

## Tall Timber Building Design:

Acoustics, Connections and Fire Protection

Presented by:

Kate Carrigg, PE

Regional Director (OR, ID-So, HI)



### 11 tall wood projects already under construction or built.

Portland, OR 8 stories mass timber

### 💡 Heartwood

Seattle, WA 8 stories mass timber

### **Winnesota Places**

Portland, OR 8 stories – 7 mass timber

### **?** TimberView

Portland, OR 8 stories mass timber

### 💡 1510 Webster

Oakland, CA 18 stories – 16 mass timber

### Ascent

Milwaukee, WI 25 stories – 19 mass timber

### Bakers Place

Madison, WI 15 stories – 12 mass timber

INTRO Cleveland, OH 9 stories – 8 mass timber

### 11 E Lenox

Boston, MA 7 stories mass timber

### 80 M Street

Washington DC 10 stories – 3-story mass timber vertical addition

### የ Apex Plaza

Charlottesville, VA 8 stories – 6 mass timber



WoodWorks is supporting 208 tall wood projects



Pawered by Brig © GeoNames, Microsoft, TomTam "The Wood Products Council" is a Registered Provider with The American Institute of Architects Continuing Education Systems (AIA/CES), Provider #G516.

Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request. This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.



### **Course Description**

The introduction of three new construction types in the 2021 International Building Code has created exciting possibilities for tall mass timber buildings. However, to effectively and efficiently implement the new code provisions for construction types IV-A, IV-B and IV-C, it is necessary to thoroughly understand the allowances and required design methodologies. This presentation will take a detailed look at a number of critical design and construction topics for tall timber buildings, including high-rise and sprinkler requirements, options for lateral force-resisting systems, fire design for penetrations, connections and abutting panels, shaft wall considerations, acoustics performance, and construction fire safety practices.

### Learning Objectives

1. Review code requirements unique to tall wood buildings, focusing on items such as sprinklers and shaft construction.

2. Highlight design options for addressing topics such as fire stops at penetrations through mass timber assemblies and fire resistance of exterior walls in tall timber structures.

3. Discuss the acoustical performance of mass timber assemblies and highlight successful acoustical design approaches.

4. Demonstrate examples of lateral force-resisting systems in tall mass timber buildings and discuss differences in code compliance and material tolerances.

**U.S. BUILDING CODES** Tall Wood Ad Hoc Committee

# **2021 IBC** Introduced 3 new tall wood construction types:

| BUILDING | ΤΥΡΕ Ι |   | TYPE II |   | TYPE III |   | TYPE | IV | TYPE V |    |   |   |
|----------|--------|---|---------|---|----------|---|------|----|--------|----|---|---|
| ELEMENT  | Α      | В | Α       | В | Α        | В | Α    | В  | С      | HT | Α | В |

## **Materials Permitted**

**602.4 Type IV.** Type IV construction is that type of construction in which the building elements are mass timber or noncombustible materials and have fire resistance ratings in accordance with Table 601. Mass timber elements shall meet the fire resistance rating requirements of this section based on either the fire resistance rating of the noncombustible protection, the mass timber, or a combination of both and shall be determined in accordance with Section 703.2 or 703.3. The minimum dimensions and permitted materials for building elements shall comply with the provisions of this section and Section 2304.11. Mass timber

Exception: Type IV-HT Construction in accordance with Section 602.4.4.

## **Fire-Resistance Ratings**

### Driven primarily by construction type.

TABLE 601

E EOD DI III DING ELEMENTE (HOUDE)

TANCE DATING DECHIDEN

CI

| BUILDING ELEMENT                                                                    | TYPEI |                  | TYPE II           |    | TYPE III         |            | TYPE IV |    |    |                             | TYPE V           |   |
|-------------------------------------------------------------------------------------|-------|------------------|-------------------|----|------------------|------------|---------|----|----|-----------------------------|------------------|---|
| BUILDING ELEMENT                                                                    |       | B                | A                 | В  | A                | В          | Α       | В  | C  | нт                          | A                | B |
| Primary structural frame <sup>f</sup> (see Section 202)                             | 32.0  | 2ª. b. c         | 1 <sup>b, c</sup> | 0° | 1b. c            | 0          | 3*      | 2ª | 2ª | HT                          | 1h.c             | 0 |
| Bearing walls                                                                       |       |                  |                   |    |                  |            |         |    |    |                             |                  |   |
| Exterior                                                                            |       | 2                | 1                 | 0  | 2                | 2          | 3       | 2  | 2  | 2                           | 1                | 0 |
| Interior                                                                            | 3*    | 2*               | 1                 | 0  | 1                | 0          | 3       | 2  | 2  | 1/HT*                       | 1                | 0 |
| Nonbearing walls and partitions<br>Exterior                                         | See T |                  |                   |    |                  | able 705.5 |         |    |    |                             |                  |   |
| Nonbearing walls and partitions<br>Interior <sup>4</sup>                            |       | 0                | 0                 | 0  | 0                | 0          | 0       | 0  | 0  | See<br>Section<br>2304.11.2 | 0                | 0 |
| Floor construction and associated secondary<br>structural members (see Section 202) |       | 2                | 1                 | 0  | 1                | 0          | 2       | 2  | 2  | HT                          | 1                | 0 |
| Roof construction and associated secondary<br>structural members (see Section 202)  |       | 1 <sup>b,c</sup> | 1 <sup>b,c</sup>  | 0° | 1 <sup>b,c</sup> | 0          | 11/2    | 1  | 1  | HT                          | 1 <sup>b,c</sup> | 0 |

## Fire Resistance Ratings (FRR)

### 2 Options:

- **1.** <u>Calculations</u> in Accordance with IBC 722.1 → NDS Chapter 16
- 2. <u>Tests</u> in Accordance with ASTM E119









## **2021 IBC Tall Wood Construction Types**



### **Example Mixed-Use, Type IV-B Building**



### **Example R-2, Type IV-C Building**



## **Mid-Rise vs. High-Rise**



#### FIGURE 6-6 Determination of high-rise building

## **Sprinklers in High Rises**

Two Water Mains Required if...

- Building Height Exceeds 420 ft
- Type IV-A and IV-B buildings that exceed 120 ft in height



## **Fire Safety During Construction**

New code provisions in International Fire Code (IFC) address construction fire safety of tall wood buildings

### 3308.4 Fire safety requirements for buildings of <u>Types IV-</u> <u>A, IV-B, and IV-C</u> construction.

...designed to be greater than six stories above grade plane shall meet the following requirements during construction unless otherwise approved by the fire code official.

- <u>Standpipes</u> shall be provided in accordance with Section 3313.
- <u>A water supply for fire department</u> operations, as approved by the fire chief.



## **Fire Safety During Construction**

### **IFC 3313 Standpipe Requirements**

#### SECTION 3313 STANDPIPES

#### 3313.1 Where required.

In buildings required to have standpipes by Section 905.3.1, not less than one standpipe shall be provided for use during construction. Such standpipes shall be installed prior to construction exceeding 40 feet (12 192 mm) in height above the lowest level of fire department vehicle access. Such standpipe shall be provided with fire department hose connections at accessible locations adjacent to usable stairways. Such standpipes shall be extended as construction progresses to within one floor of the highest point of construction having secured decking or flooring.

#### 3313.2 Buildings being demolished.

Where a building is being demolished and a standpipe is existing within such a building, such standpipe shall be maintained in an operable condition so as to be available for use by the fire department. Such standpipe shall be demolished with the building but shall not be demolished more than one floor below the floor being demolished.

#### 3313.3 Detailed requirements.

Standpipes shall be installed in accordance with the provisions of Section 905.

Exception: Standpipes shall be either temporary or permanent in nature, and with or without a water supply, provided that such standpipes comply with the requirements of Section 905 as to capacity, outlets and materials.

## **Noncombustible Protection (NC)**





The definition of **"Noncombustible Protection** (For Mass Timber)" was created to address the <u>passive fire protection</u> of mass timber.

## Fire Resistance Ratings (FRR)

### IBC 722.7



## **Noncombustible Protection (NC)**

Where timber is required to be protected, NC must contribute at least 2/3 FRR

### **Required Noncombustible Contribution to FRR**

| FRR of<br>Building Element<br>(hours) | Minimum from<br>Noncombustible Protection<br>(minutes) |  |  |  |  |  |
|---------------------------------------|--------------------------------------------------------|--|--|--|--|--|
| 1                                     | 40                                                     |  |  |  |  |  |
| 2                                     | 80                                                     |  |  |  |  |  |
| 3 or more                             | 120                                                    |  |  |  |  |  |

Source: 2021 IBC Section 722.7

## **Materials & Protection**









Credit: WGI



## **Protection vs. Exposed**

### **2021 IBC Allowances**





IV-B

Credit: AWC

## **Protection vs. Exposed**

### **2024 IBC Allowances**





IV-B

No separation req'd between wall & ceiling

Credit: AWC

## **Occupancy Separation**

### **Protection of MT used for occupancy separation**

### Addition to IBC 508.4.4.1 requires:

Mass timber elements serving as fire barriers or horizontal assemblies to separate occupancies in Type IV-B or IV-C construction shall be separated from the interior of the building with a minimum of <u>½</u>" gypsum board or a noncombustible equivalent.



## **Incidental Use Separation**

## Protection of MT used for incidental use separation

### New section 509.4.1.1 requires:

Where Table 509 specifies a fire- resistancerated separation, mass timber elements serving as fire barriers or a horizontal assembly in Type IV-B or IV-C construction shall be separated from the interior of the incidental use with a minimum of <u>½</u>" gypsum board or a noncombustible equivalent.



### Shaft Enclosures in Tall Timber?



## **Tall Wood Shaft Enclosures**



**E&H Enclosures FRR** 

2 HR (not less than FRR of floor assembly penetrated, IBC 713.4)

## **Fire Safety During Construction**

#### International Fire Code 3308.4 Cont'd

- 3. Where building construction exceeds six stories above grade plane, at least one layer of noncombustible protection where required by Section 602.4 of the International Building Code shall be installed on all building elements more than 4 floor levels, including mezzanines, below active mass timber construction before erecting additional floor levels.
- 4. Where building construction exceeds six stories above grade plane required exterior wall coverings shall be installed on all floor levels more than 4 floor levels, including mezzanines, below active mass timber construction before erecting additional floor level.

**Exception**: Shafts and vertical exit enclosures



## **Fire Safety During Construction**



6 Stories Above Grade Plane

## **Floor Surface Protection**



Min. 1" thick NC protection required on mass timber floors in IV-A and IV-B

### **Not required in IV-C**





### **Mass Timber Acoustics**





Concrete Slab:CLT Slab:6" Thick6-7/8" Thick80 PSF18 PSFSTC 53STC 41

## **Acoustical Design**

### <u>Air-Borne Sound:</u> Sound Transmission Class (STC)




## **Acoustical Design**

### **Structure-borne sound:** Impact Insulation Class (IIC)





## **Acoustical Design**

### **Code requirements only address residential occupancies:**

For unit to unit or unit to public or service areas:

### Min. STC of 50 (45 if field tested):

• Walls, Partitions, and Floor/Ceiling Assemblies

### Min. IIC of 50 (45 if field tested) for:

• Floor/Ceiling Assemblies



## **Acoustical Design**

| STC | What can be heard                                                                                                |  |  |  |  |  |
|-----|------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 25  | Normal speech can be understood quite easily and distinctly through wall                                         |  |  |  |  |  |
| 30  | Loud speech can be understood fairly well, normal speech heard but not understood                                |  |  |  |  |  |
| 35  | Loud speech audible but not intelligible                                                                         |  |  |  |  |  |
| 40  | Onset of "privacy"                                                                                               |  |  |  |  |  |
| 42  | Loud speech audible as a murmur                                                                                  |  |  |  |  |  |
| 45  | Loud speech not audible; 90% of statistical population not annoyed                                               |  |  |  |  |  |
| 50  | Very loud sounds such as musical instruments or a stereo can be faintly heard; 99% of population not<br>annoyed. |  |  |  |  |  |
| 60+ | Superior soundproofing; most sounds inaudible                                                                    |  |  |  |  |  |

## **Acoustical Detailing**

# There are <u>**3 effective methods**</u> of improving acoustical performance:

- 1. Add Mass
- 2. Add noise barriers
- 3. Add decouplers



## **Mass Timber Acoustics**

### **Common MT floor assembly:**



## **Inventory of Tested Assemblies**

#### Table 1: CLT Floor Assemblies with Concrete/Gypsum Topping, Ceiling Side Exposed Finish Floor if Applicable Concrete/Gypsum Topping Acoustical Mat Product **CLT Panel** No direct applied or hung ceiling IIC<sup>L</sup> **CLT Panel** Concrete/Gypsum Acoustical Mat Product Between CLT and Topping **Finish Floor** STC1 Source Topping CLT 3-ply 45<sup>2</sup> FIIC 3" concrete Maxxon Acousti-Mat® 3/4 53<sup>2</sup> ASTC 72 None (3.5") None 54 44 89 LVT on GenieMat RST05 53 48 90 Pliteg GenieMat<sup>™</sup> FF25 2" concrete Eng Wood on GenieMat 53 46 91 RST05 Carpet Tile 52 50 92 103 None 57 45 LVT 104 58 1.0 2 layers of 1/4 USG Fiberock® on Kinetics® 55 55 105 Kinetics® RIM-33L-2-24 System with %" Plywood Soundmatt CLT 3-ply LVT on 2 layers of 1/4" (4.125") USG Fiberock® on 59 106 -Kinetics\* Soundmatt 3" concrete 57 46 107 None LVT 55 108 -2 Invert of V" USC

## **Mass Timber Acoustics**



Photo: Maxxon Corporation

## **Tall Mass Timber Acoustics**

**Table 2**: Impact of Direct Applied Ceiling Gypsum and Dropped Ceiling on Mass Timber Floor Panels<sup>7</sup>

| Base Assembly (top to b   | ottom) | Base assembly plus 2 layers direct | Base assembly plus 2 layers     |
|---------------------------|--------|------------------------------------|---------------------------------|
|                           |        | applied 5/8" gyp on underside of   | direct applied gyp plus dropped |
|                           | -      | mass timber                        | ceiling                         |
| 1" poured gypsum,         | STC 50 | STC 52                             | STC 63                          |
| acoustical mat, 5-ply CLT | IIC 40 | IIC 46                             | IIC 60                          |
| LVT, 1" poured gypsum,    | STC 51 | STC 52                             | STC 63                          |
| acoustical mat, 5-ply CLT | IIC 43 | IIC 48                             | IIC 63                          |
| 2" concrete, acoustical   | STC 52 | STC 59                             | Not testad                      |
| mat, 5-ply CLT            | IIC 46 | IIC 52                             | Not tested                      |
| LVT, 2" concrete,         | STC 53 | STC 58                             | Not testad                      |
| acoustical mat, 5-ply CLT | IIC 52 | IIC 55                             | inot tested                     |



# PENETRATIONS IN TALL WOOD

## **Penetration Fire Protection**



## **Penetration Fire Protection**

### Not a new code requirement or specific to tall wood.



## **FRR Assemblies and Penetrations**

### **Inventory of Fire Tested Penetrations in MT Assemblies**

Table 3: North American Fire Tests of Penetrations and Fire Stops in CLT Assemblies

| CLT Panel                   | Exposed Side<br>Protection | Poncirating<br>Item                                    | Penetrun i Centured<br>nr Officet in Hole | Firestopping System Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F Rating | T Rating  | Stated Test<br>Protocal | Source | Testing Lab                       |
|-----------------------------|----------------------------|--------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|-------------------------|--------|-----------------------------------|
| 3-pty<br>(76mm3-07*)        | New                        | 1.5° diameter<br>data cable bunch                      | Castanual                                 | 3.5 in diameter hole. Mineral wood was installed in the 1in, annular space around the data cables to a total depth of approximately 2 - 5/64 in. The termining 1in, annular space from the top of the mineral wool to the top of the floor an only was filled with Hills FS-Ose Max-cadking.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 hour   | 0.5 hour  | CANULC SILE             | 24     | listartak<br>March 30, 2016       |
| 3-ply<br>(78mm3.07*)        | None                       | 2* copper pipe                                         | Centered                                  | 4.375 in diameter hole. Fipe wrap was installed around the copper pipe to a total depth of approximately 2 - 5/04in. The remaining 1in, annular space starting at the top of the mineral wool to the top of the floor as sembly was filled with Hilti FS-One Max caulking.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 hour   | NA.       | CANULC S115             | 26     | Invertek<br>March 30, 2016        |
| 3-ply<br>(78mm 3.07*)       | None                       | 2.5* sch ed. 40<br>pip e                               | Cen tere d                                | 4.92 in diameter hole. Pipe wrap was installed around the schedule 40 pipe to a total depth of approximately 2 - 5/64in. The remaining 1in, annular space starting at the top of the pipe wrap to the top of the floor assembly was filled with HiltiFS-One Max caulking.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 hour   | NA.       | CANULC S115             | 26     | Intertek<br>March 30, 2016        |
| 3-ply<br>(78mm3.07*)        | None                       | 6" cast iron pipe                                      | Centered                                  | 8.35 in diameter hole. Mineral wool was installed in the lin. annular space around the cast iron pipe to a total depth of approximately 2 – 5/64 in. The remaining lin. annular space starting at the top of the pipe wrap to the top of the floor assembly was filled with HiltiFS- One Max caulking.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 hour   | NA.       | CANULC S115             | 26     | In tert ek<br>March 30, 2016      |
| 3-ply<br>(78mm 3.07*)       | None                       | Hilti 6 in drop in<br>device. System<br>No.: F-B-2049  | Centered                                  | 9.01* diameter hole. Mineral wool was installed in the 1 – 1/4in. annular space around the drop-in device to a total depth of approximately 1 – 7/64in and the remaining 1 in. annular space from the top of the mineral wool to the top edge of the 9 – 1/64in. hole in the CLT was filled with Hilti FS-One Max caulking.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 hour   | 0.75 hour | CANULC S115             | 26     | Intertek<br>March 30, 2016        |
| 5-ply CLT<br>(131mm 5.16*)  | None                       | 1.5* diameter<br>data cable bunch                      | Centered                                  | $3.5^{\circ}$ diameter hole. Mineral wool was installed in the 1 in. annular space around the data cables to a total depth of approximately $4 - 5/32$ in. The remaining 1 in. annular space from the top of the mineral wool to the top of the floor assembly was filled with Hilti FS-One Max caulking.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 hours  | 1.5 hours | CANULC S115             | 26     | Intertek<br>March 30, 2016        |
| 5-ply CLT<br>(131mm 5.16*)  | None                       | 2 ° copper pipe                                        | Centered                                  | 4.375 in diameter hole. Pipe wrap was installed around the copper pipe to a total depth of approximately $4 - 5/32$ in. The remaining 1 in. an nular space starting at the top of the mineral wool to the top of the floor assembly was filled with Hilti FS-One Max caulking.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 hours  | NA.       | CANULC S115             | 26     | In tert ek<br>March 30, 2016      |
| 5-ply CLT<br>(131 mm 5.16*) | None                       | 2.5* sch ed. 40<br>pip e                               | Centered                                  | 4.92 in diameter hole. Pipe wrap was installed around the schedule 40 pipe to a total depth of approximately $4-5/32$ in. The remaining lin. annular space starting at the top of the pipe wrap to the top of the floor assembly was filled with HiltiFS-One Max caulking.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 hours  | 0.5 hour  | CANULC S115             | 26     | In tert ek<br>March 30, 2016      |
| 5-ply CLT<br>(131 mm 5.16*) | None                       | 6° cast iron pipe                                      | Centered                                  | 8.35 in diameter hole. Mineral wool was installed in the lin. annular space around the cast iron pipe to a total depth of approximately $4 - 5/32$ in. The remaining lin. annular space starting at the top of the pipe wrap to the top of the floor assembly was filled with Hilti FS-One Max caulking.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 hours  | NA.       | CANULC S115             | 26     | Intertek<br>March 30, 2016        |
| 5-ply CLT<br>(131 mm 5.16*) | None                       | Hilti 6 in drop in<br>device. System<br>No.: F- B-2049 | Centered                                  | 9.01* diameter hole. Mineral wool was installed in the 1 – 1/4in, annular space around the drop-in device to a total depth of approximately 1 – 7/64in and the remaining 1 in, annular space from the top of the mineral wool to the top edge of the 9 – 1/64in, hole in the CLT was filled with Hilti FS-One Max caulking.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 hours  | 1.5 hours | CANULC S115             | 26     | In tert ek<br>March 30, 2016      |
| 5-ply<br>(175mm6.875*)      | None                       | 1 " nominal PVC<br>pipe                                | Centered                                  | 4.21 in diameter with a 3/4 in plywood reducer flush with the top of the slab reducing the opening to 2.28 in. Two wraps of Hilti CP 648-E W45/1-3/4"<br>Firestop wrap strip at two locations with a 30 gauge steel sleeve which extended from the top of the slab to 1 in below the slab. The first location was<br>with the bottom of the wrap strip flush with the bottom of the steel sleeve and the second was with the bottom of the wrap strip 3 in. from the bottom<br>of the slab. The void between the steel sleeve and the CLT and between the steel sleeve and pipe at the top was filled with Roxul Safe mineral wool<br>leaving a 3/4 in deep void at the top of the assembly. Hilti FS-One Max Intumescent Firestop Sealant was applied to a depth of 3/4 in on the top of the<br>assembly between the plywood and steel sleeve as well as the steel sleeve and pipe. | 2 hours  | 2 hours   | ASTM E8 14              | 24     | QAI Laboratories<br>March 3, 2017 |



## **SEALANTS AT MT PANEL EDGES**



## **Sealants at MT Panel Edges**

**703.9 Sealing of adjacent mass timber elements.** In buildings of <u>Type</u> <u>IVA, IVB, and IVC</u> construction, sealant or adhesive shall be provided to resist the passage of air in the following locations:

- 1. At abutting edges and intersections of mass timber building elements required to be fire resistance-rated
- 2. At abutting intersections of mass timber building elements and building elements of other materials where both are required to be fire resistance-rated.



## **Sealants at MT Panel Edges**

**Sealants** shall meet the requirements of **ASTM C920** (elastomeric joint sealants). **Adhesives** shall meet the requirements of **ASTM D3498** (gap filling construction adhesives, i.e. not fire caulk).

Exception: Sealants or adhesives need not be provided where they are not a required component of a fire resistance- rated assembly.



## **Sealants at MT Panel Edges**

# 2021 IBC requires periodic special inspections of adhesive/sealant installation

### (when required to be installed)



## **Joints & Intersecting Elements**



### SECTION 202 DEFINITIONS

Joint. The opening in or between adjacent assemblies that is created due to building tolerances, or is designed to allow independent movement of the building in any plane caused by thermal, seismic, wind or any other loading.

### **Considerations:**

- Is wall, beam and slab <u>rated?</u>
- Required to prevent smoke passage?

Not a tall timber specific item, applicable to all mass timber construction

## **Joints & Intersecting Elements**



Not a tall timber specific item, applicable

to all mass timber construction

Source: Hilti

## Connections

Credit: Structurlam

### Design considerations:

- Fire ratings
- Structural capacity
- Shrinkage
- Constructability
- Aesthetics
- Cost



## **Mass Timber Connections Index**





ARCHITECTURE URBAN DESIGN INTERIOR DESIGN





A library of commonly used mass timber connections with designer notes and information on fire resistance, relative cost and load-carrying capacity.



### WoodWorks Index of Mass Timber Connections



## **Connection Fire Protection**

In Construction <u>Types IV-A, IV-B & IV-C</u>, building elements are required to be FRR as specified in IBC Tables 601 and 602. Connections between these building elements must be able to maintain FRR no less than that required of the connected members.



### **16.3 Wood Connections**

Wood connections, including connectors, fasteners, and portions of wood members included in the connection design, shall be protected from fire exposure for the required fire resistance time. Protection shall be provided by wood, fire-rated gypsum board, other approved materials, or a combination thereof.

## **Connection Fire Protection**





## **Fire Resistance of Connections**

**2304.10.1 Connection fire resistance rating.** Fire resistance ratings in **Type IV-A, IV-B, or IV-C** construction shall be determined by one of the following:

**1.** <u>Testing in accordance with Section 703.2</u> where the connection is part of the fire resistance test.



Source: AWC's TR 10

2. Engineering analysis that demonstrates that the temperature rise at any portion of the connection is limited to an average temperature rise of 250° F (139° C), and a maximum temperature rise of 325° F (181° C), for a time corresponding to the required fire resistance rating of the structural element being connected. For the purposes of this analysis, the connection includes connectors, fasteners, and portions of wood members included in the structural design of the connection.

## **Connection Fire Protection**

2017 Glulam Beam to Column Connection Fire Tests under standard ASTM E119 time-temperature exposure







## **Connection Fire Protection**

### SOUTHWEST RESEARCH INSTITUTE

6220 CULEBRA RCAD 78238-5165 + PO DRAWER 28510 78228 0510 + SAN ANTONIO, TEXAS, USA + (210) 884-5111 + WWW 3WRI ORD

CHEMISTRY AND CHEMICAL ENGINEERING DIVISION

FIRE TECHNOLOGY DEPARTMENT WWW.FIRE.5WRLORG FAX (210) 522-3377

### Softwood Lumber Board

### **Glulam Connection Fire Test**

Summary Report

Issue | June 5, 2017

FIRE PERFORMANCE EVALUATION OF A LOAD BEARING GLULAM BEAM TO COLUMN CONNECTION, INCLUDING A CLT PANEL, TESTED IN GENERAL ACCORDANCE WITH ASTM E119-16a, STANDARD TEST METHODS FOR FIRE TESTS OF BUILDING CONSTRUCTION AND MATERIALS

FINAL REPORT Consisting of 32 Pages

Full Report Available at: <u>https://www.thinkwood.com/wp-content/uploads/2018/01/reThink-Wood-</u> <u>Arup-SLB-Connection-Fire-Testing-Summary-web.pdf</u>

## **Tall Mass Timber Inspections**

### **Wood Connection Coverings for Fire-Resistance**

### **110.3.5** <u>Type IV-A, IV-B, and IV-C</u> connection protection inspection. In buildings of Type IV-A, IV-B, and IV-C Construction, where connection fire resistance ratings are provided by wood cover calculated to meet the requirements of Section 2304.10.1, inspection of the wood cover shall be made after the cover is installed, but before any other coverings or finishes are installed.

**Inspection of Wood Coverings** 



## **Tall Mass Timber Special Inspections**

#### TABLE 1705.5.3 REQUIRED SPECIAL INSPECTIONS OF MASS TIMBER CONSTRUCTION

| Туре                                                                                                                           | Continuous Special<br>Inspection | Periodic Special<br>Inspection |
|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------|
| <ol> <li>Inspection of anchorage and connections of mass timber construction to timber deep<br/>foundation systems.</li> </ol> |                                  | ×                              |
| 2. Inspect erection of mass timber construction                                                                                |                                  | X                              |
| 3. Inspection of connections where installation methods are required to meet design loads                                      |                                  |                                |
| 3.1. Threaded fasteners                                                                                                        |                                  |                                |
| 3.1.1. Verify use of proper installation equipment.                                                                            |                                  | X                              |
| 3.1.2. Verify use of pre-drilled holes where required.                                                                         |                                  | X                              |
| 3.1.3. Inspect screws, including diameter, length, head type, spacing, installation angle,<br>and depth.                       |                                  | ×                              |
| 3.2. Adhesive anchors installed in horizontal or upwardly inclined orientation to resist sustained tension loads               | ×                                |                                |
| 3.3. Adhesive anchors not defined in 3.2.                                                                                      |                                  | X                              |
| 3.4. Bolted connections                                                                                                        |                                  | X                              |
| 3.5. Concealed connections                                                                                                     |                                  | X                              |

### Table is only required for Type IV-A, IV-B, and IV-C

Source: International Building Code

# LATERAL SYSTEMS IN TALL WOOD

## **Lateral System Choices**

and the first Credit: Hacker Architects

## **Lateral System Choices**



## **Considerations for Lateral Systems**

- Tolerances & adjustability
- Drag/collector forces









PLAN VIEW

PLAN VIEW

## **Considerations for Lateral Systems**

- Tolerances & adjustability
- Ease of installation







### Tall Mass Timber Design Resource



### 2021 IBC Tall Mass Timber Design Resource



materials. These new types are based on the previous Heavy Timber construction type (renamed Type IV-HT) but with additional fire-resistance ratings (FRRs) and levels of required noncombustible protection. The code includes provisions for up to 18 stories of Type IV-A construction

Based on information first published in the Structural Engineers Association of California (SEAOC) 2018 Conference Proceedings, this paper summarizes the

background to these proposals, technical research that supported their adoption, and resulting changes to the

for Business and Residential Occupancies.

IBC and product-specific standards.

Ad Hoc Committee

Background: ICC Tall Wood Building



#### Free at woodworks.org
## QUESTIONS?

This concludes The American Institute of Architects Continuing Education Systems Course

WoodWorks – Wood Products Council

Kate Carrigg, PE Regional Director – OR, ID-South, HI kate.carrigg@woodworks.org 303-902-3151