Measure, Report and Reduce: Using Comparative LCA to Highlight the Embodied Carbon Benefits of Wood Construction

> Ashley Cagle, PE, SE April 13, 2023

WOODWORKS

council

MOOD PRODUCT

Carbon Benefits of Wood

- » Lower embodied carbon as compared to other common building materials
- » Less fossil fuel consumed during manufacture
- » Extended carbon storage in products
- » Carbon sequestration in forests and promote forest health

Image: USDA US Forest Service

Life Cycle Assessment (LCA)

"Evaluation of the inputs, outputs, and potential environmental impacts of a product system throughout its life cycle"

» Systematic, scientific quantification

Used for:

- » Single products or processes: e.g., a wood product
- » Complex, integrated systems: e.g., an entire building (WBLCA)

mation within the system boundary Optional supplement system boundary							Construction works life cycle information within the system boundary											
D		C1 - C4				B1 - B7					A4	A1 - A3						
	END-OF-LIFE Stage				USE Stage				UCTION	CONSTR Sta	PRODUCTION Stage (Mandatory)							
	C4	C3	C2	C1	B5	B4 ^a	B3	B2	B1	A5	A4	A3	A2	A1				
Potential net benef from reuse, recycli and/or energy recov beyond the system boundary	Disposal of waste	Waste processing	Transport to waste processing or disposal	De-construction / Demolition	Refurbishment (incl. production, transport and disposal of necessary materials)	Replacement (incl. production, transport and disposal of necessary materials)	Repair (incl. production, transport and disposal of necessary materials)	Maintenance (incl. production, transport and disposal of necessary materials)	Use	Installation	Transport to site	Manufacturing	Transport to factory	Extraction and upstream production				
Scenario	Scenario	Scenario	Scenario	Scenario	Scenario	Scenario	<i>Scenario</i> ational ener	Scenario Oper:	Scenario B6	Scenario	Scenario							
					Scenario													
					B7 Operational water use													
		nario						Scenario										

^a Replacement information module (B4) not applicable at the product level.

Source: ISO 21930:2017(E), Figure 2

What makes wood different?

Biogenic Carbon

"Carbon derived from... material of biological origin

excluding material embedded in geological formations or transformed to fossilized material and excluding peat."

Photosynthesis:

 $6 \text{ CO}_2 + 6 \text{ H}_2\text{O} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 \text{ (stored)} + 6 \text{ O}_2 \text{ (released)}$

Carbon Storage

Wood ≈ **50% Carbon** (dry weight)

Image: Lever Architecture

Biogenic Carbon Accounting

Removal of carbon from the atmosphere

Emission or export of carbon from product system

Biogenic Carbon

"For wood, biogenic carbon may be characterized with a -1... when entering the product system only when the wood originates from sustainably managed forests."

So...

What is a sustainably managed forest?

Sustainably Managed Forests

"... zero emissions associated with land use change"

Option 1:

Includes wood products *responsibly sourced and certified* to:

- » **Standards** globally endorsed by PEFC and FSC
- » FSC, SFI, CSA, ATFS, etc.

Option 2: (NOTE 2)

- » "The concept of sustainably managed forests is linked but not limited to respective certification schemes"
- » Evidence such as national reporting under UNFCCC to identify forests with stable or increasing forest carbon stocks

UNFCCC National Reporting

"... stable or increasing forest carbon stocks"

NATIONAL INVENTORY REPORT 1990–2020: GREENHOUSE GAS SOURCES AND SINKS IN CANADA

CANADA'S SUBMISSION TO THE UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE CHANGE

See Table 6-10

See Table 6-1

U.S. Forest Land:

Forest Area in the United States 1630 – 2017

State of our Forests: US Timber Volume on Timberland

Source: USDA-Forest Service, Forest Resources of the United States, 2017 (2018)

Should I include biogenic carbon?

Yes! But how?

https://www.woodworks.org/resources/how-to-include-biogenic-carbon-in-an-lca/

End-of-Life Fates for Wood Products

- **1.** Landfill
- 2. Incineration (for energy recovery)
- **3.** Recycle
- 4. Direct Reuse

What end-of-life option should I use?

https://www.woodworks.org/resources/biogenic-carbon-accounting-in-wblca-tools/

https://www.woodworks.org/resources/biogenic-carbon-accounting-in-wblca-tools/

https://www.woodworks.org/resources/biogenic-carbon-accounting-in-wblca-tools/

A Note About Tools:

In addition to differences in end-of-life scenarios:

- » Where end-of-life effects are reported (C3-C4 vs Module D)
- » Methodology (ISO compliance)
- » LCI Databases (background data)
- » User interface, workflow

https://www.woodworks.org/resources/biogenic-carbon-accounting-in-wblca-tools/ https://www.woodworks.org/resources/calculating-the-embodied-carbon-of-different-structural-systems/

Resources from WoodWorks

Whole Building Life Cycle Assessment (WBLCA)

» Introduction to Whole Building Life Cycle Assessment: The Basics

Biogenic Carbon and Carbon Storage

- » When to Include Biogenic Carbon in an LCA
- » How to Include Biogenic Carbon in an LCA
- » Biogenic Carbon Accounting in WBLCA Tools
- » Long-Term Biogenic Carbon Storage
- » Calculating the Carbon Stored in Wood Products

Environmental Product Declarations (EPDs)

- » Current EPDs for Wood Products
- » How to Use Environmental Product Declarations

Copyright Materials

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

© The Wood Products Council 2023

Funding provided in part by the Softwood Lumber Board

Disclaimer: The information in this presentation, including, without limitation, references to information contained in other publications or made available by other sources (collectively "information") should not be used or relied upon for any application without competent professional examination and verification of its accuracy, suitability, code compliance and applicability by a licensed engineer, architect or other professional. Neither the Wood Products Council nor its employees, consultants, nor any other individuals or entities who contributed to the information make any warranty, representative or guarantee, expressed or implied, that the information is suitable for any general or particular use, that it is compliant with applicable law, codes or ordinances, or that it is free from infringement of any patent(s), nor do they assume any legal liability or responsibility for the use, application of and/or reference to the information. Anyone making use of the information in any manner assumes all liability arising from such use.

Alexis Feitel, PE Team Carbon Unit Director & Structural Engineer <u>afeitel@klaa.com</u>

Disclaimer: This presentation was developed by a third party and is not funded by WoodWorks or the Softwood Lumber Board.

Photo Credit: JC Buck

KL&A

Engineers & Builders

- PLATTE FIFTEEN LCA CASE STUDY
- RETURN TO FORM LCA CASE STUDY
- CASE STUDY TRENDS

OUTLINE

CRADLE TO GATE

				Life	Сус	le St	age	s & 3	Stud	y Sc	ope							
Product		Constr- uction		Use							End-of-Life				Module D			
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	CI	C2	C3	C4	D1	D2	D3
Raw material supply	Transport	Manufacturing	Transport	Construction/Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational Energy Use	Operational Water Use	Deconstruction	Transport	Waste Processing	Disposal	Reuse	Recycling	Energy Recovery
1	~	1	1			1	~	1	1				1	~	1	1	1	1

Figure 3. Life Cycle Stages³ as defined by EN 15978. Processes included in Tally modeling scope are shown in bold. Italics indicate optional processes.

Office / Retail

Type III-B over IA Construction, IBC 2015 P2: Concrete Mat Slab Foundation P1, L1: Concrete Slabs L2: Concrete Podium Slab L3- Roof: Mass Timber Concrete Cores 30' x 30' Grid

Platte Fifteen Life Cycle Assessment

Authors KL&A Engineers and Builders Adolfson & Peterson

PLATTE FIFTEEN Denver, Colorado

Office / Retail Type III-B over IA Construction, IBC 2015 P2: Concrete Mat Slab Foundation P1, L1: Concrete Slabs L2: Concrete Podium Slab L3- Roof: Mass Timber Concrete Cores

ROOF

LVL 5

LVL 4

LVL 3

LVL 2 PODIUM

LVL 1 GROUND

LVL P2

-

30' x 30' Gri

PLATTE FIFTEEN Denver, Colorado

MASS TIMBER (AS CONSTRUCTED) STEEL

PT CONCRETE

Floor assembly, (including topping) framing, columns

-6

1

Total GWP/M² Above Podium Slab Per Building System

DOLLAR COST vs TIME COST vs CARBON COST

Photo by Michele dot com on Unsplash

DOLLAR COST

PLATTE FIFTEEN

TIMELAPSE

MT CONSTRUCTION SPEED: 2,000 SF / DAY 6-8 WORKERS

DOLLAR COST & TIME COST

+ 3.5 months

DOLLAR COST & TIME COST

+ 3.5 months

DOLLAR COST vs CARBON COST

Baseline

Steel

Structural System GWP and Whole Building Cost (%)

DEVELOPMENT / BUILDING

DOLLAR COST & CARBON COST

+ 3.5 months

CASE STUDY SERIES USDA, SLB, WW, THINKWOOD, KL&A

Multifamily / Retail Type IV-B Construction, IBC 2018 with Denver Amendments 12 Story

No below grade L1: Drilled Piers + Concrete Slab on Grade L2-L4: Concrete Slabs L5 - Roof: Mass Timber Concrete Cores

20' x 20' Grid

RETURN TO FORM Denver, Colorado

R 20

л

10

Multifamily / Retail Type IV-B Construction, IBC 2018 with Denver Amendments 12 Story

No below grade L1: Drilled Piers + Concrete Slab on Grade L2-L4: Concrete Slabs L5 - Roof: Mass Timber

Concrete Cores 20' x 20' Grid

RETURN TO FORM Denver, Colorado

JT 1

10

PT CONCRETE

MASS TIMBER (AS DESIGNED) STEEL (CFS & DECK)

Maximum Stored Biogenic Carbon Potential

1738 Metric Ton of CO₂eq

- = 4.3 Million Miles Driven by Standard Vehicle
- = 240 First Class Roundtrip Flights from Denver to London
- = 335 Homes' Electricity Use for 1 Year
- = 5 Minutes for US and Canadian Forests to Grow

Office / Retail Type III-B over IA Construction, IBC 2015 7 Story

P2: Concrete Mat Slab Foundation P1, L1: Concrete Slabs L2: Concrete Podium Slab L3- Roof: Mass Timber Concrete Cores

30' x 30' Grid

Multifamily / Retail Type IV-B Construction 12 Story No below grade L1: Drilled Piers + Concrete Slab on Grade L2-L4: Concrete Slabs L5 - Roof: Mass Timber Concrete Cores 20' x 20' Grid

PLATTE FIFTEEN & RETURN TO FORM

PLATTE FIFTEEN

RETURN TO FORM

PLATTE FIFTEEN

RETURN TO FORM

HOW TO LEVERAGE MASS TIMBER IN DESIGN

• COST

- GRID EFFICIENCY
- PANEL OPTIMIZATION
- BEARING & SCREWED CONNECTIONS
- FINISHES
- **PREFABRICATION**
 - PANELIZED SYSTEM
 - COORDINATE & PRECUT
- SPEED OF CONSTRUCTION
 - CORE WALLS CRITICAL PATH
 - PREFABRICATED/ PANELIZED FAÇADE
 - PANEL SEQUENCING
 - TEMPORARY PROTECTION

Photo Credit: JC Buck

MASS TIMBER IS SUSTAINABLE...

- LOW EMBODIED CARBON
- STORES CARBON
- RENEWABLE
- REUSABLE
 EASE OF DECONSTRUCTION & RECOVERY

50% carbon

UNDER CONSTRUCTION, MASS TIMBER...

- IS FAST
- IS QUIET
- IS LIGHTER
- **REQUIRES LIMITED LABOR**
- HAS LITTLE WASTE
- REDUCES CONSTRUCTION TRAFFIC

IN THE FINISHED BUILDING, MASS TIMBER...

- IS HEALTHY CREATES BIOPHILIC ENVIRONMENT
- NATURAL AESTHETIC
- HIGH LEASE RATES
- HIGH LEASING VELOCITY
- ADVANCES DEVELOPER BRANDING, ESG COMMITMENTS
- EARNS CARBON CREDITS, GREEN FINANCING

MASS TIMBER INDUSTRY...

ENCOURAGES FOREST HEALTH & MAINTENANCE

- **SUPPORTS RURAL ECONOMIES**
- LEVERAGES BIOMIMICRY
- **RESPONDS TO SOCIETAL DEMAND FOR SUSTAINABLE CONSUMER PRODUCTS**

Alexis Feitel, PE, Team Carbon Unit Director & Structural Engineer afeitel@klaa.com