Design of Mass Timber Diaphragms and the New CLT Diaphragm Design Guide

WOODWORKS

July 12, 2023

Presented by Scott Breneman, WoodWorks Eric McDonnell, Holmes

Catalyst / MGA | Michael Green Architecture / photo Andrew Giammarco

Background

Glue Laminated Timber (Glulam) Beams & columns

Cross-Laminated Timber (CLT) Solid sawn laminations

Cross-Laminated Timber (CLT) SCL laminations

Photo: Freres Lumber

200

Dowel-Laminated Timber (DLT)

Photo: StructureCraft

Nail-Laminated Timber (NLT)

Glue-Laminated Timber (GLT) Plank orientation

Photo: Think Wood

Photo: StructureCraft

Photo: StructureCtat

UMass Design Building

Amherst, MA

Photo Credit: Alex Schreyer

Virtuoso

Vancouver, BC

42

No.

Image: Adera

Image: Seagate Structures

Cheney Park Apartments

Cheney, WA

Photo Credit: WoodWorks

Cooley Landing Education Center East Palo Alto, CA

Photo Credit: Michael O'Calahan

Hybrid Mass Timber and Steel Framing?

Brentwood Library

Brentwood, CA

Photo Credit: WoodWorks

What is CLT?

3+ layers of laminations Solid Sawn or Structural Composite Lumber Laminations

Cross-Laminated Layup Glued with Structural Adhesives

Consult with manufacturers

FLATWISE Panel Loading

Span in MAJOR Strength Direction "Parallel" Direction Use subscript '0' in Notation Span in MINOR Strength Direction "Perpendicular" Direction Use subscript '90' in Notation

Reference & Source: ANSI/APA PRG 320

3rd Party Product Qualification of CLT

CLT Product Reports

CLT Grade	•						L	ayup)							Pa	nel F	Prop	erties
basic or <u>cust</u>	<u>om</u>)																/	1010	
Revise	roduct Re d August	15,201	17		(a) for	Lumb			ne l le	ad in S	marti a	m CLT.	for Liso	in the	1.6.)	/		Page	3 of 5
able	1. 760 Wat	Ne Deal	girrio		or Stren			mado	115 0 51	0 11 0	martea	II OLI I		Minor St		irection			
CLT G	A CONTRACTOR OF	6.0 (si)	E ₀ (10 ⁶ psi)		F _{t0} psi)	Fc. (ps	9	F _{v,0} (psi)		F _{8,0} (psi)	F _{b.90} (psi		E ₉₀ 0 ⁶ psi)	FL90 (psi)		F _{c.90} (psi)	F _{v.90} (psi)		- 1,90 psi)
SL-		75	1.1		350	1.0		135		45	775		1.1	350		.000	135		45
	2. Allowat	ole Desi		acities	s ^(a) for	Smar		Balanc (in.) in (_	Jse in tl		or Streng	th Direct	ion	Min	or Streng	th Direct	tion
CLT Grad	e #	Thick- ness (in.)	-	Т	=	1	=	1	=	T	=	FsSers (Ibf- ft/ft)	Eler# (10 ⁱ lbf- in.2/ft)	GA _{et.0} (10 ⁶ Ibf/ft)	V _{x.0} (16f/ft)	FbSet31 (156- ft/ft)	Elat.30 (10 ⁶ lbf- in.2/ft)	GA _{e1.00} (10 ⁶ Ib6ft)	V _{*,20} (15//ft)
	3-alt	4 1/8	1 3/8	1 3/8	1 3/8	i ii				3		1,800	74	0.41	1,430	245	2.9	0.41	495
	4-maxx	5 1/2	1 3/8	1 3/8 x 2	1 3/8							2,925	161	0.49	1,740	975	23	0.85	990
	5-alt	67/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8					4,150	286	0.83	1,980	2,120	74	0.83	1,430
	5-maxx	6 7/8	1 3/8 x 2	1 3/8	1 3/8 x 2							5,150	355	1.4	2,460	245	2.9	0.86	495
SL-V4	6-maxx	8 1/4	1 3/8 x 2	1 3/8 x 2	13/8 x2							7,200	596	1.2	2,875	975	23	1.3	990
SL-V4	7-alt	9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8			7,325	707	1.2	2,500	4,825	283	1.2	1,960
	7	0.5/9	1 3/8	1 2/2	4.3/9	4 3/9	1 3/8			1		0.425	000	4.7	2 200	0.400	74	12	1.420

Structural Design Standardization

National Design Specification for Wood Construction 2015 & 2018 Edition

CLT in the U.S. Building Code - IBC 2015

ANSI/APA PRG 320 2011

AWC NDS 2015

2015 International Building Code

CLT Recognized in the Model Building Code!* (*for gravity systems with existing Construction Types)

EDGEWISE Panel Loading

Span in MAJOR Strength Direction

Span in MINOR Strength Direction

Reference & Source: ANSI/APA PRG 320-2017

EDGEWISE Panel Loading

Span in MAJOR Strength Direction

Span in MINOR Strength Direction

Reference & Source: ANSI/APA PRG 320-2017

Shear Force Terminology & Jargon

Source: ANSI/APA PRG 320-2017

Through-the-Thickness Shear In-plane Shear Forces EDGEWISE Shear in PRG 320-2017 Through-the-Thickness Shear

Source: NDS 2015 Manual

NDS 2015: $F_v(t_v)$ PRG 320-2017: $F_{v,e,0} t_p \& F_{v,e,90} t_p$

CLT in In-Plane (Edgewise) Strength

TABLE 3—REFERENCE DESIGN VALUES FOR IN-PLANE SHEAR OF THE STRUCTURLAM CROSSLAM[®] CLT PANELS¹

CLT	CLT PANEL THICKNESS		ON ORIENTATION ² si)	FACE LAMINATION ORIENTATION ³ (lbf/ft of width)					
LAYUP	DESIGNATION	11 ⁴	⊥ ⁴	п ⁴	Т ŧ				
	99 V	175 ⁸	235 ⁸	8,200 ⁸	11,000 ⁸				
V2M1	169 V	175 ⁸	235 ⁸	14,000 ⁸	18,800 ⁸				
VZIVIT	239 V	175 ⁸	235 ⁸	19,800 ⁸	26,600 ⁸				
	309 V	175 ⁸	235 ⁸	25,600 ⁸	34,300 ⁸				
	105V	195	290	9,700	14,400				
V2M1.1	175V	270	290 ⁶	22,400	24,000 ⁶				
V 2IVI 1.1	245V	270 ⁵	290 ⁶	31,3005	33,600 ⁶				
	315V	270 ⁵	290 ⁶	40,200 ⁵	43,200 ⁶				
	A		A.A.=		140 40 5 1/				

Source: ICC-ES/APA Joint Evaluation Report ESR 3631

145 to 290 PSI Edgewise Shear Capacity = 1.7 to 3.5 kips/ft (ASD) per inch of thickness!

Consult with the Manufacturers for Values

Multiply by **Cd = 1.6** for short term ASD strength Reference Design Values for Nordic X-Lam Listed in Table 1 (For Use in

<u> </u>	·	Major Strong	ath Direction	Minor Strongth Direction				
11,000 ⁸		iviajor Strenç	gth Direction	Minor Strength Direction				
18,800 ⁶ 26,600 ⁸		F _{v,e,0} ^(a) (psi)	G _{e,0} t _p ^(d) (10 ⁶ lbf/ft)	F _{v,e,90} ^(a) (psi)	G _{e.90} t _p ^(d) (10 ⁶ lbf/ft)			
34,300 ⁸		155 ^(b)	1.36	190 ^(b)	1.36			
14,400		155	1.52	190 ^(b)	1.52			
24,000 ⁶ 33,600 ⁶		155	1.79	190	1.79			
43,200 ⁶		185 ^(c)	2.23	215 ^(c)	2.23			
140-4s	5 1/2	145	2.39	190 ^(b)	2.39			
143-5s	5 5/8	185 ^(c)	2.44	215 ^(c)	2.44			
175-5s	6 7/8	185	2.99	215	2.99			
197-7s	7 3/4	155 ^(b)	3.37	215 ^(c)	3.37			
213-7I	8 3/8	185 ^(c)	3.64	215 ^(c)	3.64			
220-7s	8 5/8	185 ^(c)	3.75	215 ^(c)	3.75			
244-7s	9 5/8 185 ^(c)		4.18	215 ^(c)	4.18			
244-71	9 5/8	185 ^(c)	4.18	215 ^(c)	4.18			
267-91	10 1/2	155 ^(b)	4.56	215 ^(c)	4.56			
314-91	12 3/8	185 ^(c)	5.38	215 ^(c)	5.38			

Source: APA Product Report PR-L306

E1

CLT <u>Panels</u> can have > 9 kips / ft in-plane shear capacity

CLT in the U.S. Building Code – IBC 2018 (Lateral)

2018 International Building Code 2019 CBC

No explicitly recognized requirements for CLT Lateral Systems in 2018 IBC

CLT in the U.S. Building Code – IBC 2021

New Type IV Mass Timber Construction up to 18 Stories!

CLT in the U.S. Building Code – IBC 2021 (Lateral)

New Requirements for CLT Lateral Systems in SDPWS 2021! Referenced from IBC 2021

2021 Special Design Provisions for Wind and Seismic

Top Changes Relevant to CLT Lateral Systems:

- New unified nominal shear capacity
- New CLT Shear Wall requirements
- New CLT Diaphragm requirements

View for free at awc.org

PowerPoint IS NOT the CODE!

2021 Special Design Provisions for Wind and Seismic

Top Changes Relevant to CLT Lateral Systems:

- <u>New unified nominal shear capacity</u>
- New CLT Shear Wall requirements
- New CLT Diaphragm requirements

View for free at awc.org

PowerPoint IS NOT the CODE!

2021 SDPWS – Unified Nominal Shear Capacity

For sheathed wood frame shear walls and diaphragms, SDPWS 2015 has two nominal shear capacities

$$v_{
m s}$$
 Nominal shear capacity for seismic loads $v_{
m w}$ Nominal shear capacity for wind loads

SDPWS 2021 has one nominal shear capacity for both wind and seismic (for all systems such as WSP and CLT)

 $v_{
m n}$ Nominal shear capacity

2021 SDPWS – Unified Nominal Shear Capacity

To calculate the ASD or LRFD shear capacity, SDPWS 2021 has <u>different reduction</u> factors for wind and seismic

	Design shear capacity						
	ASD	LRFD					
Wind	$v_{\rm n}$ /2.0	0.8 $v_{ m n}$					
Seismic	$v_{\rm n}$ /2.8	0.5 $v_{ m n}$					

2021 Special Design Provisions for Wind and Seismic

Top Changes Relevant to CLT Lateral Systems:

- New unified nominal shear capacity
- <u>New CLT Shear Wall requirements</u>
- New CLT Diaphragm requirements

View for free at awc.org

PowerPoint IS NOT the CODE!

CLT Shear Walls in SDPWS 2021

(other) CLT Shear Walls

not meeting Appendix B

CLT Shear Walls

meeting SDPWS 2021 Appendix B

with shear resistance provided by high aspect ratio panels only (SDPWS B.3.7)

Seismic Design Category A or SDC B and ≤ 65' tall in SDPWS 4.6.3 Exception

Panel aspect ratios $2 \le h/b_s \le 4$

Panel aspect ratios $h/b_s = 4$

R Values for CLT Shear Walls in SDPWS 2021

(other) CLT Shear Walls

not meeting Appendix B

Platform Framed CLT Shear Walls

meeting SDPWS 2021 Appendix B

CLT in the U.S. Building Code – Lateral in IBC 2021 SDPWS 2015

New Requirements for CLT Lateral Systems! (but R values for CLT Shear Walls not in ASCE 7-16)

CLT in the U.S. Building Code – Lateral in the IBC 2024?

Future Full Recognition of CLT Shear Wall

Mass Timber Diaphragms

Diaphragm Strategies with Horizontal CLT

- Option 1: Structural Topping as Horizontal Diaphragm
- (1A) Structural Concrete Topping

Careful detailing to provide adequate load path, minimum rebar cover, etc.

Diaphragm Strategies with Horizontal CLT

- Option 1: Structural Topping as Horizontal Diaphragm
- (1B) Wood Structural Panel Topping

WSP as diaphragm

CLT Panel as laminated decking

Classify as blocked WSP diaphragm per SDPWS 2015 4.2.7.1?

19/32" thick 4ft by 8ft panel vs 4 1/8" thick 8ft by 24 ft panel?

Typical Diaphragm

High Load Diaphragm

NLT Diaphragm Design

Figure 4.7: Prefabricated Pre-sheathed Panels

Key

- 1. Field-intalled Plywood/OSB
- 2. Plywood/OSB splice location with typical diaphragm nailing
- 3. Plywood/OSB splice location for high load daiphragm nailing
- 4. Shop-installed plywood/OSB diaphragm sheathing
- 5. Prefabricated NLT panel A
- 6. Prefabricated NLT panel B
- 7. NLT expansion gap location fire stopped as required
- 8. Self-tapping screw pairs crossing plywood/ OSB splice location

Source: NLT Design & Construction Guide

NLT Diaphragm Design

Pre-fabricated panels often pre-sheathed

Once installed, add splice strips, tape joint if applicable

Diaphragm Strategies with Horizontal CLT

• Option 2: CLT as a Diaphragm

Topping and Flooring as needed

CLT Panel as Diaphragm

				1	7/				7/				2
	\												

2021 Special Design Provisions for Wind and Seismic

Top Changes Relevant to CLT Lateral Systems:

- New unified nominal shear capacity
- New CLT Shear Wall requirements
- <u>New CLT Diaphragm requirements</u>

View for free at awc.org

PowerPoint IS NOT the CODE!

CLT Diaphragms

Strength of CLT rarely governs.

Strength of Connections covered by NDS and Proprietary Fastener Evaluation Reports

24' x 24' CLT Diaphragm Test with Plywood Spline by AWC

2021 Special Design Provisions for Wind and Seismic

4.5 Cross-Laminated Timber (CLT) Diaphragms

4.5.1 Application Requirements

CLT diaphragms shall be permitted to be used to resist lateral forces provided the deflection in the plane of the diaphragm, as determined by calculations, tests, or analogies drawn therefrom, does not exceed the maximum permissible deflection limit of attached load distributing or resisting elements. Permissible deflection shall be that deflection that will permit the diaphragm and any attached elements to maintain their structural integrity and continue to support their prescribed loads as determined by the applicable building code or standard.

4.5.2 Deflection

CLT diaphragm deflection shall be determined using principles of engineering mechanics.

4.5.3 Unit Shear Capacity

CLT diaphragms shall be designed in accordance with principles of engineering mechanics using design values for wood members and connections in accordance with NDS provisions.

The nominal unit shear capacity, v_{n_s} of CLT diaphragms shall be based on the nominal shear capacity for dowel-type fastener connections used to transfer diaphragm shear forces, as calculated per 4.5.4, Item 1. ASD allowable shear capacity or LRFD factored shear resistance for the CLT diaphragm and diaphragm shear connections shall be determined in accordance with 4.1.1.

4.5.4 Additional CLT Diaphragm Design Requirements

CLT diaphragms shall meet the following additional requirements:

 The nominal shear capacity for dowel-type fastener connections used to transfer diaphragm shear forces between CLT panels and between CLT panels and diaphragm boundary elements (chords and collectors) shall be taken as 4.5Z*, where Z* is Z multiplied by all applicable NDS adjustment factors except C_D, K_F, φ, and λ; and Z shall be controlled by Mode IIIs or Mode IV fastener yielding in accordance with NDS 12.3.1.

- Connections used to transfer diaphragm shear forces shall not be used to resist diaphragm tension forces.
- Wood elements, steel parts, and wood or steel chord splice connections shall be designed for 2.0 times the diaphragm forces associated with the shear forces induced from the design loads.

Exceptions:

- Wood elements and wood splice connections shall be permitted to be designed for 1.5 times the diaphragm forces associated with the shear forces induced by the wind design loads.
- 2. Where dowel-type fasteners are used in chord splice connections and the connection is controlled by Mode IIIs or Mode IV fastener yielding in accordance with NDS 12.3.1, fasteners in the connection shall be permitted to be designed for 1.5 and 1.0 times the diaphragm forces associated with the shear forces induced by the prescribed seismic and wind design loads, respectively.

Diaphragm chord elements and chord splice connections using materials other than wood or steel shall be designed using provisions in NDS 1.4. Only 1 page of requirements for CLT Diaphragms

CLT Diaphragm Design Guide based on SDPWS 2021

CLT Diaphragm Design Guide based on SDPWS 2021

CLT Diaphragm Design Guide

BASED ON SDPWS 2021

Chapter Organization

- 1. Introduction
- 2. Codes and Standards
- 3. Methodology of CLT Diaphragm Design
- 4. Diaphragm Shear Components
- 5. Diaphragm Boundary Elements
- 6. Diaphragm Deflection and Stiffness
- 7. Special Design Considerations
- 8. Example 12-Story Office with Distributed Frames
- 9. Example 12-Story Office with Reinforced Concrete Cores
 10. Example 5-Story Residence with Wood-Frame Shear walls
 Appendix A Precalculated Design Capacities
 Appendix B Literature Review

2021 Special Design Provisions for Wind and Seismic

4.5 Cross-Laminated Timber (CLT) Diaphragms

4.5.1 Application Requirements

CLT diaphragms shall be permitted to be used to resist lateral forces provided the deflection in the plane of the diaphragm, as determined by calculations, tests, or analogies drawn therefrom, does not exceed the maximum permissible deflection limit of attached load distributing or resisting elements. Permissible deflection shall be that deflection that will permit the diaphragm and any attached elements to maintain their structural integrity and continue to support their prescribed loads as determined by the applicable building code or standard.

4.5.2 Deflection

CLT diaphragm deflection shall be determined using principles of engineering mechanics.

4.5.3 Unit Shear Capacity

CLT diaphragms shall be designed in accordance with principles of engineering mechanics using design values for wood members and connections in accordance with NDS provisions.

The nominal unit shear capacity, v_n, of CLT diaphragms shall be based on the nominal shear capacity for dowel-type fastener connections used to transfer diaphragm shear forces, as calculated per 4.5.4, Item 1. ASD allowable shear capacity or LRFD factored shear resistance for the CLT diaphragm and diaphragm shear connections shall be determined in accordance with 4.1.1.

4.5.4 Additional CLT Diaphragm Design Requirements

CLT diaphragms shall meet the following additional requirements:

1. The nominal shear capacity for dowel-type fastener connections used to transfer diaphragm shear forces between CLT panels and between CLT panels and diaphragm boundary elements (chords and collectors) shall be taken as $4.5Z^*$, where Z^* is Z multiplied by all applicable NDS adjustment factors except C_D, K_F, ϕ , and λ ; and Z shall be controlled by Mode IIIs or Mode IV fastener yielding in accordance with NDS 12.3.1.

- Connections used to transfer diaphragm shear forces shall not be used to resist diaphragm tension forces.
- Wood elements, steel parts, and wood or steel chord splice connections shall be designed for 2.0 times the diaphragm forces associated with the shear forces induced from the design loads.

Exceptions:

- Wood elements and wood splice connections shall be permitted to be designed for 1.5 times the diaphragm forces associated with the shear forces induced by the wind design loads.
- 2. Where dowel-type fasteners are used in chord splice connections and the connection is controlled by More IIIs or Mode IV fastener yielding in accordance with NDS 12.3.1, fasteners in the connection shall be permitted to be defined for 1.5 and 1.0 times the diaphrage forces associated with the shear forces induced by the prescribed seismic and wind design loads, respectively.

Diamragm chord elements and chord splice connctions using materials other than wood or steel shall be designed using provisions in NDS 1.4.

4.5.4 Additional CLT Diaphragm Design Requirements

CLT diaphragms shall meet the following additional requirements:

The nominal shear capacity for dowel-type fastener connections used to transfer diaphragm shear forces between CLT panels and between CLT panels and diaphragm boundary elements (chords and collectors) shall be taken as $4.5Z^*$, where Z* is Z multiplied by all applicable NDS adjustment factors except C_D, K_F, ϕ , and λ ; and Z shall be controlled by Mode IIIs or Mode IV fastener yielding in accordance with NDS 12.3.1.

Requirements for the shear connections

Generic Mass Timber Floor System

Example CLT Diaphragm Design

CLT Diaphragm Shear Connections

- Diaphragm shear connections at CLT panel edges:
- Use dowel-type fasteners in shear (nails, screws, bolts)
- Yield Mode IIIs or Mode IV per NDS 12.3.1 controls capacity

Connection Yield Modes Per the NDS

Panel to Panel Connection Styles

• Single Surface Spline

Panel to Panel Connection Styles

• Half-Lap

Fastener Vendor Design Support

Centerline

match

Ordering SKU

			SIMPS			
SDWS2		d and slip modulus for SDWS Timber line fastening with 1-1/8-in. APA ra				
	ood Species Combination	Allowable load per Fastener (lb.)	Fastener slip modulus (in./K)			
	DFL	375	0.15			
	SPF SPF-S	335	0.15			
	building code. Applicable adjustments sh	at C ₂ =1.0 and maybe increased up to all be applied following the ANSI/AW le for all grain orientation combinati	/C NDS®-15 or NDS®-18.			
	in the CLT and the wood st listed.	tructural panel spline and grades of (CLT for the species combinations			
4.	Designer is responsible to shear).	check shear capacity of spline (shear	through the thickness and rolling			

Figure 1: Typical end elevation -- Single-surface spline with 5-ply CLT panels, 1-1/8-in. spline (plywood shown, 6-in. width), and 6-in. SDWS Timber screws (SDWS22600DB).

An Efficient Panel to Panel Connection

Graphics: ASPECT Structural Engineers

Panel to Panel Connection Tolerances

Panel to Panel Connection Tolerances

One reason for size of cut rabbet in CLT for spline to include gaps:

POTENTIAL BEHAVIOR UNDER HIGH DIAPHRAGM LOADING

Panel to Panel Connections Options

Is a butt joint with angled screws compliant?

Panel to Beam Connection Styles

CLT Diaphragm Shear Connection Design

Nominal capacity of CLT diaphragm shear connection fastener:

 $Z_n = 4.5 Z^*$

Where Z^* is reference lateral capacity of the fastener, Z, of NDS multiplied by all NDS adjustment factors *except* C_D, K_F, ϕ , λ = 1.0

Table 11.3.1 Applicability of Adjustment Factors for Connections

SDPWS 2021 Section 4.5.4(1) and NDS Table 11.3.1

CLT Diaphragm Shear Connection Design

Nominal capacity of CLT diaphragm shear connection fastener:

 $Z_n = 4.5 Z^*$

Where Z^* is reference lateral capacity of the fastener, Z, of NDS multiplied by all NDS adjustment factors *except* C_D, K_F, ϕ , λ = 1.0

Fastener with regular spacing, S, nominal unit shear connection capacity is:

$$v_n = Z_n / S = 4.5 Z^* / S$$

SDPWS 2021 Section 4.5.4(1) and NDS Table 11.3.1

2021 SDPWS – Unified Nominal Shear Capacity

FOR WIND AND SEISMIC

To calculate the ASD or LRFD shear capacity, SDPWS 2021 has different reduction factors for wind and seismic

	Design she	ar capacity				
	ASD LR					
Wind	$v_{ m n}$ /2.0	0.8 $v_{ m n}$				
Seismic	$v_{ m n}$ /2.8	0.5 $v_{ m n}$				

ASD seismic design capacity: $4.5 \text{ Z}^* / 2.8 = 1.61 \text{ Z}^* \approx \text{C}_{\text{D}} \text{ Z} = 1.6 \text{ Z}$

CLT Diaphragm Shear Connection Design

Fastener with regular spacing, S, nominal unit shear connection capacity is:

$$v_n = Z_n / S = 4.5 Z^* / S$$

Required unit shear strength ≤ Design unit shear capacity

ASD
$$v = v_{ASD} \le \frac{v_n}{RF}$$
 $RF = 2.8 \text{ (seismic)} = 2.0 \text{ (wind)}$
LRFD $v = v_u \le \phi v_n$ $\phi = 0.5 \text{ (seismic)} = 0.8 \text{ (wind)}$

SDPWS 2021 Section 4.1.4 and 4.5.4(1)

Other Diaphragm Components

4.5 Cross-Laminated Timber (CLT) Diaphragms

4.5.1 Application Requirements

CLT diaphragms shall be permitted to be used to resist lateral forces provided the deflection in the plane of the diaphragm, as determined by calculations, tests, or analogies drawn therefrom, does not exceed the maximum permissible deflection limit of attached load distributing or resisting elements. Permissible deflection shall be that deflection that will permit the diaphragm and any attached elements to maintain their structural integrity and continue to support their prescribed loads as determined by the applicable building code or standard.

4.5.2 Deflection

CLT diaphragm deflection shall be determined using principles of engineering mechanics.

4.5.3 Unit Shear Capacity

CLT diaphragms shall be designed in accordance with principles of engineering mechanics using design values for wood members and connections in accordance with NDS provisions.

The nominal unit shear capacity, v_n, of CLT diaphragms shall be based on the nominal shear capacity for dowel-type fastener connections used to transfer diaphragm shear forces, as calculated per 4.5.4, Item 1. ASD allowable shear capacity or LRFD factored shear resistance for the CLT diaphragm and diaphragm shear connections shall be determined in accordance with 4.1.1.

4.5.4 Additional CLT Diaphragm Design Requirements

CLT diaphragms shall meet the following additional requirements:

 The nominal shear capacity for dowel-type fastener connections used to transfer diaphragm shear forces between CLT panels and between CLT panels and diaphragm boundary elements (chords and collectors) shall be taken as 4.5Z*, where Z* is Z multiplied by all applicable NDS

- tener yielding in accordance with HDS 12.3.1.Connections used to transfer diaphragm shear forces shall not be used to resist diaphragm ten-
- Wood elements, steel parts, and wood or steel chord splice connections shall be designed for 2.0 times the diaphragm forces associated with the shear forces induced from the design loads.

Exceptions:

sion forces

- Wood elements and wood splice connections shall be permitted to be designed for 1.5 times the diaphragm forces associated with the shear forces induced by the wind design loads.
- 2. Where dowel-type fasteners are used in chord splice connections and the connection is controlled by Mode IIIs or Mode IV fastener yielding in accordance with NDS 12.3.1, fasteners in the connection shall be permitted to be designed for 1.5 and 1.0 times the diaphragm forces associated with the shear forces induced by the prescribed seismic and wind design loads, respectively.

Diaphragm chord elements and chord splice connections using materials other than wood or steel shall be designed using provisions in NDS 1.4. Wood elements, steel parts, and wood or steel chord splice connections shall be designed for 2.0 times the diaphragm forces associated with the shear forces induced from the design loads.

Exceptions:

- Wood elements and wood splice connections shall be permitted to be designed for 1.5 times the diaphragm forces associated with the shear forces induced by the wind design loads.
- 2. Where dowel-type fasteners are used in chord splice connections and the connection is controlled by Mode IIIs or Mode IV fastener yielding in accordance with NDS 12.3.1, fasteners in the connection shall be permitted to be designed for 1.5 and 1.0 times the diaphragm forces associated with the shear forces induced by the prescribed seismic and wind design loads, respectively.

Other CLT Diaphragm Components

Other CLT Diaphragm Components

Increased Diaphragm Design Forces ≤ Design Capacity

$$\gamma_D \cdot v \leq v'$$

v = wind or seismic force demand

$$v'$$
= Adjusted capacity
calculated per the NDS
not 4.5 Z*

2.0 for wood and steel components, except:

- $\gamma_D = 1.5$ wood members resisting wind loads
 - 1.5 chord splice connections controlled by Mode IIIs or IV (seismic) 1.0 chord splice connections controlled by Mode IIIs or IV (wind)

See **SDPWS 2021 Section 4.5.4** for the full information

Other CLT Diaphragm Components

$$R'_{NDS} \ge \gamma_{D} F_{design,ASD}$$

 $R'_{NDS} \ge \gamma_{D} F_{design,LRFD}$

Component	Force In Facto	Contraction of the	
	Seismic	Winc	
Chord splice connections between wood elements where the connection is using fasteners in shear controlled by yield mode III _s or IV	1.5	1.0	
Wood elements and connections between wood elements not meeting the above	2.0	1.5	
Steel elements including connections between steel elements	2.0	2.0	

 Wood elements, steel parts, and wood or steel chord splice connections shall be designed for 2.0 times the diaphragm forces associated with the shear forces induced from the design loads.

Exceptions:

- Wood elements and wood splice connections shall be permitted to be designed for 1.5 times the diaphragm forces associated with the shear forces induced by the wind design loads.
- 2. Where dowel-type fasteners are used in chord splice connections and the connection is controlled by Mode IIIs or Mode IV fastener yielding in accordance with NDS 12.3.1, fasteners in the connection shall be permitted to be designed for 1.5 and 1.0 times the diaphragm forces associated with the shear forces induced by the prescribed seismic and wind design loads, respectively.

See SDPWS 2021 Section 4.5.4 for the full information

4.5 Example Calculation of Surface Spline Connection

An example calculation for a single surface spline detail is provided in Figure 4.8.

FIGURE 4.8: Example spline connection

- 10d common nails
- Group 1, 23/32-in.-thick, 48/24 span-rated, general sheathing grade 4-ply plywood spline
- CLT panel with specific gravity, G = 0.50

An ASCE 7-16 diaphragm unit shear wind demand of 1,600 lbf per ft at strength (LRFD) is assumed.

Calculate reference shear capacity of 10d nail connection the spline to the CLT panel following NDS 12.3

G := 0.5Specific Gravity: Dowel diameter: D := 0.148 in $l_{dowel} := 3 \text{ in}$ Dowel length: F_{vb} := 90000 psi Dowel bending yield strength: Side member bearing length: *l*_s := 0.72 in $E := 2 \cdot D = 0.296$ in per NDS §12.3.5.3 Estimated length of tapered tip: $l_m := l_{dowel} - l_s - \frac{E}{2} = 2.132$ in Main member bearing length: Main member bearing strength: $F_{em} := 4650 \text{ psi}$ per NDS Table 12.3.3 F_{es} := 3350 psi Side member bearing strength: per NDS Table 12.3.3B $R_e := \frac{F_{em}}{F_{es}} = 1.39$ Bearing strength ratio: $R_t := \frac{l_m}{l_m} = 2.96$ Bearing length ratio: Reduction term: $R_{d} := 2.2$ per NDS Table 12.3.1B

Calculate reference shear capacity of 10d nail connection the spline to the CLT panel following NDS 12.3

Strength fit factors per NDS Table 12.3.1A:

$$k_{1} := \frac{\sqrt{R_{e} + 2 \cdot R_{e}^{2} \cdot \left(1 + R_{t} + R_{t}^{2}\right) + R_{t}^{2} \cdot R_{e}^{3}} - R_{e} \cdot \left(1 + R_{t}\right)}{1 + R_{e}} = 1.3$$

$$k_{2} := -1 + \sqrt{2 \cdot \left(1 + R_{e}\right) + \frac{2 \cdot F_{yb} \cdot \left(1 + 2 \cdot R_{e}\right) \cdot D^{2}}{3 \cdot F_{em} \cdot I_{m}^{2}}} = 1.24; \quad k_{3} := -1 + \sqrt{\frac{2 \cdot \left(1 + R_{e}\right)}{R_{e}} + \frac{2 \cdot F_{yb} \cdot \left(2 + R_{e}\right) \cdot D^{2}}{3 \cdot F_{em} \cdot I_{s}^{2}}} = 1.3$$

Single shear yield limit equations per NDS Table 12.3.1A:

 $\begin{array}{llllll} \text{Mode I}_{\text{m}:} & Z_{III} \coloneqq \frac{D \cdot l_m \cdot F_{em}}{R_d} = 666.9 \ \text{lbf} & \text{Mode III}_{\text{s}:} & Z_{IIIS} \coloneqq \frac{k_3 \cdot D \cdot l_s \cdot F_{em}}{\left(2 + R_e\right) \cdot R_d} = 86.4 \ \text{lbf} \\ \text{Mode II}_{\text{s}:} & Z_{IS} \coloneqq \frac{D \cdot l_s \cdot F_{es}}{R_d} = 162.3 \ \text{lbf} & \text{Mode IV}_{\text{s}:} & Z_{IV} \coloneqq \frac{D^2}{R_d} \cdot \sqrt{\frac{2 \cdot F_{em} \cdot F_{yb}}{3 \cdot \left(1 + R_e\right)}} = 107.6 \ \text{lbf} \\ \text{Mode II}_{\text{s}:} & Z_{III} \coloneqq \frac{k_1 \cdot D \cdot l_s \cdot F_{es}}{R_d} = 210.5 \ \text{lbf} \\ \text{Mode III}_{\text{m}:} & Z_{IIIIm} \coloneqq \frac{k_2 \cdot D \cdot l_m \cdot F_{em}}{\left(1 + 2 \cdot R_e\right) \cdot R_d} = 218.7 \ \text{lbf} \end{array}$

Calculate *nominal CLT diaphragm* shear capacity of nail (interior, dry application with sufficient edge distances):

ASD and LRFD CLT diaphragm shear capacity of nail:

Reduction factor: $\Omega_D := 2.0$ per SDPWS §4.1.4 for wind designASD Adjusted strength: $\frac{V_n}{\Omega_D} = 194$ lbfper SDPWS §4.1.4 for wind designResistance factor: $\phi_D := 0.8$ per SDPWS §4.1.4 for wind designLRFD Adjusted strength: $\phi_D \cdot V_n = 311$ lbf

Determine required nail spacing and compare resulting capacity with design shear demand (ASD)

 $V_{design.ASD} := 0.6 \cdot 1600 \frac{lbf}{ft} = 960 \frac{lbf}{ft}$ $s_{max} := \frac{\frac{V_n}{\Omega_D}}{V_{design.ASD}} = 2.43 \text{ in}$ s := 2.0 in

ASD load combination factor of 0.6W applied

maximum fastener spacing

specify 2.0 inches for design and construction

Check assumed Geometry Adjustment Factor depending on fastener diameter:

 $C_{\Delta} := 1.0$ adjustment factor value confirmed per NDS 12.5.1

Determine design capacity and compute the DCR.

 $v_{n} := V_{n} \cdot \frac{12 \frac{\text{in}}{\text{ft}}}{s} = 2333 \frac{1\text{bf}}{\text{ft}}$ $\frac{v_{n}}{\Omega_{D}} = 1166 \frac{1\text{bf}}{\text{ft}}$ $DCR := \frac{V_{design,ASD}}{\frac{v_{n}}{\Omega_{D}}} = 0.82$ DCR < 1.0. OK CLT Diaphragm Design Guide Section 4.5

1166 plf ASD wind shear capacity of nails > ASD wind shear demand 960 plf

Alternatively, use the pre-calculated design table in the Appendix A of the Guide, first calculate the required nominal fastener shear capacity (ASD or LRFD):

$$v_{n.\,req.\,ASD} \coloneqq \frac{\Omega_D \cdot V_{design.\,ASD}}{C_M \cdot C_t \cdot C_g \cdot C_\Delta \cdot C_{eg} \cdot C_{di} \cdot C_{tn}}$$

$$lbf$$

$$v_{n.req.ASD} := \frac{2.0 (960 \frac{101}{\text{ft}})}{1.0 \cdot 1.0 \cdot 1.0 \cdot 1.0 \cdot 1.0 \cdot 1.0 \cdot 1.0} = 1920 \frac{1\text{bf}}{\text{ft}}$$

Pre-calculated design tables in the Appendix A of the Guide

Fasten	Diameter, D							1					
8d commor	TABLE A.1.2: Exam	pie wSP prop	erties for spline capacities			1							
10d commo	Spline Sic												
16d commo		TABLE A.1.3:	Reference design value and cor	ntrolling yield mode f	for fasteners	in splines							
Example sc	General sheath			Reference Late	eral Design V	alue for Sin	gle Fastene	r, Zª (lbf)					
Example sc	Structural 1 she		4			1	1		_				
	General single	Sp	Sp TABLE A.1.4: Nominal diaphragm shear capacity for spaced fastener in spline										
Diameter us diameter, D	Structural 1 sinc	General sh			Nominal Diaphragm Shear Capacity of Fasteners, Reference S								
. Minimum pe	<u></u>	General sh	Spline Material	Fastener	and the second se		snear Ca S, @ Spaci			Reference Spline Shear Capacity,			
and 6D for v	General sheath	General sh	Spline Material	rasteller	The second second		4-in. o.c.		1	F _v t _v ^b (plf)			
	Structural 1 sing	General sh	CLT SG = 0.36		12-11. 0.0.	0-m. o.c.	4-111. 0.0.	3-11.0.0.	2-111. 0.0.				
	General sheath	General sh	General sheathing (23/32)	8d common nail	255	510	765	1,020	1,530	1,176			
		Structural	General sheathing (23/32)	10d common nail	296	592	888	1,184	1,776	1,176			
	Structural 1 sinc		General sheathing (23/32)	Example screw 1	266	531	797	1,062	1,593	1,176			
_		Structural	General sheathing (23/32)	Example screw 2	321	641	962	1,283	1,924	1,176			
		Structural	Structural 1 sheathing (23/32)	8d common nail	311	623	934	1,245	1,868	1,512			
		Structural	Structural 1 sheathing (23/32)	10d common nail	359	718	1,077	1,436	2,154	1,512			
		Structural	Structural 1 sheathing (23/32)	Example screw 1	316	631	947	1,262	1,893	1,512			
		Structural 1	Structural 1 sheathing (23/32)	Example screw 2	385	771	1,156	1,542	2,313	1,512			
		and a second second				100000	11.1	14.00					

Using the pre-calculated design table in the Appendix A of the Guide, reference Appendix A.1.4 to find spline detail with required nominal capacity

TABLE A.1.4: Nominal diaphragm shear capacity for spaced fastener in spline continued

Spline Material	Fastener	Nominal v	Reference Spline Shear Capacity,					
		12-in. o.c.	6-in. o.c.	4-in. o.c.	3-in. o.c.	2-in. o.c.	F _v t _v ^b (plf)	
CLT SG = 0.50								
General sheathing (23/32)	8d common nail	330	659	989	1,318	1.977	1,176	
General sheathing (23/32)	10d common nail	388	776	1,164	1,552	2,328	1,176	

> req. nominal 1920 plf

c. Before using highlighted fastener capacity values, verify the adjusted design spline capacity is greater than the amplified demands per SDPWS §4.5.4:

Verify adjusted spline capacity is greater than SDPWS §4.5.4.3 Exception 1 for wind design.

Verify adjusted spline capacity is greater than SDPWS §4.5.4.3 for seismic design and SDPWS 4.5.4.3 Exception 1 for wind design.

Check the plywood spline capacity per NDS against the increased load from SDPWS 4.5.4.3

Find the SDPWS increased ASD design shear:

 $Y_D \cdot V_{design.ASD} = (1.5) 960 \text{ plf} = 1440 \text{ plf}$

Compare to the NDS adjusted plywood spline capacity (ASD)

Reference in-plane shear capacity:
$$Fvtv := 98 \frac{1bf}{in} \cdot 12 \frac{in}{ft} = 1176 \frac{1bf}{ft}$$
per APA D510 Table 9Apply NDS adjustment factors:per NDS Table 9.3.1Load duration factor: $C_D := 1.6$ Wet service factor: $C_M := 1.0$ Temperature factor: $C_t := 1.0$ ASD adjusted strength: $Fvtv'_{NDS.ASD} := Fvtv \cdot C_D \cdot C_M \cdot C_t = 1882 \frac{1bf}{ft}$

> req. ASD shear 1440 plf, spline OK

CLT Diaphragm Design Guide based on SDPWS 2021

CLT Diaphragm Design Guide

BASED ON SDPWS 2021

Chapter Organization

- 1. Introduction
- 2. Codes and Standards
- 3. Methodology of CLT Diaphragm Design
- 4. Diaphragm Shear Components
- 5. Diaphragm Boundary Elements
- 6. Diaphragm Deflection and Stiffness
- 7. Special Design Considerations
- 8. Example 12-Story Office with Distributed Frames
- 9. Example 12-Story Office with Reinforced Concrete Cores
 10. Example 5-Story Residence with Wood-Frame Shear walls
 Appendix A Precalculated Design Capacities
 Appendix B Literature Review

This concludes The American Institute of Architects Continuing Education Systems Course

Scott Breneman, PhD, PE, SE

WoodWorks – Wood Products Council

Scott.Breneman@WoodWorks.org

Copyright Materials

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

© The Wood Products Council 2023

Funding provided in part by the Softwood Lumber Board

Disclaimer: The information in this presentation, including, without limitation, references to information contained in other publications or made available by other sources (collectively "information") should not be used or relied upon for any application without competent professional examination and verification of its accuracy, suitability, code compliance and applicability by a licensed engineer, architect or other professional. Neither the Wood Products Council nor its employees, consultants, nor any other individuals or entities who contributed to the information make any warranty, representative or guarantee, expressed or implied, that the information is suitable for any general or particular use, that it is compliant with applicable law, codes or ordinances, or that it is free from infringement of any patent(s), nor do they assume any legal liability or responsibility for the use, application of and/or reference to the information. Anyone making use of the information in any manner assumes all liability arising from such use.