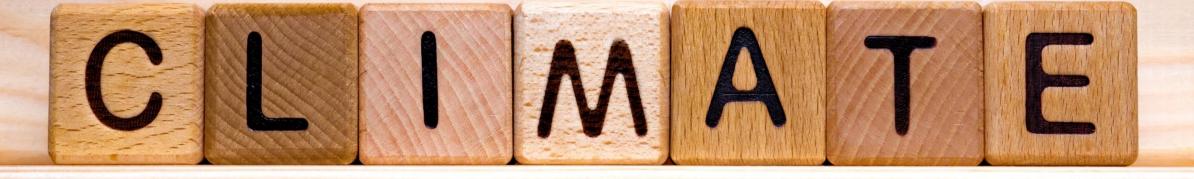
CSA

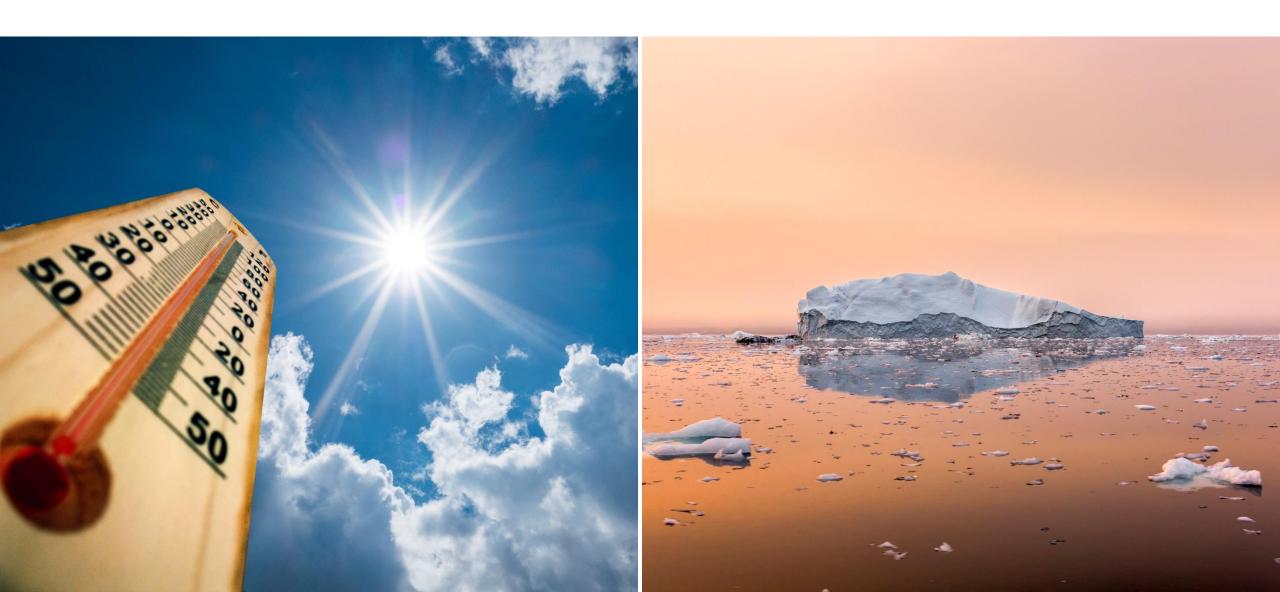
ATFS

Sustainable Forestry Management Systems

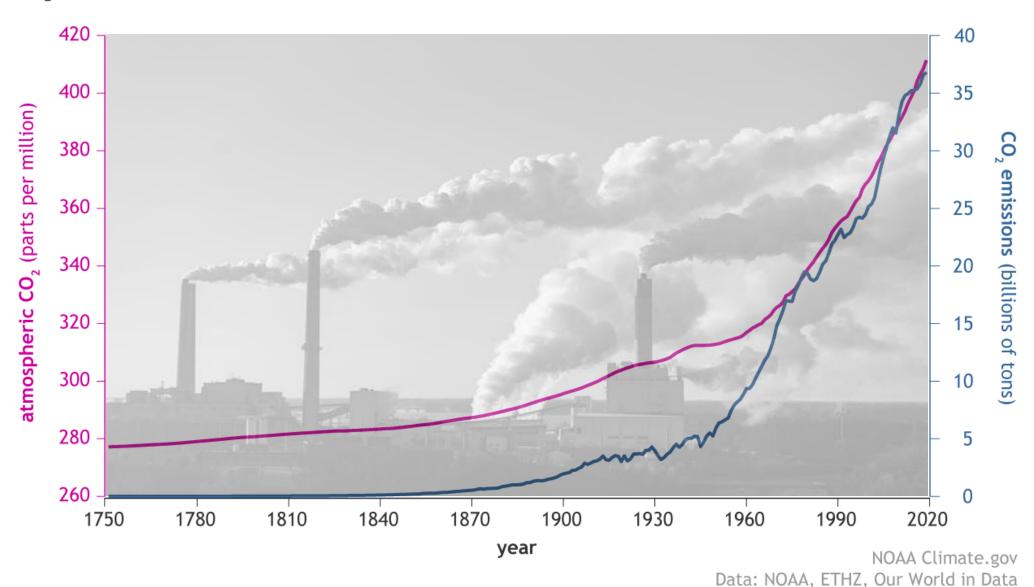
Similarities:

- Biological diversity
- Wildlife habitats / species diversity
- Special sites/values
- Soil & water resources
- Sustainable harvests
- Prevent illegal or unauthorized sources


- Protect from deforestation and conversion
- Aboriginal rights and/or involvement
- Independent audit required
- Audit of forest planning and practices
- Public disclosure required
- Chain of custody and label option



Climate Change Background

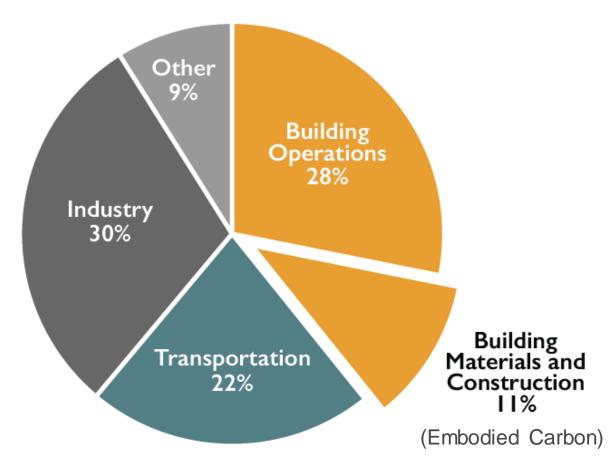


Rising Temperatures and Melting Glaciers

Carbon & Greenhouse Gas Emissions

CO₂ in the atmosphere and annual emissions (1750-2019)

Global Population Increase


2050 = 9.9 billion people

2020 = 7.8 billion people

Source: www.prb.org

New Buildings & Greenhouse Gases

Global CO₂ Emissions by Sector

Buildings generate nearly 40% of annual global greenhouse gas emissions (building operations + embodied energy)

Embodied carbon: 11%

Concrete, iron, steel ~9%

Source: © 2018 2030, Inc. / Architecture 2030. All Rights Reserved. Data Sources: UN Environment Global Status Report 2017; EIA International Energy Outlook 2017

Image: Architecture 2030

Carbon Terms

- **Embodied Carbon**: Carbon emissions associated with the entire life cycle of the building including harvesting, mining, manufacturing, transporting, installing, maintaining, decommissioning, and disposing/reuse of a material or product
- Operational Carbon: Carbon emissions associated with operating a building including power, heat, and cooling

Image: Boston Society for Architecture

Embodied Carbon

- Primarily related to manufacturing of materials
- More significant than many people realize, has been historically overlooked
- Big upfront GHG "cost" which makes it a good near-term target for climate change mitigation

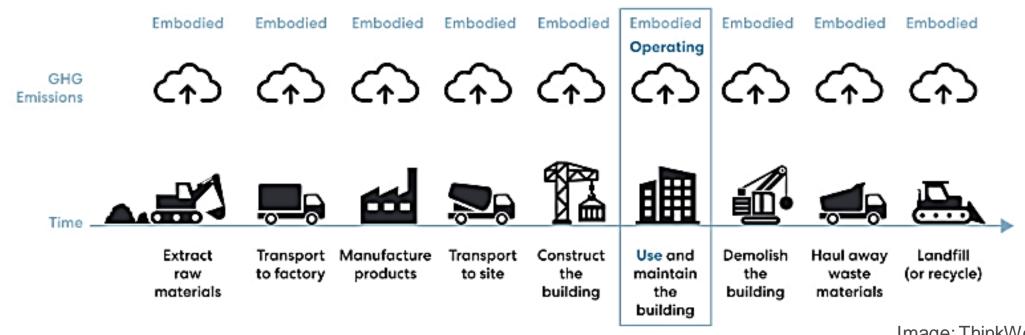


Image: ThinkWood

Embodied Energy vs Embodied Carbon

Embodied Energy:

Amount of energy used to:

- Extract, harvest, mine resources
- Process and assemble materials
- Transport products
- Construct building
- Maintain and repair building
- Deconstruct building and dispose or recycle materials

Embodied Carbon:

Carbon emissions resulting from:

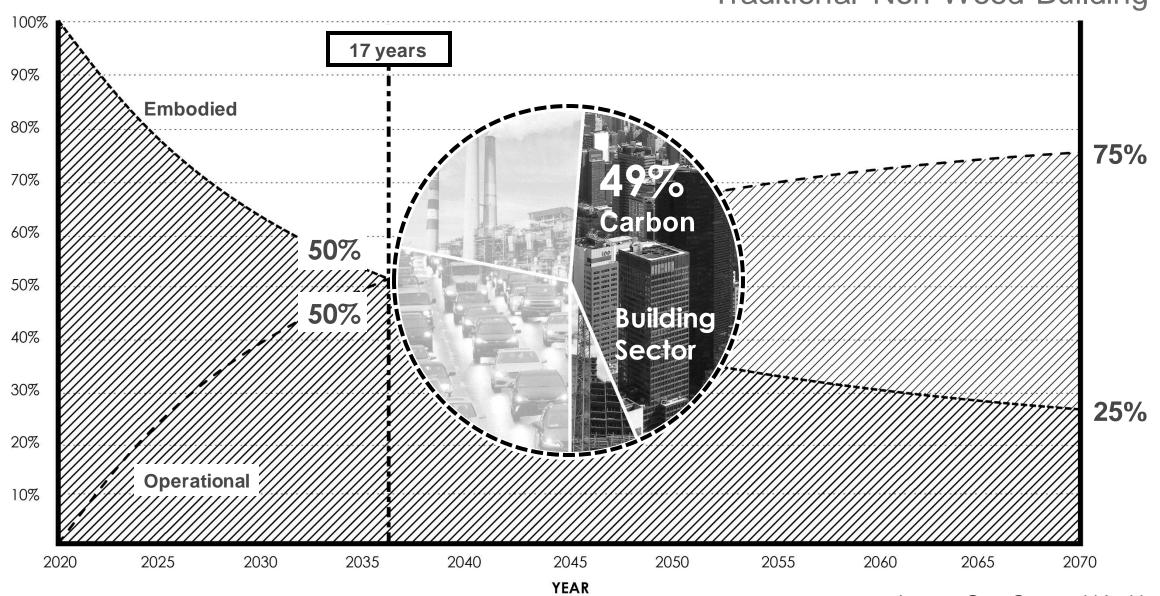
- Combustion of fuels to generate embodied energy
- Chemical reactions

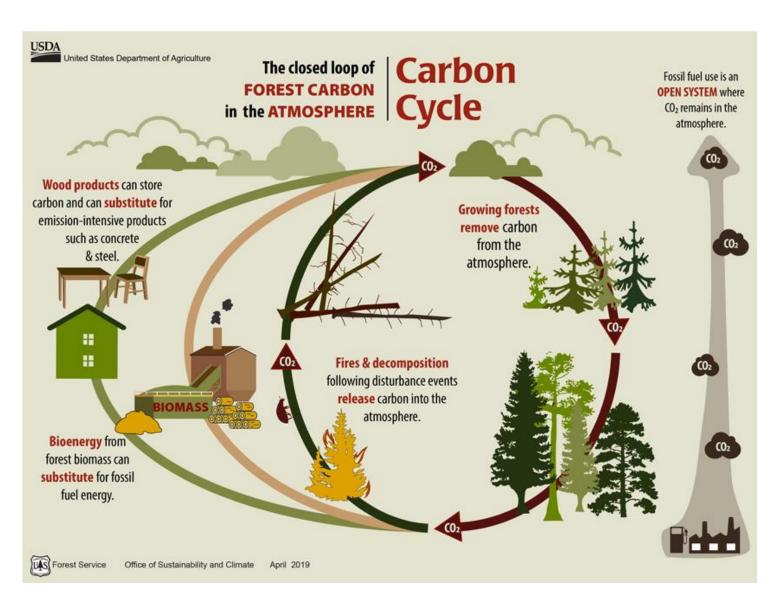
Carbon emissions may be offset by:

- Carbon sequestration during growth or manufacturing*
- * Sequestered carbon may be included in embodied carbon calculation or considered separately.

Embodied vs. Operational Energy

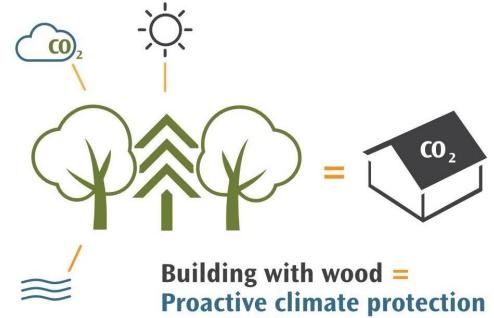
Traditional Non-Wood Building





Image: Gray Organschi Architecture

How Does Wood Fit in?

Carbon Benefits of Wood

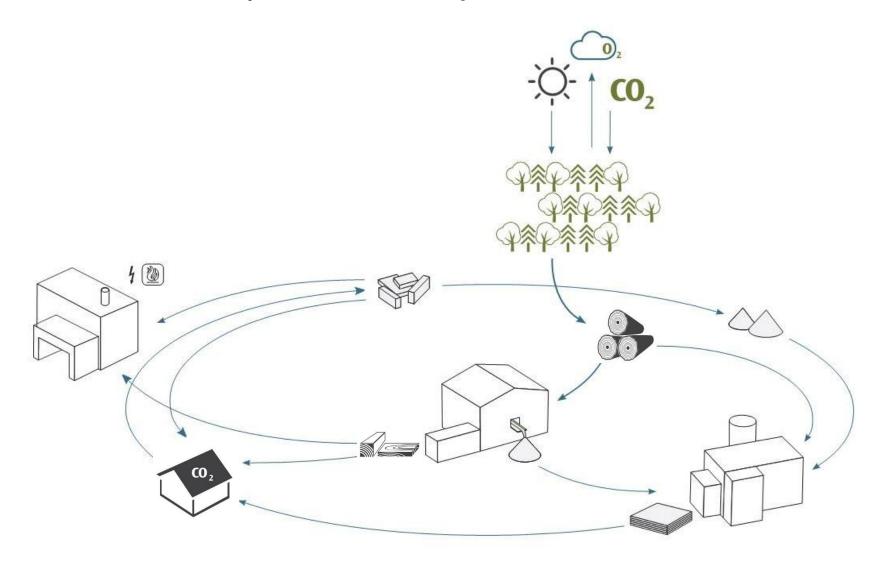

- Less energy intensive to manufacture than steel or concrete
- Less fossil fuel consumed during manufacture
- Reduce process emissions
- Carbon storage in forests and promote forest health
- Extended carbon storage in products

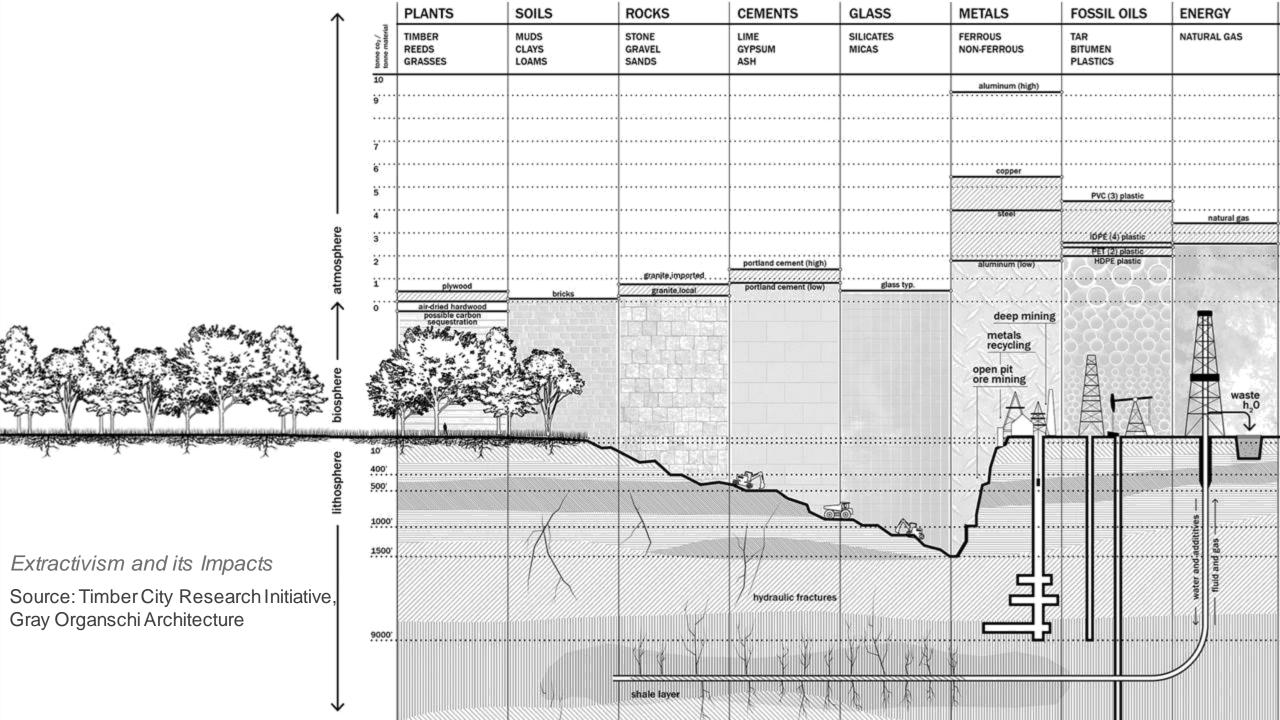
More Carbon Terms

Carbon Sequestration: The process by which CO₂ is removed from the atmosphere and deposited in solid or liquid form in oceans, living organisms, or land.

Carbon Storage: Carbon is stored as a solid in the form of plant material: roots, trunks, branches, stems, and leaves. It can continue to be stored in wood building materials.

Carbon Storage Wood ≈ 50% Carbon (dry weight)




Long-Term Positive Effects

		Energy effect	Carbon effect	Value-added effect
₩	Forest	Stores solar energy	Removes C from Atmosphere	Increases forest value; supplies wood
	Timber	Often local, short transit	C in raw material	Strengthens rural economies
	Lumber	Low embodied energy	Stores C; replaces materials w/ greater C impact	Supports energy independence; strengthens US Forestry
CO ₂	Wood structure	Low thermal conductivity & bridging	Stores C; reduces insulation / GHG emissions	Cost effective & provides biophilic environment
	Modernization, refurbishment, urban densification	Lightweight & easy to transport	More C storage	Increasing use of prefab; saves resources & retains value
	Demo, recycling, energy recovery	Low energy recycling or emissions neutral energy recovery	Extended C fixation due to recycling	Innovative solutions for circular economy

Carbon Cycle

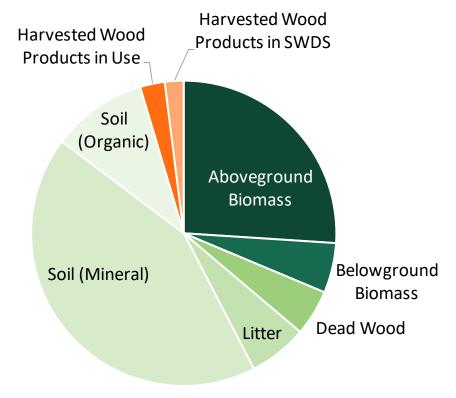
Renewable Resource | Carbon Sequestration

Specifics of Carbon Storage

Where is Carbon Stored?

Harvested Wood Pools

- Harvested Wood Products
- Solid Waste Disposal Sites


Forest Pools

- Aboveground Biomass
- Belowground Biomass
- Dead Wood
- Litter or Forest Floor
- Soil Organic Carbon

Carbon Storage in Harvested Wood Products

As of 2020, the carbon stock for Harvested Wood Products in Use in the conterminous 48 states and Alaska is estimated at 1,532 Million Metric Tons.

Carbon Stocks in Forest Land and Harvest Wood Pools, 2020

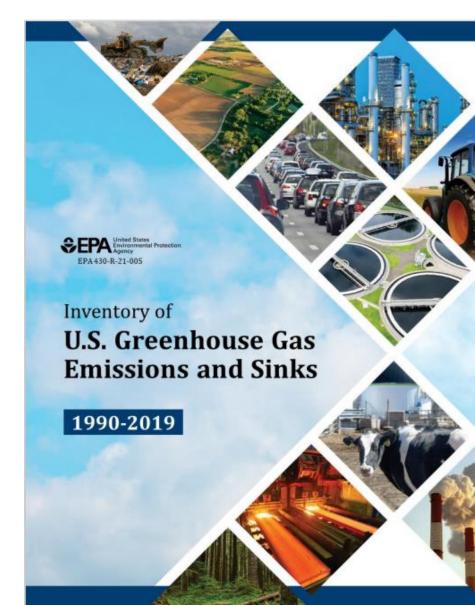


Table 6-10: Forest Area (1,000 ha) and C Stocks in *Forest Land Remaining Forest Land* and Harvested Wood Pools (MMT C)

	1990	2005	2016	2017	2018	2019	2020
Forest Area (1,000 ha)	279,661	279,491	279,533	279,511	279,483	279,386	279,289
Carbon Pools (MMT C)							
Forest Ecosystem	50,913	53,489	55,284	55,456	55,610	55,774	55,933
Aboveground Biomass	11,810	13,584	14,820	14,935	15,043	15,152	15,260
Belowground Biomass	2,319	2,723	3,004	3,030	3,054	3,079	3,103
Dead Wood	2,049	2,446	2,743	2,771	2,798	2,825	2,852
Litter	3,656	3,655	3,636	3,637	3,637	3,638	3,638
Soil (Mineral)	25,145	25,145	25,147	25,149	25,145	25,146	25,147
Soil (Organic)	5,934	5,936	5,935	5,934	5,934	5,933	5,933
Harvested Wood	1,895	2,353	2,591	2,616	2,642	2,669	2,699
Products in Use	1,249	1,447	1,497	1,505	1,513	1,521	1,532
SWDS	646	906	1,094	1,112	1,129	1,148	1,167
Total C Stock	52,808	55,842	57,875	58,072	58,252	58,443	58,632

Harvested Wood Products

- Solid sawn wood products have the lowest level of embodied energy.
- Wood products requiring more processing steps (for example, plywood, engineered wood products, flake-based products) require more energy to produce but still require significantly less energy than their non-wood counterparts.

Image: Weyerhaeuser

Image: LP Building Solutions

Source: USFPL Wood Handbook; Wood as a Sustainable Building Material

Image: Structurecraft

Image: Georgia-Pacific

Tools to Evaluate Carbon Impact

Whole Building Life Cycle Assessment (WBLCA)

"Evaluation of the inputs, outputs, and potential environmental impacts... throughout its life cycle"

- WBLCA covers all stages in the life cycle of a building and its components
- Several tools available; various methodologies
- https://www.thinkwood.com/education/calculatewood-carbon-footprint
- https://www.thinkwood.com/blog/understandingthe-role-of-embodied-carbon-in-climate-smartbuildings

Resources from WoodWorks

Whole Building Life Cycle Assessment (WBLCA)

» Introduction to Whole Building Life Cycle Assessment: The Basics

Biogenic Carbon and Carbon Storage

- » When to Include Biogenic Carbon in an LCA
- » How to Include Biogenic Carbon in an LCA
- » Biogenic Carbon Accounting in WBLCA Tools
- » Long-Term Biogenic Carbon Storage
- » Calculating the Carbon Stored in Wood Products

Environmental Product Declarations (EPDs)

- » Current EPDs for Wood Products
- » How to Use Environmental Product Declarations

WoodWorks Carbon Calculator

- Available at woodworks.org
- Estimates total wood mass in a building
- Provides estimated carbon impacts:
 - Amount of carbon stored in wood
 - Amount of greenhouse gas emissions avoided by choosing wood over a non-wood material

Volume of wood used:

208,320 cubic feet

U.S. and Canadian forests grow this much wood in:

17 minutes

Carbon stored in the wood:

4,466 metric tons of CO₂

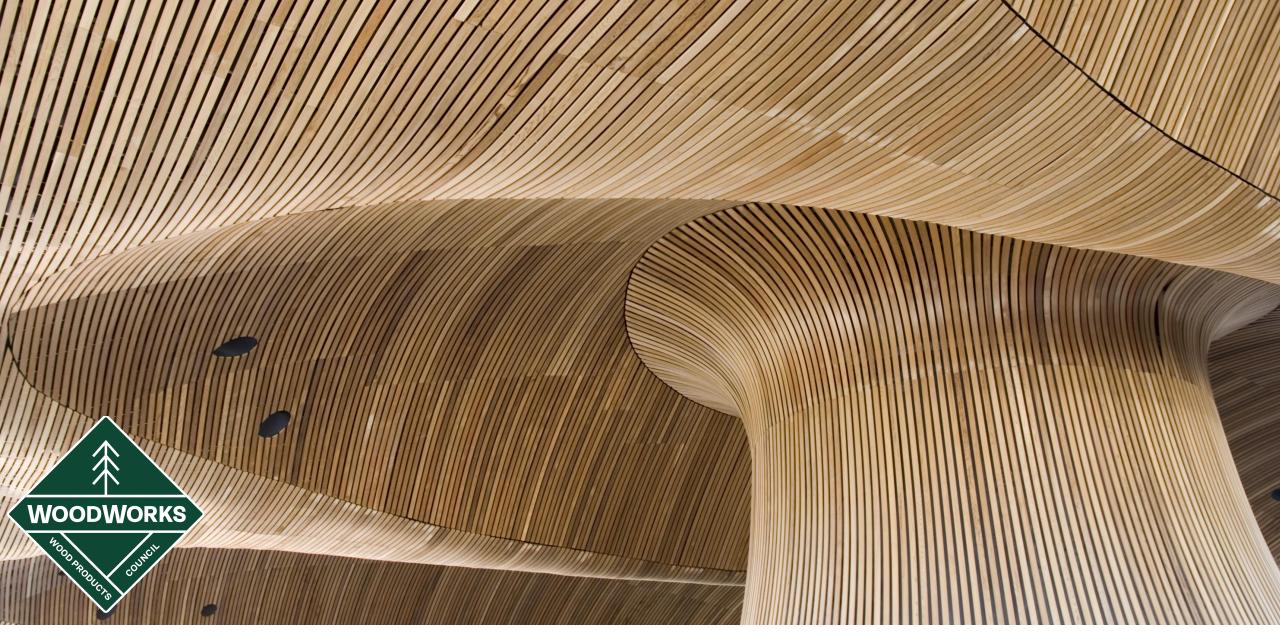
Avoided greenhouse gas emissions:

9.492 metric tons of CO2

TOTAL POTENTIAL CARBON BENEFIT:

13,958 metric tons of CO₂

EQUIVALENT TO:


US EPA

2,666 cars off the road for a year

Energy to operate a home for 1,186 years

Natural Wood Supports Healthy Buildings

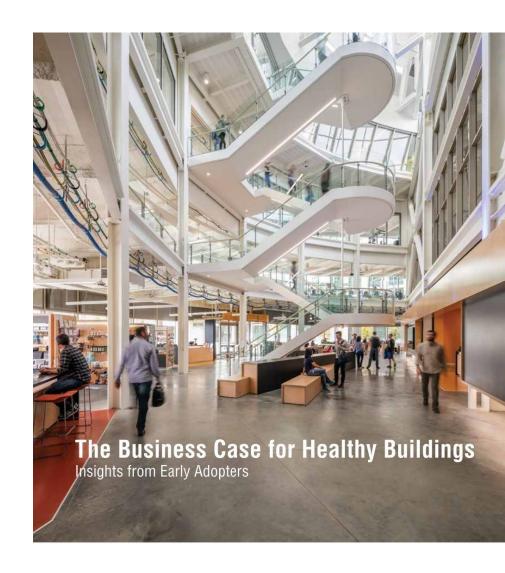
August 11, 2023 | Laura Cullen, PE | Regional Director, WoodWorks

Architectural Connection to Forests

The Business Case for Healthy Buildings ULI Report

Global Wellness Real Estate Industry:

- \$134 billion industry in 2017
- 6.4% annual increase since 2015
- \$180 billion industry by 2022


Healthy Bldgs ROI (Survey of 200 Canadian Bldg Owners):

- 46% easier to lease
- 28% command premium rents
- 38% of those who reported value in healthy bldgs said they are worth 7% more than conventional ones

Millennials:

- 78% say workplace quality is important
- 69% would trade other benefits for good workplace

"Health and wellness-focused environments...can help reduce company operating costs and increase revenues and profits."

Study of Wood vs. Non-wood Finishes Wood and Human Health

- Univ. of British Colombia & FP Innovations study
- 4 rooms: white furnishings vs. wood furnishings; plants vs. no plants

"Stress, as measured by sympathetic nervous system activation, was lower in the wood room in all periods of the study."

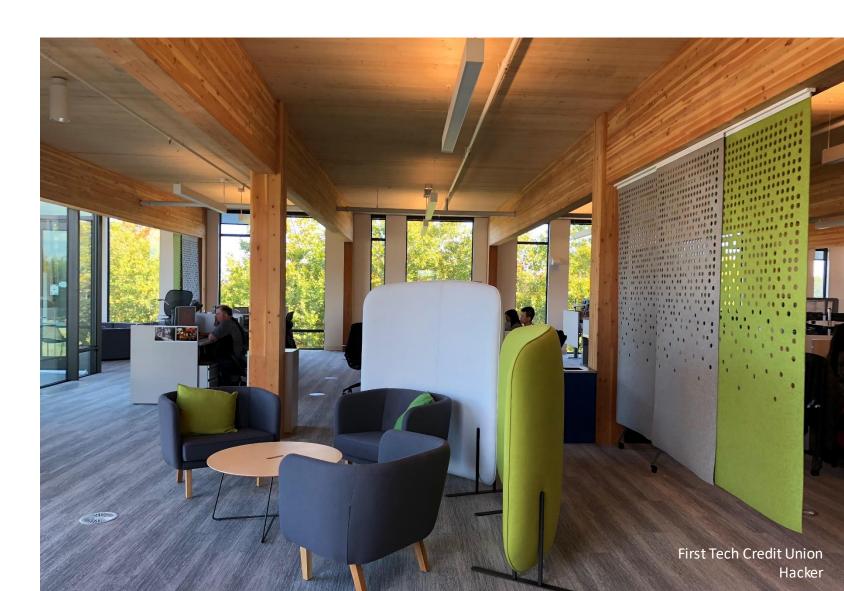
Source: Wood and Human Health https://www.woodworks.org/wp-content/uploads/2014-

SE-WSF-Fell-Healthy-Buildings.pdf

Biophilic Design Patterns Nature in the Space

	Pattern	Stress Reduction	Cognitive Performance	Emotion, Mood & Preference
ו the Space	Visual Connection w/ Nature	✓	✓	✓
	Non-Visual Connection w/ Nature (smell, touch)	✓	✓	✓
	Non-Rhythmic Sensory Stimuli	✓	√	
	Thermal & Airflow Variability	✓	✓	✓
Nature in	Presence of Water	✓	✓	✓
Z	Dynamic & Diffuse Light	✓		
	Connection w/ Natural Systems			√

Source: Terrapin Bright Green: 14 Patterns of Biophilic Design, 2014


How Might Wood Buildings Contribute to Biophilic Design? Nature in the Space

	Pattern	
	Visual Connection w/ Nature	Design opportunity (glazing/courtyards)
	Non-Visual Connection w/ Nature (smell, touch)	Smell & touch – might the soft wood feel & wood scent contribute?
Space	Non-Rhythmic Sensory Stimuli	Design opportunity (biomimicry)
Nature in the Sp.	Thermal & Airflow Variability	Wood is a living material & can help control temperature & humidity
	Presence of Water	Design opportunity (water features)
	Dynamic & Diffuse Light	Design opportunity (timber slats)
	Connection w/ Natural Systems	Wood buildings support healthy forests
		ture on Bill Bushing (Township Bright Croop) and Maliace Kraalian (MandMarka)

Source: Conversations and emails between Bill Browning (Terrapin Bright Green) and Melissa Kroskey (WoodWorks)

Material Connection to Nature (visual) Biophilic Pattern

- Wood is a natural material timber is sourced from trees in our forests.
- Exposing natural materials provides a connection to nature in this biophilic pattern

Material Connection to Nature (non-visual) Biophilic Pattern

Other sensory connections to nature:

- Soft feel of wood might this contribute to this biophilic pattern?
- Smell of wood in officesmight this contribute to this biophilic pattern?
- Smell of wood has surprised some designers who didn't consider it in design

Feature Stairs Encouraging Exercise

People Pay More \$\$\$ for a Connection to Nature

- People pay more for good views of nature (obvious w/ real estate prices)
- Potential for leasing velocity and/ or higher leasing rates for offices w/ natural wood materials*

*Source: WoodWorks: Mass Timber Cost and Design Optimization Checklists

https://www.woodworks.org/wp-content/uploads/wood_solution_paper-Mass-Timber-Design-Cost-Optimization-Checklists.pdf

Wellness + Wood = Productivity Workplaces

"Those in workplaces with a higher proportion of **visible wood feel more connected to nature** and rate their working environment far more positively."

These people report:

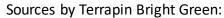
- lower stress levels
- higher concentration
- improved overall mood

"Wood in the workplace is associated with higher productivity and reduced sick leave."

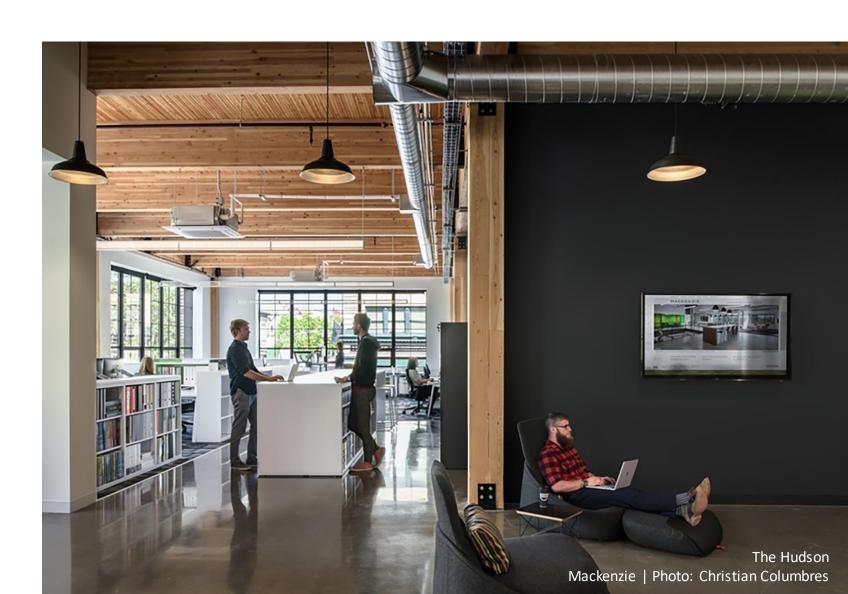
Workplaces: Wellness + Wood = Productivity

A report prepared for Forest & Wood Products Australia* by Andrew Knox, Howard Parry-Husbands, Pollinate** February 2018

Employee Retention Healthy Building/ Biophilia


Cost of losing an employee (assume: \$33/ hr):

\$ 1,000 termination


\$ 9,000 replacement

\$15,875 lost productivity

\$25,875 total

- Economics of Biophilia, 2012
- 14 Patterns of Biophilic Design, 2014 (includes list of testing citations)

Investing in Employees Pays off for Bank Case Study

ING Bank, Amsterdam HQ

Design focused on connections to nature to enhance productivity of workers.

Results:

- Absenteeism decreased 15%
- Employees voluntarily tended to natural features
- Employees looked forward to coming to the office & productivity increased

 Source: Economics of Biophilia, Terrapin Bright Green, 2012

Natural Materials for Warm Gathering Spaces Amenity Spaces

- Modern amenities battle:
 Spaces for informal
 collaboration are in demand
- Amenities provide a place to recharge & interact
- Connection to nature proven most impactful through outdoor access*
- Connection to nature indoors through materials & views is beneficial*

Photo: Christian Columbres

 Source: 14 Patterns of Biophilic Design, Terrapin Bright Green, 2014 (includes list of testing citations)

Mass Timber Revolution: California's Hip New Commercial Block

ICE Block I

III-B

- 3 Story mass timber over podium
- 87,460 sf

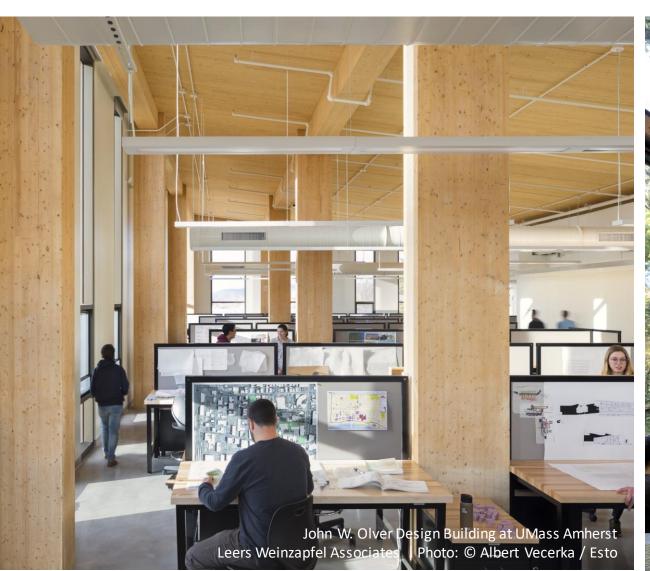
"The building sold itself because of its unique character. There was no competition. A lot of the credit goes to the fact that it is a timber building."

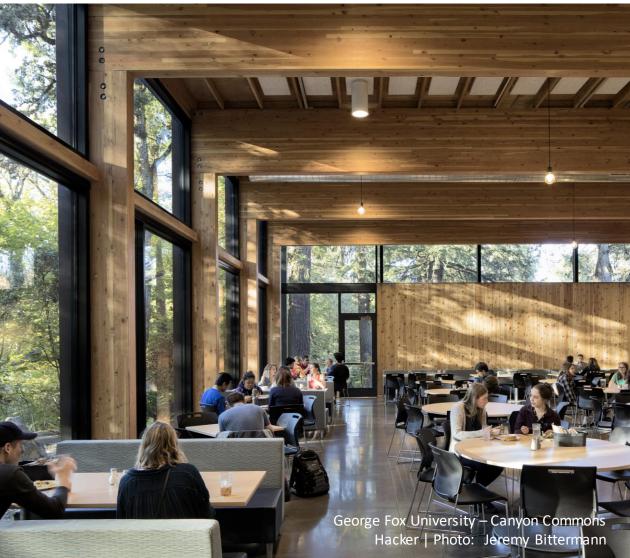
– Mike Heller, Heller Pacific

Location: Sacramento, CA

Architect: RMW Architecture & Interiors

Engineer: Buehler Engineering


Tech Companies Invest in Healthy Corporate Campuses Microsoft Silicon Valley Campus



Wood Grain Pattern – Can it Stimulate our Senses?

Might Wood Help Increase Ability to Think and Learn?

A Living/Learning Destination for Students Adohi Hall, University of Arkansas

Location: Fayetteville, AR

Architect: Leers Weinzapfel Associates; Mackey Mitchell Architects; Modus Studio (AOR)

Structural Engineer: Equilibrium Consulting; Engineering Consultants, Inc.

III-B

- 202,000 sf
- 708 bed student housing
- CLT and glulam framing

"...the wood-based construction system we developed forges a bond between setting, human comfort, and sustainability."

Andrea Leers, Leers Weinzapfel

Innovative, Sustainable, Tall Timber Multifamily Carbon 12

- 42,000 sf
- 8-story tower
- 14 condos + 2 retail units
- CLT and glulam framing
- Each unit has light & ventilation from 3 sides

Location: Portland, OR Architect: Path Architecture

Structural Engineer: Munzing Structural Engineering

Multifamily – Structural Warmth is a Value-Add

Green Building Rating Systems: Wood's Role in Building Certifications

August 11, 2023 | Laura Cullen, PE | Regional Director, WoodWorks

Green Building Rating SystemsWhat are They?

Building certification system that rates or rewards relative levels of compliance or performance with specific environmental goals and requirements.

Analyze project as a whole, going beyond (but factoring in) performance of individual products used in the project.

Amtrak Cascades Station at Freighthouse Square, Architect: VIA Architecture, Photo: Chris Eden/Eden Photography

Source: WBDG

What is their main goal?

To clearly define, implement, and measure green strategies and their outcomes and impacts.

0-49

50-59

60-79

+08

Source: USGBC

Why target certification?

The reasons for pursuing a green building certification for a project are varied:

- Verification of the green nature of the project
- Valuable educational and marketing tool for owners and design and construction teams
- Provide an incentive for clients, owners, designers, and users to develop and promote highly sustainable construction practices
- It is important to note that a building does not have to be certified to be sustainable and well-built.

Source: WBDG Source: USGBC & ILFI

What are the benefits?

There are a wide range of economic and environmental benefits to sustainable design, often achieved through the use of standards, rating, and certification systems. Examples include:

- Reduced embodied carbon
- Reduced building energy and water use
- Reduced construction waste
- Increased occupant comfort/satisfaction
- Increased building value, lease rates, ROI

RISD North Hall, Architect: NADAAA Architects, Photo: John Horner

Source: WBDG

Single vs. multi-attribute

A few of these programs are single-attribute, focusing solely on water or energy, while others are multi-attribute addressing emissions, toxicity, and overall environmental performance in addition to water and energy. While the philosophy, approach, and certification method vary across these systems, a common objective is that projects awarded or certified within these programs are designed to reduce the overall impact of the built environment on human health and the natural environment.

Source: WBDG

(Va					TEEL VS. WOOD D		act)					
Fossil Fuel Consumption	Weighted Resource Use	Global Warming Potential	Acidification Potential	Human Health Respiratory Effects Potential	Eutrophication Potential	Ozone Depletion Potential	Smog Potential					
1.4x	1.02x	1.6x	1.4x	1.3x	3.0x	1.5x	1.2x					
(Valu	COMPARISON OF ENVIRONMENTAL IMPACTS OF CONCRETE VS. WOOD DESIGN (Values indicate magnitude of impact associated with concrete design as multiple of wood design impact)											
Fossil Fuel Consumption	Weighted Resource Use	Global Warming Potential	Acidification Potential	Human Health Respiratory Effects Potential	Eutrophication Potential	Ozone Depletion Potential	Smog Potential					
1.9x	2.3x	3.0x	2.4x	2.1x	4.7x	5.8x	2.4x					

Source: USGBC

Rating systems exist for single-family homes to entire neighborhoods

New and existing construction

One DeHaro, Pfau Long Architecture, Photo: Paul Chinn | The Chronicle

Which one should I use?

Ultimately, the type of certification system pursued for a project depends upon that singular project; none of these certification systems are one-size-fits all. Project variables that can influence rating system choice include:

- Location
- Size
- Budget
- Overall project goals
- Rating system cost & ease of use

Rating systems are regularly updated & changed

Oregon Conservation Center, Photo: Jeremy Bittermann; Lara Swimmer; Shawn Records; LEVER Architecture

Credits for wood use

Generally, every prescriptive-based rating system offers a certain percentage of credits that can be achieved with the use of wood or wood products. In most cases, wood is recognized in the following areas:

- Certified wood
- Life Cycle Impacts
- Recycled/reused/salvaged materials
- Local sourcing of materials
- Materials efficiency
- Waste minimization
- Indoor air quality

ICE Block I, RMW Architecture & Interiors, Buehler Engineering, Bernard André Photography

Green Building Rating Systems Certified wood

Credits are awarded for wood that has been third-party certified as coming from a sustainably managed forest. Different rating systems allow for different certification programs, with some more inclusive than others.

While rating systems commonly reward projects that use certified wood, they do not require any demonstration that other materials such as concrete, steel, or plastic have come from a sustainable resource.

Photo: Frank Rosenstein, Courtesy of Plum Creek

Green Building Rating Systems

Life cycle impacts

Many rating systems give credits for the use of products with lower embodied energy and lifecycle carbon impacts.

Wood products regularly perform well in embodied carbon comparisons of building materials.

John W Olver Design Building, Architect: Leers Weinzapfel Associates, Photo: ©Albert Vecerka/Esto

Green Building Rating Systems

Local material sourcing

Some systems place special emphasis on the use of local materials as an approach to reducing the environmental impacts of projects, rewarding materials sourced from within a certain radius—commonly 500 miles.

However, simply tracking transportation distances ignores such critically important factors as mode of transportation and the type, efficiency, and impacts of manufacturing processes.

Richard Woodcock Education Center, Western Oregon University. Mahlum Architecture. Photo: DR Johnson

Green Building Rating Systems Material efficiency & waste minimization

Many rating systems reward use of lower quantities of building materials.

Credit is often awarded for avoiding or diverting construction waste—e.g., through jobsite protocols that include pre-cut packages or off-site production of building modules.

Platte 15, OZ Architecture. Photos: JC Buck

Green Building Rating Systems Indoor air quality

Most rating systems have strict limits on the use of products that contain volatile organic compounds (VOCs). Many wood products are available that verifiably meet or exceed these guidelines.

Adohi Hall, University of Arkansas, Leers Weinzapfel Associates, Photo: Timothy Hursley; Kiara Luers

Green Building Rating Systems

System choices

...and many more

Green Building Rating SystemsLEED

LEED® (Leadership in Energy & Environmental design) was developed by the U.S. Green Building Council (USGBC) and provides third-party verification that a building or community was designed and built-in accordance with specified practices and performance measures within eight categories.

- Established in 2000
- Adherence to required elements and numerical scores across all categories is used in determining an overall project rating.,
- Has certified more than 2.8 billion ft² of building space globally.
- The newest version (V4.1) was released in 2019

Green Building Rating SystemsGreen Globes

Green Globes began in Canada as an offshoot of BREEAM. The Green Building Initiative (GBI) acquired the rights to distribute Green Globes in the United States in 2004, and in 2005 became the first green building organization accredited as a standards developer by the American National Standards Institute (ANSI).

- Includes new construction and continuous improvement in office buildings, multifamily, hospitals, and institutional.
- Web-based tool allows self- assessment of building projects, with thirdparty on-site inspection required for certification.
- One of two rating systems approved by the U.S. government for accreditation of federal building projects.

Source: Green Building and Wood Products

Green Building Rating Systems

Living Building Challenge

Living Building Challenge, a program of the Cascadia Green Building Council (a chapter of both the USGBC and Canadian Green Building Council) was developed in 2006.

- Now administered by the International Living Future Institute, it is meant to be the next step after LEED Platinum and a step before regenerative buildings.
- Intended "to define the highest measure of sustainability attainable in the built environment based on the best current thinking—recognizing that 'true sustainability' is not yet possible."

Source: Green Building and Wood Products

Wood in Green Globes

GREEN GLOBES RATINGS:

Once an assessment is verified by a third party, properties achieving a score of 35% or more receive a Green Globes rating based on the percentage of total points (up to 1,000) achieved.

85-100% FOUR GREEN GLOBES

Demonstrates national leadership and excellence in the practice of water, energy and environmental efficiency to reduce environmental impacts.

70-84% THREE GREEN GLOBES

Demonstrates leadership in applying the best practices regarding energy, water, and environmental efficiency.

55-69% TWO GREEN GLOBES

Demonstrates excellent progress in achieving reduction of environmental impacts and use of environmental efficiency practices.

35-54% ONE GREEN GLOBES

Demonstrates a commitment to environmental efficiency practices 4 tiers, up to 1,000 points possible

Multiple certification types available

Green Certification Types

Choose your project type to learn more about how Green Globes works

Source: Green Building Initiative

Wood in Green Globes

Potential points applicable to wood

3.5.1.1 Path A: Performance Path for Building Core and Shell

Athena Impact Estimator for Buildings or other LCA tool used during design to evaluate a minimum of two different core and shell designs, based on life cycle assessment (LCA) in compliance with the assessment guidance and resulting in selection of the building core and shell with the least anticipated environmental impact? IF YES – 33 POINTS

The Athena Impact Estimator for Buildings is an LCA-based software package that helps designers easily incorporate environmental information while in the early stages of a project.

Source: Green Building Initiative

Wood in Green Globes

Potential points applicable to wood

3.5.1.2 Path B - % products have third-party sustainable forestry certifications – 20 points max

- Canadian Standards Association (CSA)
- Sustainable Forestry Initiative (SFI)
- Forest Stewardship Council (FSC)
- American Tree Farm System (ATFS)

≥ 40% (20 points)

25 - 39% (15 points)

10 - 24% (10 point)

0 - 9% (0 points)

Photo: Sustainable Forestry Initiative

Building Design and Construction Interior Design and Construction Building Operations and Maintenance Neighborhood Development Homes

Source: USGBC

Point Distribution in LEED v4 & v4.1 New Construction (NC)

Credit Category	Max Points
Integrative Process	1
Location and Transportation	16
Sustainable Sites	10
Water Efficiency	11
Energy and Atmosphere	33
Materials and Resources	13
Indoor Environmental Quality	16
Innovation	6
Regional Priority	4
Total	110

Primary areas of pointsrelated to use of wood

Source: USGBC

V4 & v4.1

BUILDING COUNCIL

The use of wood products can contribute up to 12 points, accounting for more than 10 percent of LEED v4's total credits.

According to USGBC's *Industry Materials Brief on Forest Products*, the "use of wood as a building material is among the most highly incentivized strategies in LEED."

V4 & v4.1

Specifically, wood products qualify for credits in these categories:

- Materials & Resources: Building Life-Cycle Impact Reduction (up to 5 points).
 Materials and products with comparatively low environmental impacts fare well in this whole building life-cycle credit.
- 2. Materials & Resources: **Environmental Product Declarations** (up to 2 points). Many wood EPDs are available.
- 3. Materials & Resources: **Sourcing of Raw Materials** (up to 2 points). Projects can either specify wood from suppliers and manufacturers with a Corporate Sustainability Report or choose new wood products certified by a Forestry Certification Program (*using the ACP) to contribute toward this credit.

Source: Barbara Horwitz-Bennett & USGBC

V4 & v4.1

Point Distribution in LEED v4 & v4.1 NC – Materials and Resources – ACP for Certified Wood

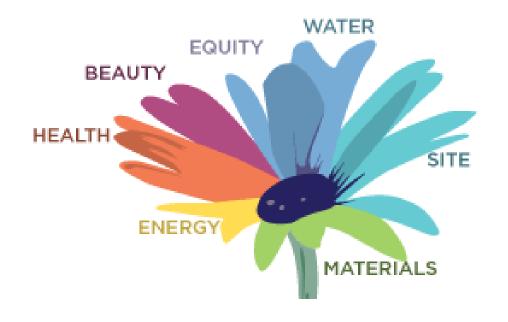
WHAT IS AN ACP?

An Alternative Compliance Path allows LEED projects to achieve an existing green building credit, using an alternative approach to what is specified in the existing rating tool.

An ACP pilot is used to test and work out any kinks with the new pathway. If the ACP pilot credit is adopted, it will become part of the LEED rating system. In order to count towards a LEED point, the user must first know that:

- 100% of the forest products are from legal (noncontroversial) sources, and
- 70% from responsible sources, and
- The remainder must be certified sources as evidenced by a chain of custody certification (CoC).

Generates opportunity to use wood products certified to <u>SFI, FSC, ATFS, CSA and PEFC</u>


Source: Sustainable Forestry Initiative

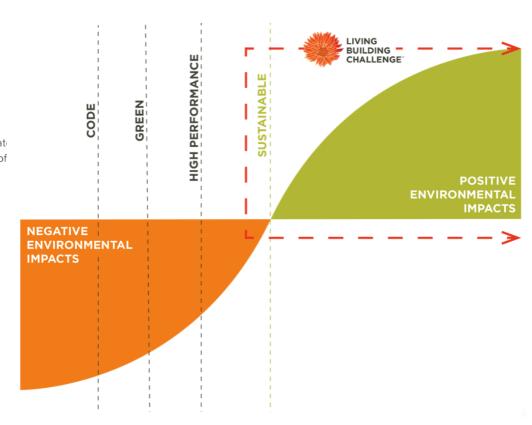
The Living Building Challenge (LBC) is widely considered the most stringent green building standard in the world. It attempts to emulate a flower by encouraging net-zero or net-positive impact on virtually everything the built environment touches. Its requirements are categorized under seven petals:

- 1. Place
- 2. Water
- 3. Energy
- 4. Health
- 5. Materials
- 6. Equity
- 7. Beauty

LIVING BUILDING CHALLENGE PETALS

Source: ILFI

Through detailed "imperatives" within each petal, LBC leaves little wiggle room. Everything is a prerequisite, unlike in LEED, where project teams can choose among credits.

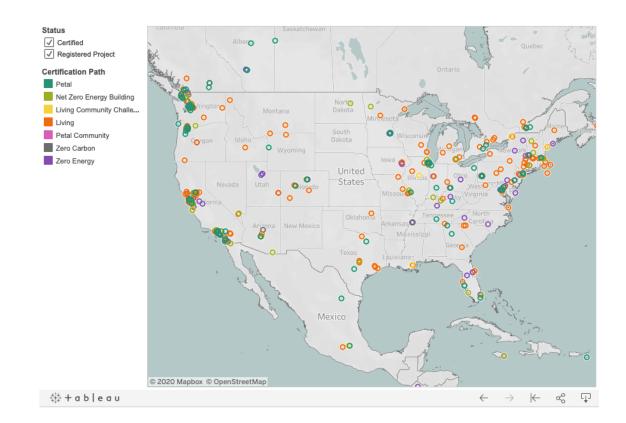

MATERIALS PETAL PETAL INTENT 10. RED LIST 11. EMBODIED CARBON FOOTPRINT 12. RESPONSIBLE INDUSTRY 13. LIVING ECONOMY SOURCING 14. NET POSITIVE WASTE

10. RED LIST IMPERATIVE

There are temporary exceptions for numerous Red List items due to current limitations in the mat-Materials Petal Handbook for complete and up-to-date listings. The project cannot contain any of

RED LIST MATERIALS OR CHEMICALS

- Alkylphenols
- Asbestos
- Bisphenol A (BPA)
- Cadmium
- · Chlorinated Polyethylene and Chlorosulfonated Polyethylene



Projects can be 'Petal Certified' but can also extend to:

- Net Zero Energy Building
- Zero Carbon
- Living Community
- Petal Community

Many of the LBC petal-certified projects completed to date have implemented the use of wood and timber framing to meet the Materials Petal Imperatives

REGISTERED & CERTIFIED PROJECT MAP

R.W. Kern Center, Amherst, MA

- 17,000 SF
- Glulam frame with T&G decking
- The building is self-sustaining generating its own energy, capturing its own water, and processing its own waste

Architect: Bruner/Cott & Associates Photos: Robert Benson Photography

LCA tools for Green Building Certifications WoodWorks Expert Tip

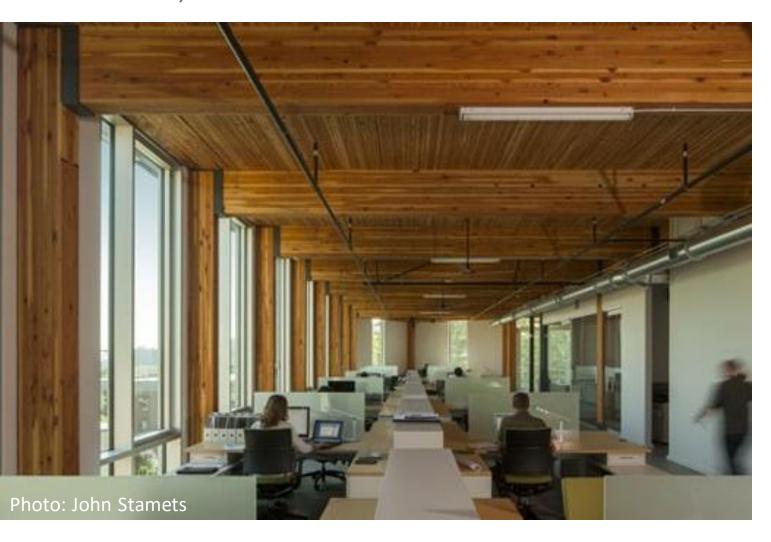
What tools are available to help designers and owners compare the embodied carbon, or upfront greenhouse gas emissions (GHG), of commercial or multifamily buildings designed with different structural systems in the US?

View WoodWorks Expert Tip online at:

https://www.woodworks.org/resources/calculating-the-embodied-carbon-of-different-structural-systems/

Whole Building LCA Tools Detailed LCA Analysis

		A	cceptability for Green Bu	uilding Credits/ Certificates	
WBLCA Tool	Analysis	LEED v4 credits	LEED v4.1 credits	ILFI Zero Carbon Certificate	Green Globes
Athena Impact Estimator for Buildings	Detailed robust WBLCA	Yes	Yes	Yes	Yes
Tally	Detailed robust WBLCA	Yes	Yes	Yes	Yes
One-Click LCA	WBLCA w/ regionalized generic data & global EPD library	Yes	Yes	Yes	Yes


LCA Tools for use in Pre-Design & Conceptual Design Simplified Early LCA Analysis

		Acceptability for Green Building Credits/ Certificates			
WBLCA Tool	Analysis	LEED v4 credits	LEED v4.1 credits	ILFI Zero Carbon Certificate	Green Globes
Athena EcoCalculator for Commercial Assemblies	Early estimate simplified LCA (note: no longer updated, some data out of date)	Yes	Yes	No	Yes
Carbon Designer (One-click LCA add- on tool)	Early estimate simplified LCA w/ regionalized generic data	Yes	Yes	No	Yes

Case Studies

C NAATE

Bullitt Center Seattle, WA

Architect: The Miller Hull Partnership Structural Engineer: DCI Engineers

IV-HT

- Designed for a 250-year life span
- Met criteria for Living Building Challenge 2.0
- Rooftop photovoltaic cells generate electricity for the building; building recycles its own water
- 6 over 2 design; 52,000 sf
- Mass timber frame: glulam and NLT panels

Bullitt Center Seattle, WA

Volume of wood used:

24,526 cubic feet

U.S. and Canadian forests grow this much wood in: 2 minutes

Carbon stored in the wood:

545 metric tons of CO₂

Avoided greenhouse gas emissions:

1,158 metric tons of CO₂

TOTAL POTENTIAL CARBON BENEFIT:

1,703 metric tons of CO₂

EQUIVALENT TO:

US EPA

325 cars off the road for a year

Energy to operate a home for 145 years

CASE STUDY BULLITT CENTER

Wood Shines in Sustainable 'Show & Tell'

Bullitt Center's heavy timber frame teaches environmental and structural lessons

WoodWorks

Bullitt Center

Seattle, WA

Volume of wood used:

24,526 cubic feet

U.S. and Canadian forests grow this much wood in: 2 minutes

Carbon stored in the wood:

545 metric tons of CO₂

Avoided greenhouse gas emissions:

1,158 metric tons of CO₂

TOTAL POTENTIAL CARBON BENEFIT:

1,703 metric tons of CO₂

EQUIVALENT TO:

US EPA

325 cars off the road for a year

Energy to operate a home for 145 years

Volume of wood: Based on user inputs

Volume of Wood → Volume of Logs →

Volume of Trees → Tree Growth Rate

Volume of Wood \rightarrow Mass of Wood \rightarrow Mass of Carbon (50% of wood) \rightarrow Mass of CO₂ (3.67 x mass of Carbon)

Candlewood Suites

Redstone Arsenal, AL

III-B

- 4 stories; 62,688 sf
- First CLT hotel in USA
- 37% faster overall construction
- 40% fewer construction workers
- Trained unemployed veterans

Architect: Lendlease

Project Engineer: Schaefer Structural Engineers

Candlewood Suites

Redstone Arsenal, AL

Carbon Benefits

Wood lowers a building's carbon footprint in two ways. It continues to store carbon absorbed by the tree while growing, keeping it out of the atmosphere for the lifetime of the building-longer if the wood is reclaimed and reused or manufactured into other products. When used in place of fossil fuel-intensive materials such as steel and concrete, it also results in 'avoided' greenhouse gas emissions.

Volume of wood products used:

935,696 board feet (equivalent)

U.S. and Canadian forests grow this much wood in: 5 minutes

Carbon stored in the wood:

1,276 metric tons of CO2

Avoided greenhouse gas emissions:

494 metric tons of CO₂

TOTAL POTENTIAL CARBON BENEFIT:

1,770 metric tons of CO₂

EQUIVALENT TO:

374 cars off the road for a year

Energy to operate 187 homes for a year

Estimated by the Wood Carbon Calculator for Buildings, based on research by Sarthre, R. and J. O'Connor, 2010, A Synthesis of Research on Wood Products and Greenhouse Gas Impacts, FPInnovations. Note: CO2 on this chart refers to CO2 equivalent.

Candlewood Suites

Redstone Arsenal, AL

Carbon Stored in Wood (from previous calculation)

Emissions avoided by choosing wood over alternative building material based on building type

Total Potential Carbon Benefit = Carbon Stored + Emissions Avoided

Convert Total Potential Carbon Benefit to emissions from operating a car or a home

Carbon Benefits

Wood lowers a building's carbon footprint in two ways. It continues to store carbon absorbed by the tree while growing, keeping it out of the atmosphere for the lifetime of the building—longer if the wood is reclaimed and reused or manufactured into other products. When used in place of fossil fuel-intensive materials such as steel and concrete, it also results in 'avoided' greenhouse gas emissions.

Volume of wood products used:

935,696 board feet (equivalent)

U.S. and Canadian forests grow this much wood in:

5 minutes

Carbon stored in the wood:

1,276 metric tons of CO₂

Avoided greenhouse gas emissions:

494 metric tons of CO2

TOTAL POTENTIAL CARBON BENEFIT:

1,770 metric tons of CO₂

CS FFA

374 cars off the road for a year

Energy to operate 187 homes for a year

Estimated by the Wood Carbon Calculator for Buildings, based on research by Sarthre, R. and J. O'Connor, 2010, A Synthesis of Research on Wood Products and Greenhouse Gas Impacts, FPInnovations. Note: CO₂ on this chart refers to CO₂ equivalent.

Questions? Ask us anything.

Laura Cullen, PE
Regional Director | GA, MS
(404) 488-7495
laura.cullen@woodworks.org

