

CLT Shear Wall and Diaphragm Design with SDPWS 2021

Presented by:

Scott Breneman, PhD, PE, SE Senior Technical Director, Mass Timber Program Manager Scott.Breneman@WoodWorks.org

WoodWorks | The Wood Products Council is a registered provider of AIA-approved continuing education under Provider Number G516. All registered AIA CES Providers must comply with the AIA Standards for Continuing Education Programs. Any questions or concerns about this provider or this learning program may be sent to AIA CES (cessupport@aia.org or (800) AIA 3837, Option 3).

This learning program is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. AIA continuing education credit has been reviewed and approved by AIA CES. Learners must complete the entire learning program to receive continuing education credit. AIA continuing education Learning Units earned upon completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Course Description

The use of cross-laminated timber (CLT) as structural floor and roof panels has seen incredible growth in the US over the past decade. However, its use as part of a seismic and wind force-resisting system—either as a diaphragm or shear wall—has only recently been codified. This has resulted in designing CLT lateral systems through alternative means. This presentation will introduce new provisions for CLT shear wall and diaphragm design, in the American Wood Council's 2021 Special Design Provisions for Wind and Seismic (SDPWS). The presentation will cover the detailing and design requirements for the newly defined CLT shear walls and diaphragms found in the SPDWS and the range of seismic design parameters (e.g., R values) recognized for CLT shear wall in ASCE 7-22.

Learning Objectives

- 1. Develop and understanding of design challenges related to using CLT for wind and seismic resistance while meeting the intent if the building code.
- 2. Discuss the new provisions in the 2021 Edition of Special Design Provisions for Wind and Seismic applicable to all lateral system.
- 3. Understand the new detailing options and path to code acceptance of several CLT shear wall systems.
- 4. Review the engineering design requirements for using CLT floors and roof assemblies as horizontal diaphragms for wind and seismic resistance.

Current State of Mass Timber Projects

As of Q1 2025, in the US, **2,427** multi-family, commercial, or institutional projects have been constructed with, or are in design with, mass timber. https://www.woodworksin

https://www.woodworksinnovationnetwork.org/projects/

Scan this code or use the url to find the map and more details online.

www.woodworks.org /resources/mappingmass-timber/

Ascent Milwaukee, WI

Korb + Associates Architects Thronton Tomasetti Photo: C.D. Smith Construction

Condominiums on the Marina in Lost Rabbit

dunaway/WILLIAMS Architects McQueen Structural Engineers Photo: Andrew Welch

,MS

Glue Laminated Timber (Glulam) Beams & columns

Cross-Laminated Timber (CLT) Solid sawn laminations

Cross-Laminated Timber (CLT) SCL laminations

Photo: Freres Lumber

Photo: StructureCraft

Photo: LendLease

Photo: LEVER Architecture

Dowel-Laminated Timber (DLT)

Photo: StructureCraft

Nail-Laminated Timber (NLT)

Photo: Think Wood

Glue-Laminated Timber (GLT) Plank orientation

Photo: StructureCraft

Photo: StructureCraft

Photo: Manasc Isaac Architects/Fast + Epp

Candlewood Suites at Redstone Arsenal Huntsville, AL

Photo Credit: Lend Lease

Candlewood Suites at Redstone Arsenal Huntsville, AL

Photo Credit: IHG[®] Army Hotels

-

Photo Credit: Lendlease

Candlewood Suites at Fort Liberty, NC

Photo Credit: MLP Solutions and Sterling Structural

Virtuoso

Vancouver, BC

Image: Adera

Image: Seagate Structures

UMass Olver Design Building Amherst, MA

Photo Credit: Alex Schreyer

Hybrid Mass Timber and Steel Framing

Brentwood Library

Brentwood, CA

Photo Credit: Blake Marvin/Holmes

Photo Credit: WoodWorks

CrossFit Center

Spokane, WA

Photo Credit: WoodWorks

Photo Credit: Mike Bradley, Beacon Builders

Cooley Landing Education Center East Palo Alto, CA

Photo Credit: Michael O'Calahan

Cross-Laminated Timber

What is CLT?

3+ layers of laminations Solid Sawn or Structural Composite Lumber Laminations

Cross-Laminated Layup Glued with Structural Adhesives

*All dimensions are approximate. Consult with manufacturers

CLT Product Standards and Code Acceptance

FLATWISE Panel Loading

Span in MAJOR Strength Direction "Parallel" Direction Uses subscript '0' in Notation Span in MINOR Strength Direction "Perpendicular" Direction Uses subscript '90' in Notation

Reference & Source: ANSI/APA PRG 320

PRG 320 Defined Layups

Gr	ade C) TABLE A ASD RE	2 FEREN	CE DES	SIGN	/ALUE:	L S= FOR			GRADE	S AND LAY	UPS (FOR	USE IN TH	E U.S.)	Pane	el Prope	∍rties	
			Lamination Thickness (in.) in CLT Layup								lajor Streng	th Directio) ו	Minor Strength Direction			
(CLT Grade	t _p (in.)	=	T	=		=	,	=	(F _b S) _{eff,f,0} (lbf-ft/ ft of width)	(EI) _{eff,f,0} (10° lbf- in.²/ft of width)	(GA) _{eff,f,0} (10 ^e lbf/ ft of width)	V₅₀ (lbf/ft of width)	(F _b S) _{eff,f,90} (Ibf-ft/ft of width)	(EI) _{eff.f,90} (10 [¢] lbf- in.²/ft of width)	(GA) _{eff.f.90} (10° lbf/ft of width)	V_90 (Ibf/ft o width)
		4 1/8	1 3/8	1 3/8	1 3/8					4,525	115	0.46	1,490	160	3.1	0.61	495
	E1	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8			10,400	440	0.92	2,480	1,370	81	1.2	1,490
		9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	18,375	1,089	1.4	3,475	3,150	313	1.8	2,480
		4 1/8	1 3/8	1 3/8	1 3/8					3,825	102	0.53	1,980	165	3.6	0.56	660
	E2	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8			8,825	389	1.1	3,300	1,440	95	1.1	1,980
		9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	15,600	963	1.6	4,625	3,300	364	1.7	3,300
		4 1/8	1 3/8	1 3/8	1 3/8					2,800	81	0.35	1,160	110	2.3	0.44	385
	E3	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8			6,400	311	0.69	1,930	955	61	0.87	1,160
		9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	11,325	769	1.0	2,700	2,210	234	1.3	1,930
		4 1/8	1 3/8	1 3/8	1 3/8					4,525	115	0.50	1,820	140	3.4	0.62	605
	E4	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8			10,400	440	1.0	3,025	1,230	88	1.2	1,820
		9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	18,400	1,089	1.5	4,225	2,850	338	1.9	3,025
		/ 1/8	1 2/8	1 2/2	1 2/2					3 8 2 5	101	0.46	1 450	160	31	0.55	550

3rd Party Product Qualification of CLT

			_				
			_				
						PEPOPT	
	DDOD	ICT DEDODT					
	FRODU					www.epowood.org	
	and the second se	www.apowood.org					
					Course I am In a to d Winch as	BB 1 220	
	1000			Elements	Cross-Laminated Timber	PR-L339	
Mercer Cross	sLam CLT	PR-L34	7	Element5	Limited Partnership	Revised April 18, 2025	
Mercer Conv	vay DBA Mercer Mas	s Timber Issued July 11 202	3				
	a) burt mercer ma	100000000000000000000000000000000000000		Products: Ele	ment5 Cross-Laminated Timber		
Dearburger Morrow	Crossel and Crosse I aminated	Timber		Element5 Lim			
Marcar Comunu Di	DA Marcar Mars Timber 180	Access Boad Consum Advances 72034		(888) 670-77			
(EOO) BOB 0767		U SECHE ROLL CONRICT ACCOUNTS TO SE		(coor) or or or or			
(203) 000-0101				TTTT A COLORADO		DI LOT DEDO	
www.mercermass			and the second	4 Basis of			
	4.04			1, Dasis of			
 Basis of the p 	AFA			• 2024		www.op	gra.boowe
 2021, 201 			www.apowood.org	lamin	4		
glued cros				• 2024	France Mass Div Danals (top) and	001226
 2012 IBC: 	Smartl am C	ross I aminated Timber	PR.1 319	R602	Freres mass Ply Panels (F	nrr) and	PR-L325
• 2021 201	Constit and I	10	FREDID	 ANSI 	Mass Ply Lam (MPL) Bear	ns and Columns Revised Decemb	ver 16, 2024
P60216	SmartLam, L	LC Rev	nsed August 15, 2023	recoo	Freres Lumber Co., Inc. d	ba Freres Engineered Wood	
- 2012 IDC	Dend ster Rendel and	Course I contracted Timber		 ANSI 	There's cannot only mer a	a rieres angineerea rieea	
· 2012 IRU:	Smooth am LLC 610	Sil Steat West, Columbia Eally, MY 60012		IBC a	Products: Freres N		
 ANSI/APA 	(406) 802-2241	3 - Deners West, Golumbia Falls, MT 09912			Freres Lumber Co.		
 ANSI/APA 	1922-200 (000)			132	Lyons, Oregon 973		
IBC and IF	JEAN ALL DE LA LAND	100		134,	(503) 859-2121		
 APA Repo 	1. Basis of the pro-	EVALUATION		and i	www.frereswood.co		
other qual	• 2021 2018	SERVICE"				Duilding Draduat D	Junivertian Depart 04
	glued cross			Z. Product	1. Basis of the pr	Building Product E	valuation Report 01
Product descr	 2012 IBC: \$ 	ICC-ES Evaluation Report		Element	. 2024 2024	TEO O	
Mercer Cross	 2021, 2018 	too Lo Litalaalon tiopott		accorda	aminated t		
lumber in acc	R602.1.6. a	ESR-5053		mathom	0 2024 2024		
by APA three	 2012 IRC: 5 	Reissued August 2024 This report also contains	r	ANSI/AF	• 2024, 2021	Manage Orace Landa da	Time
by APA allos	 ANSI/APA I 	- CBC Supplement		propertie	H H602.1.6, a	Mercer Cross-Laminated	1 limber
engineering i	recognized	Children in second data at 2020 Child Supplement		applicati	ANSI/APA	Manage las	
properses pro	 ANSVAPA I 	autors in renewal viginal 2023		3.1 to 12	recognized	Mercer, Inc.	
applications,	IBC and IRC	KCC-CS Evoluation Reports are not to be construed as representing aesthetic	s or any other adminutes not specifically addressed, nor are they to be construed as an		ANSI/APA	March 1 2022	Freinder Friedrich 28 2025
to 12-3/8 inch	 APA Report 	endormement of the extport of the report or a recommendation for its use. The other matter is this report, or as to any product covered by the report.	ers is no warranty by FCC Evaluation Service, LLC, express or ingeled, as to any triding or	3 Design (IBC and IR	coeptance: March 1, 2022	Expressor: February 20, 2025
1	T2020P-36	Copyright © 2024 ICC Evaluation Service, LLC. All rules reserved.		Element	• 2024, 2018		Revision: February 23, 2023
Design prope	other qualify			nervided	Constructio		
Mercer Cross		DIVISION: 06 00 00- REPORT HOLDER:	EVALUATION SUBJECT:	the ANS	2015 IBC a		
Tables 2 and	Product description	STERLING SITE	TERRALAM® CROSS-	and Arta	ADA Record TYPE	OF ACCEPTANCE: Product Material Wood, Plastics and Com	posites
2018 ANSI/A	SmartLam crot	ACCESS SOLUTIONS	LAMINATED TIMBER	rosistari	T2021D.38	CSI Specification Division: 06 00 00 and Section	n: 06 17 19 Cross-Laminated Timber
resistance of	accordance wit	Section: 06 17 19- LLC	PANELS	pane-to	120217-30		
the panel-to-p	mathematical e	Cross-laminated Timber		with Sec	2 Destant days	FACTURER DENTIFICATION Mercer Mass Tember 19202 Garland Ave.	
with Sections	ANSUAPA PR			(SDPW)	2. Product descr	Spokane Valley, WA 99027	
Seismic (SDF	CLT are provid	L			Preres Mass P	www.mercerint.com	
record	(3PP-3), PRETA	1.0 EVALUATION SCOPE		4. Product	1.0E Douglas-		
100010.	than the correct	Compliance with the following codes and star	dard:	Element	5 custom layups	REFINAL OF THE PRODUCT EVALUATED	
A Developed levels	CLT can be use	2021, 2018 and 2015 International Butting Co.	M [#] (IBC)	manufac	models using Merce	r Cross-Laminated Timber (CLT) uses Spruce-Pine-Fir (SPF). Douglas-Fill Imminations with ANEI 405 and CSA (2012.9 annuousd structure) and annuousd	-Larch (DF-L), and Southern Yellow Pine
 Product instal 	with of 12 to	 2021 2018 and 2015 International Desidential 	Code [®] (IBC)	of record	bonded with a layor	in accordance with ANSI/APA PRG 320-2019. The SPF laminations shall be	permitted to be replaced by DF-L of grades
Mercer Cross	HOUSE OF 12 10	 ANSUADA DDC 200 0040 Streeters for Doctor 	sace Bated Cross I aminated Timber		edge joints be that an	e equal to or greater than the corresponding SPF laminations as described in	n Table 1 and Table 2 of this Report. The
by the manufi	3. Design propert	 Answar A Pros 320-2019 Standard for Perform 	anversado Gross-Laminario Limber	5. Fire-rate	are staggered	F LL1 ayups, described in Tables 3 Brough 6 in this Report, were de- oring model described in Accendix X3 of PRG 320-2019. Panels are lawred.	expect by product qualification and the and prested and are manufactured with a
Permissible d	SmartLam CL1	For evaluation for compliance with codes adopte	d by the California Office of Statewide Health Planning and	Fire-rate	d maxim	um finished size of 12 ft by 60 ft (3.65m by 18.28m). Mercer CLT panels are	used for floor, roof, and wall applications.
	with the allows	Division of State Architects (DSA) and ESD 6051	CBC and CBC Supplement	provided	Freres MPP is		
Fire-rated ass	of record (avvi	Presente evaluated:	ware one brine propagation as	NDS shu	applications cope	S AND STANDARDS APPLICABLE TO PRODUCT	
Fire-rated as	3 can be only a	Charter		1400 44	thicknesses (t)	2015, 2018, 2021 International Building Code [#] (IBC [#]): Section 2303.1.4 Str	adural Glued Cross-Laminated Timber
provided by the	contains an out			A Limitatio	lengths up to a	2015, 2018, 2021 International Residential Code* (IRC*): Sections R502.1.(Lawinated Timber	5, R502.1.6 and R802.1.6 Cross-
permitted for	"TOP" and sha	Fire Resistance		0. Christado	interior of the last	ANSEAPA PRG 320-2019. Standard for Parkemance-Relad Cross-Laminal	ed Timber
	member. Othe	2.0 USES		a) Elon	Ecores Mars E	2015, 2018, 2021 National Design Specification ⁴ (NDS ⁴) for Wood Constru-	ton
	adjustment fac	Sterling's TerraLam cross-laminated timber (Cl	T) panels are certified engineered wood product. When	anov	as beams in th	2015, 2020 National Building Code of Canada (NBCC): Clause 1.2.1.1 of Di	vision A and Clauses 4.1, 4.3.1.1, and

CLT Product Reports

CLT Gra	CLT Grade							Layup									Panel Properties				
(basic or <u>c</u> ı	uston	<u>n)</u>							•									/			-
	PA Prod	luct Rep August 1	ort [®] PF	R-L319 7	nortio	(a) for	Lumb				od in S	mortlo		for Lloo	in the l	18)	/		Page	3 of 5	
	Majer Strength Directory										onath D	irection									
	CLT Grade Fb,0		0,0 (i)	E ₀ (10 ⁶ nsi)		F _{1,0} Fiji	Fc.		F _{v,0} (nsi)		F _{8,0} (nsi)	F _{b,90}	(10	E ₉₀)é nsi)	FL90 (nsi)	engui D	F _{c,90}	F _{v,90} (nsi)	F	9,90 nsi)	
	SL-V4	77	75	11		350	1.00	0	135	+	45	775		11	350		000	135		45	
(a) Ta	 ^(a) Tabulated values are allowable design values and not permitted to be increased for the lumber flat use or size factor in accordance design values shall be used in conjunction with the section properties provided by the CLT manufacturer based on the actual layup manufacturing the CLT panel (see Tables 2 and 3). Table 2. Allowable Design Capacities^(a) for SmartLam Balanced CLT (for Use in the U.S.) 												or Streng	e with the NDS. The pused in							
	CLT Grade	Layup #	Thick- ness (in.)	=	Ţ	=	T	=	1	=	1	=	F _b S _{eff,0} (lbf- ft/ft)	El _{ett.0} (10 ⁵ lbf- in.2/ft)	GA _{#1,0} (10 ⁶ Ibf/ft)	V _{a.0} (ibf/ft)	F _b S _{ett} so (lbf- ft/ft)	El _{st 90} (10 ⁶ Ibf- in.2/ft)	GA _{et so} (10 ⁶ Ibfift)	V _{#.50} (Ibf/ft)	
		3-alt	4 1/8	1 3/8	1 3/8	1 3/8							1,800	74	0.41	1,430	245	2.9	0.41	495	
		4-maxx	5 1/2	1 3/8	1 3/8 x 2	1 3/8							2,925	161	0.49	1,740	975	23	0.85	990	
	[5-alt	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8					4,150	286	0.83	1,980	2,120	74	0.83	1,430	
		5-maxx	6 7/8	1 3/8 x 2	1 3/8	1 3/8 x 2							5,150	355	1.4	2,460	245	2.9	0.86	495	
	SI JVA(b)	6-maxx	8 1/4	1 3/8 x 2	1 3/8 x 2	1 3/8 x 2							7,200	596	1.2	2,875	975	23	1.3	990	
	0L-V4///	7-alt	9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8			7,325	707	1.2	2,500	4,825	283	1.2	1,960	
	1	7 000	0.5/9	1 3/8	1 2/9	1 2/9	1 2/9	1 3/8					0.425	000	4.7	2 200	2 4 2 0	74	12	1.420	

CLT Product Standards and Code Acceptance

CLT Product Standards and Code Acceptance

Structural Design Standardization

11/2-Hour

2-Hour

3.4

4.4

3.2

4.3

3.1

4.1

3.0

4.0

2.9

3.9

2.8

3.8

2.8

3.6

2.8

3.6

1.8

2.6

3.6

National Design Specification for Wood Construction 2015, 2018, 2021 Editions

EDGEWISE Panel Loading

Span in MAJOR Strength Direction

Reference & Source: ANSI/APA PRG 320-2017

EDGEWISE Panel Loading

Span in MAJOR Strength Direction

Span in MINOR Strength Direction

Reference & Source: ANSI/APA PRG 320-2017

CLT in In-Plane (Edgewise) Strength

Table 5. ASD Edgewise Design Values for Mercer CLT 1.4V Grade Panels

т	ABLE 4—REFER	ENCE DESIGN VA	LUES FOR IN-PLA	No. of	CLT Layup	Thickness, t _p	Edgewise Shear Stress ^{(a)(b)}				
CLT GRADE		THICKNESS	IN-PLANE S	HEAR STRESS	IN-PLANE SHE	.ayers	Designation	(in.)	F _{v,e,0} (psi)	F _{v,e,90} (psi)	
	LAYUP ²	t _ρ (in.)	F _{v.e.0}	F _{v.e.90}	F _{v.e.0} t _p	F _{v,e,90} t _p		CLT3-082	3.24	190	215
	3 ph	4.1/9	(psi)	(psi)	(IDI/IL OI WIGLI)	(IDI/IL OI WIGLI)		CLT3-090	3.54	190 ^(c)	215 ^(c)
E1	5-ply	6 7/8	1655	1655	13,6005	13,6005		CI T3-090T	3 54	190 ^(c)	215 ^(c)
	7-ply	9 5/8	1655	165 ⁵	19,100 ⁵	19,100 ⁵	3	0210 0001	0.04	100	210
	9-ply	12 3/8	165 ⁵	165 ⁵	24,500 ⁵	24,500 ⁵		CLT3-097	3.84	190 ^(c)	215 ^(c)
E1.1	3-ply	3.67	105 ⁴	105 ⁴	4,600 ⁴	4,600 ⁴		CLT3-100	3.94	190 ^(c)	215 ^(c)
	5-ply	5.84	165 ⁵	165 ⁵	11,600 ⁵	11,600 ⁵		0.70.405		(0)	(c)
	7-ply	8.02	165 ⁵	165 ⁵	15,900 ⁵	15,900 ⁵		CLT3-105	4.14	190 ^(c)	215 (*)
	9-ply	10.19	165 ⁵	165 ⁵	20,2005	20,2005		CLT5-137	5.40	240	235
	3-ply	4.50	1054	1054	5,700 ⁴	5,7004			5.04	o (d)	005 (d)
51.0	5-ply	7.50	165 ⁵	165 ⁵	14,900 ⁵	14,900 ⁵		CL15-150	5.91	240 (3)	235 (8)
E1.2	7-ply	10.50	165 ⁵	165 ⁵	20,800 ⁵	20,800 ⁵	5	CLT5-152T	6.00	240 ^(d)	235 ^(d)
	9-ply	13.50	165 ⁶	165 ⁵	26,700 ⁵	26,700 ⁵		CLT5-160	6 30	240 (d)	225 (d)
Source: ICO	C-ES/APA Joir	nt Evaluation	Report ESR 52	105				CE13-100	0.50	240	200
	,				CLT5-175	6.90	240 ^(d)	235 ^(d)			
1	00 to 29	0 PSI Edg	ewise She	7	CLT7-222	8.76	240 ^(d)	235 ^(d)			
-							/	CLT7-245	9.66	240 ^(d)	235 ^(d)

= 1.2 to 3.5 kips/ft (ASD) per inch of thickness!

Consult with the Manufacturers for Values

Multiply by Cd = 1.6 for short term ASD strength Source: PFS-TECO Report BP-0141

9

CLT9-285

CLT9-315

CLT <u>Panels</u> can have 5 - 20+ kips/ft in-plane shear capacity

11.22

12.42

235 ^(d)

235 ^(d)

240 ^(d)

240 ^(d)

Lateral Systems

Mass Timber Design

Lateral framing systems

Central Core – concrete shearwalls

Photo Credit: Structurecraft

Mass Timber Design

Lateral framing systems

Interior steel moment frame

Photo Credit: WoodWorks

Mass Timber Design Lateral framing systems

Steel Braced Frame

Photo Credit: John Stamets

Mass Timber Design

Lateral framing systems

Light-frame wood shearwalls

Photo Credit: WoodWorks

Mass Timber Design

Lateral framing systems

CLT Shearwalls

0

Photo Credit: Alex Schreyer
What R Value Can I use?

R = 3!

or 4 or 1.5?

CLT in the U.S. Building Code – IBC 2018 (Lateral)

No explicitly recognized requirements for CLT Lateral Systems in 2018 IBC

CLT in the U.S. Building Code – IBC 2021 (Lateral)

New Requirements for CLT Lateral Systems in SDPWS 2021! Referenced from IBC 2021

2021 Special Design Provisions for Wind and Seismic

Top Changes Relevant to CLT Lateral Systems:

- » New unified nominal shear capacity
- » New CLT Shear Wall requirements
- » New CLT Diaphragm requirements

View for free at awc.org

PowerPoint IS NOT the CODE!

2021 Special Design Provisions for Wind and Seismic

Top Changes Relevant to CLT Lateral Systems:

- » New unified nominal shear capacity
- » New CLT Shear Wall requirements
- » New CLT Diaphragm requirements

View for free at awc.org

PowerPoint IS NOT the CODE!

2021 SDPWS – Unified Nominal Shear Capacity

For sheathed wood frame shear walls and diaphragms, SDPWS 2015 has two nominal shear capacities

- \mathcal{V}_{S} Nominal shear capacity for <u>seismic</u> loads
- v_{w} Nominal shear capacity for <u>wind</u> loads

SDPWS 2021 has one nominal shear capacity for both wind and seismic (for wood frame and CLT)

 $v_{
m n}$ Nominal shear capacity

2021 SDPWS – Unified Nominal Shear Capacity

To calculate the ASD or LRFD shear capacity, SDPWS 2021 has <u>different reduction</u> factors for wind and seismic

	Design shear capacity					
	ASD	LRFD				
Wind	$v_{\rm n}$ /2.0	0.8 V _n				
Seismic	$v_{\rm n}$ /2.8	0.5 $v_{ m n}$				

2021 Special Design Provisions for Wind and Seismic

Top Changes Relevant to CLT Lateral Systems:

- » New unified nominal shear capacity
- » New CLT Shear Wall requirements
- » New CLT Diaphragm requirements

View for free at awc.org

PowerPoint IS NOT the CODE!

Section View

SDPWS 2021 Section 4.1.4

Elevation View

Elevation View

Elevation View

Elevation View

Elevation View

Platform Framed CLT Shear Walls

Panel to Panel Connector .105" A653 Grade 33 Steel

CLT Shear Walls

not meeting Appendix B

CLT Shear Walls meeting SDPWS 2021 Appendix B

with shear resistance provided by high aspect ratio panels only (SDPWS B.3.7)

Panel aspect ratios $h/b_s = 4$

Seismic Design Category A or SDC B and ≤ 65' tall in SDPWS 4.6.3 Exception

Panel aspect ratios $2 \le h/b_s \le 4$

R = 3!

or 4 or 1.5?

R Values for CLT Shear Walls in SDPWS 2021

(other) CLT Shear Walls

not meeting Appendix B

Platform Framed CLT Shear Walls

meeting SDPWS 2021 Appendix B

Platform Framed CLT Shear Walls meeting SDPWS 2021 Appendix B

Panel aspect ratios Panel aspect ratios $h/b_{c} = 4$ $2 \leq h/b_s \leq 4$ $R = 3.0^*$ $R = 4.0^*$ $C_{d} = 4.0 \ \Omega_{0} = 3.0$ $C_{d} = 3.0 \ \Omega_{o} = 3.0$

* ASCE 7-22

Additional important requirements

- Platform framed CLT floors over CLT walls
- Only specific connectors recognized
- CLT walls which are not designated shear walls need to meet same panel aspect ratio limits and connection detailing requirements
- Hold-downs designed to 2.0 times the design shear <u>capacity</u>
- Only gravity loads on panel directly attached to hold-down can be used to resist overturning moment

CLT in the U.S. Building Code – Lateral in IBC 2021 SDPWS 2015

New Requirements for CLT Lateral Systems! (but R values for CLT Shear Walls not in ASCE 7-16)

CLT in the U.S. Building Code – Lateral in the IBC 2024?

Full Recognition of CLT Lateral Systems

State of Oregon Statewide Alternative

Statewide Alternate Methods are approved by the Division administrator in consultation with the appropriate advisory board. The advisory board's review includes technical and scientific facts of the proposed alternate method. In addition:

- Building officials shall approve the use of any material, design or method of construction addressed in a statewide alternate method;
- The decision to use a statewide alternate method is at the discretion of the designer; and
- Statewide alternate methods do not limit the authority of the building official to consider other proposed alternate methods encompassing the same subject matter.

Code Edition:	2014 Oregon Structural Specialty Code (OSSC)
Code Section:	OSSC Section 602.4 Type IV, Heavy Timber
Date:	January 15, 2015
Initiated by:	Building Codes Division
Subject:	Cross-Laminated Timber

Background:

Cross-laminated timber (CLT) is an emerging wood product with applications in both residential and non-residential buildings. Oregon BCD has prepared this alternate method which recognizes nationally adopted acceptance of CLT in Type IV Construction through the International Codes Council process. This classification will allow roughly 50 percent taller and larger buildings than

State of Oregon Statewide Alternative

ASCE 7-10 Table 12.2-1 modified by Oregon Buildings Code Division

	ASCE 7 Section Where	Response		Deflection	Structural System Limitations Including Structural Height, h _n (ft) Limits ^c				
Seismic Force-Resisting System	Requirements Are Specified	Coefficient, R ^a	Overstrength Factor, Ω_0^g	Amplification Factor, C _d ^b	В	Seismi C	c Desigr D ^d	n Catego E ^d	F ^e
A. BEARING WALL SYSTEMS									
15. Light-frame (wood) walls sheathed with wood structural panels rated for shear resistance	14.5	6 1/2	3	4	NL	NL	65	65	65
19. Cross-laminated timber shear walls ¹	14.1 and 14.5	2	<u>2 ½</u>	2	<u>NL</u>	<u>NL</u>	<u>NL</u>	<u>NL</u>	<u>NL</u>

Table 12.2-1 Design Coefficients and Factors for Seismic Force-Resisting Systems

Post-Tensioned Mass Timber Rocking Walls

Source: S. PEI et al. http://nheritallwood.mines.edu/

Photo: Scott Breneman/WoodWorks

Full Range of CLT Shear Walls!

R=3!! Or 4 or 1.5? Or 2 or 6?

See the WoodWorks Expert Tip CLT Shear Wall Options in the U.S.

https://www.woodworks.org/resources/clt-shear-wall-options-in-the-u-s/

TABLE 1 - Timber shear wall structural parameters

System	Standards	Seismic Design Coefficients			Structural Height Limit per Seismic Design Category (ft)				
		R	Ω	Cd	А	в	С	D	
SDPWS Appendix B CLT shear walls	SDPWS 2021 ASCE 7-22	3	3	3	NL	65	65	65	
(with shear resistance provided by high-aspect-ratio panels only)		4	3	4	NL	65	65	65	
SDPWS Section 4.6.3 Exception CLT shear walls	SDPWS 2021	1.5	2.5	1.5	NL	65	NP	NP	
Mass timber rocking shear walls	Targeting SDPWS 2027 and ASCE 7-28	TBD (> 5)	TBD	TBD	NL	TBD (> 100 ft)			
Oregon SAM CLT path 2 shear walls	Oregon SAM 15-01	2	2.5	2	NL	65	65	65	
Light-frame wood walls sheathed with WSPs	SDPWS ASCE 7	6.5	3	4	NL	NL	NL	65	

NL = No Limit NP = Not permitted

CLT Diaphragms

2021 Special Design Provisions for Wind and Seismic

Top Changes Relevant to CLT Lateral Systems:

- » New unified nominal shear capacity
- » New CLT Shear Wall requirements
- » New CLT Diaphragm requirements

View for free at awc.org

PowerPoint IS NOT the CODE!

CLT Diaphragms

Strength of CLT rarely governs.

Strength of Connections covered by NDS and Proprietary Fastener Evaluation Reports

Typical CLT Floor Assembly

Generic Mass Timber Floor System

Example CLT Diaphragm Design

2021 Special Design Provisions for Wind and Seismic

4.5 Cross-Laminated Timber (CLT) Diaphragms

4.5.1 Application Requirements

CLT diaphragms shall be permitted to be used to resist lateral forces provided the deflection in the plane of the diaphragm, as determined by calculations, tests, or analogies drawn therefrom, does not exceed the maximum permissible deflection limit of attached load distributing or resisting elements. Permissible deflection shall be that deflection that will permit the diaphragm and any attached elements to maintain their structural integrity and continue to support their prescribed loads as determined by the applicable building code or standard.

4.5.2 Deflection

CLT diaphragm deflection shall be determined using principles of engineering mechanics.

4.5.3 Unit Shear Capacity

CLT diaphragms shall be designed in accordance with principles of engineering mechanics using design values for wood members and connections in accordance with NDS provisions.

The nominal unit shear capacity, v_{n} , of CLT diaphragms shall be based on the nominal shear capacity for dowel-type fastener connections used to transfer diaphragm shear forces, as calculated per 4.5.4, Item 1. ASD allowable shear capacity or LRFD factored shear resistance for the CLT diaphragm and diaphragm shear connections shall be determined in accordance with 4.1.1.

4.5.4 Additional CLT Diaphragm Design Requirements

CLT diaphragms shall meet the following additional requirements:

 The nominal shear capacity for dowel-type fastener connections used to transfer diaphragm shear forces between CLT panels and between CLT panels and diaphragm boundary elements (chords and collectors) shall be taken as 4.5Z*, where Z* is Z multiplied by all applicable NDS adjustment factors except CD, KF, φ, and λ; and Z shall be controlled by Mode IIIs or Mode IV fastener yielding in accordance with NDS 12.3.1.

- Connections used to transfer diaphragm shear forces shall not be used to resist diaphragm tension forces.
- Wood elements, steel parts, and wood or steel chord splice connections shall be designed for 2.0 times the diaphragm forces associated with the shear forces induced from the design loads.

Exceptions:

- Wood elements and wood splice connections shall be permitted to be designed for 1.5 times the diaphragm forces associated with the shear forces induced by the wind design loads.
- 2. Where dowel-type fasteners are used in chord splice connections and the connection is controlled by Mode IIIs or Mode IV fastener yielding in accordance with NDS 12.3.1, fasteners in the connection shall be permitted to be designed for 1.5 and 1.0 times the diaphragm forces associated with the shear forces induced by the prescribed seismic and wind design loads, respectively.

Diaphragm chord elements and chord splice connections using materials other than wood or steel shall be designed using provisions in NDS 1.4.

Only 1 page of requirements for CLT Diaphragms

WoodWorks published Design Guide:

https://www.woodworks.org/resources/cltdiaphragm-design-guide/

140+ pages

BASED ON SDPWS 2021

2021 Special Design Provisions for Wind and Seismic

4.5 Cross-Laminated Timber (CLT) Diaphragms

4.5.1 Application Requirements

CLT diaphragms shall be permitted to be used to resist lateral forces provided the deflection in the plane of the diaphragm, as determined by calculations, tests, or analogies drawn therefrom, does not exceed the maximum permissible deflection limit of attached load distributing or resisting elements. Permissible deflection shall be that deflection that will permit the diaphragm and any attached elements to maintain their structural integrity and continue to support their prescribed loads as determined by the applicable building code or standard.

4.5.2 Deflection

CLT diaphragm deflection shall be determined using principles of engineering mechanics.

4.5.3 Unit Shear Capacity

CLT diaphragms shall be designed in accordance with principles of engineering mechanics using design values for wood members and connections in accordance with NDS provisions.

The nominal unit shear capacity, v_n , of CLT diaphragms shall be based on the nominal shear capacity for dowel-type fastener connections used to transfer diaphragm shear forces, as calculated per 4.5.4, Item 1. ASD allowable shear capacity or LRFD factored shear resistance for the CLT diaphragm and diaphragm shear connections shall be determined in accordance with 4.1.1.

4.5.4 Additional CLT Diaphragm Design Requirements

CLT diaphragms shall meet the following additional requirements:

1. The nominal shear capacity for dowel-type fastener connections used to transfer diaphragm shear forces between CLT panels and between CLT panels and diaphragm boundary elements (chords and collectors) shall be taken as $4.5Z^*$, where Z^* is Z multiplied by all applicable NDS adjustment factors except C_D, K_F, ϕ , and λ ; and Z shall be controlled by Mode IIIs or Mode IV fastener yielding in accordance with NDS 12.3.1.

- Connections used to transfer diaphragm shear forces shall not be used to resist diaphragm tension forces.
- Wood elements, steel parts, and wood or steel chord splice connections shall be designed for 2.0 times the diaphragm forces associated with the shear forces induced from the design loads.

Exceptions:

- Wood elements and wood splice conjections shall be permitted to be designed for 1.5 times the diaphragm forces associated with the shear forces induced by the wind design loads.
- 2. Where dowel-type fasteners are used in chord splice connections and the connection is controlled by More IIIs or Mode IV fastener yielding in accordance with NDS 12.3.1, fasteners in the connection shall be permitted to be designed for 1.5 and 1.0 times the diaphrage forces associated with the shear forces induced by the prescribed seismic and wind design loads, respectively.

Diagnragm chord elements and chord splice connctions using materials other than wood or steel shall be designed using provisions in NDS 1.4.

4.5.4 Additional CLT Diaphragm Design Requirements

CLT diaphragms shall meet the following additional requirements:

1. The nominal shear capacity for dowel-type fastener connections used to transfer diaphragm shear forces between CLT panels and between CLT panels and diaphragm boundary elements (chords and collectors) shall be taken as $4.5Z^*$, where Z^* is Z multiplied by all applicable NDS adjustment factors except C_D, K_F, ϕ , and λ ; and Z shall be controlled by Mode IIIs or Mode IV fastener yielding in accordance with NDS 12.3.1.

Requirements for the shear connections

1) Diaphragm shear connections between adjacent CLT panels and between CLT and diaphragm boundary elements (chords and collectors) shall use <u>dowel-type</u> <u>fasteners in shear to transfer diaphragm shear forces.</u>

<u>Nails or screws</u> installed perpendicular to the face of the CLT are dowel-type fasteners in shear.

2) The reference design value of the fastener connection, Z, shall be calculated per NDS 12.3.1 and only connections controlled by fastener yield Mode IIIs or Mode IV are permitted. <u>Single Shear Connections</u> <u>Double Shear Connections</u>

Skinny fasteners usually controlled by these modes

3) The nominal shear capacity for the dowel-type fastener connection shall be taken as 4.5 Z*

$$V_n = 4.5 \, \mathrm{Z}^*$$

where Z^* is reference lateral capacity Z multiplied by all applicable factors except C_D, K_F, φ , λ = 1.0

SDPWS 2021 Section 4.5.4(1)

Table 11.3.1 Applicability of Adjustment Factors for Connections

	ASD Only	ASD and LRFD								LRFD Only			
	Load Duration Factor ¹	Wet Service Factor	Temperature Factor	Group Action Factor	Geometry Factor ³	Penetration Depth Factor ³	End Grain Factor ³	Metal Side Plate Factor ³	Diaphragm Factor ³	Toe-Nail Factor ³	Format Conversion Factor	 Resistance Factor 	Time Effect Factor
		Lat	teral I	Loads									
Dowel-type Fasteners (e.g. bolts, lag screws, wood screws, $Z^* = Z x$ nails, spikes, drift bolts, & drift pins)	1.0	См	Ct	C_g	C_{Δ}	-	C _{eg}	-	1.0	C _{tn}	1.0	1.0	1.0
	_		Also	- 1.0 for	CLT	Diaph	nragm	Shear	Conne	ection	S		

SDPWS 2021 Section 4.5.4(1) and NDS Table 11.3.1

4) The nominal unit shear capacity for a connection with uniform fastener spacing, s, can be found as

$$\nu_n = \frac{4.5 \text{ Z}^*}{s}$$

The factors of SDPWS 2021 Section 4.1.4 are applied to reduce to ASD or LFRD, wind or seismic unit design shear capacity

2021 SDPWS – Unified Nominal Shear Capacity

2021

	Design shear capacity								
	ASD	LRFD							
Wind	$v_{ m n}$ /2.0	0.8 $v_{ m n}$							
Seismic	$v_{ m n}$ /2.8	0.5 $v_{ m n}$							

SPECIAL DESIGN PROVISIONS

FOR WIND AND SEISMIC

ASD seismic design capacity: $4.5 \text{ Z}^* / 2.8 = 1.61 \text{ Z}^* \approx \text{ C}_{\text{D}} \text{ Z} = 1.6 \text{ Z}$

Panel to Panel Connection Styles

• Single Surface Spline

CLT Diaphragm Design Guide

https://www.woodworks.org/resources/clt-diaphragm-design-guide/

Precalculated nominal shear capacities

TABLE A.1.4: Nominal diaphragm shear capacity for spaced fastener in spline continued

Spline Material	Fastener	Nominal	Reference Spline Shear Capacity,				
		12-in. o.c.	6-in. o.c.	4-in. o.c.	3-in. o.c.	2-in. o.c.	F _v t _v ^b (plf)
CLT SG = 0.50							
General sheathing (23/32)	8d common nail	331	661	992	1,323	1,984	1,176
General sheathing (23/32)	10d common nail	389	779	1,168	1,558	2,337	1,176
General sheathing (23/32)	Example screw 1	364	729	1,093	1,457	2,186	1,176
General sheathing (23/32)	Example screw 2	430	860	1,290	1,720	2,581	1,176
Structural 1 sheathing (23/32)	8d common nail	398	796	1,194	1,592	2,388	1,512
Structural 1 sheathing (23/32)	10d common nail	465	930	1,395	1,859	2,789	1,512
Structural 1 sheathing (23/32)	Example screw 1	425	850	1,275	1,699	2,549	1,512
Structural 1 sheathing (23/32)	Example screw 2	508	1,016	1,524	2,031	3,047	1,512
General sheathing (7/8)	10d common nail	425	850	1,275	1,700	2,550	1,440
General sheathing (7/8)	16d common nail	488	975	1,463	1,951	2,926	1,440
General sheathing (7/8)	Example screw 1	388	776	1,164	1,551	2,327	1,440
General sheathing (7/8)	Example screw 2	464	928	1,392	1,856	2,784	1,440
Structural 1 sheathing (7/8)	10d common nail	519	1,037	1,556	2,074	3,111	1,584
Structural 1 sheathing (7/8)	16d common nail	589	1,178	1,768	2,357	3,535	1,584
Structural 1 sheathing (7/8)	Example screw 1	463	926	1,389	1,852	2,778	1,584
Structural 1 sheathing (7/8)	Example screw 2	560	1,121	1,681	2,242	3,363	1,584
General sheathing (1-1/8)	10d common nail	485	969	1,454	1,939	2.908	1,920

CLT Diaphragm Design Guide

BASED ON SDPWS 2021

CLT Diaphragm Design Guide

https://www.woodworks.org/resources/clt-diaphragm-design-guide/

Precalculated nominal shear capacities

TABLE A.1.4: Nominal diaphragm shear capacity for spaced fastener in spline continued

Spline Material	Fastener	Nominal	Diaphragn /n = 4.5Z*/	Reference Spline Shear Capacity,						
		12-in. o.c.	6-in. o.c. 4-in. o.c.		3-in. o.c.	2-in. o.c.	Fvtvt	(plf)		
CLT SG = 0.50										
General sheathing (23/32)	8d common nail	331	661	992	1,323	1,984	1,1	76		
General sheathing (23/32)	10d common nail	389	779	1,168	1,558	2,337	1,1	76		
General sheathing (23/32)	Example screw 1	364	729	1.093	1,457	2,186	1,1	76		
General sheathing (23/32)	Drocolou	latar			omic	h .	or or	modi	H.,	
Structural 1 sheathing (23/32)	Precarcu	llatet	1 A 21	D Sel	SIIIIC	; sne	al Ca	ipaci	LIE	
Structural 1 sheathing (23/32)										
Structural 1 sheathing (23/32)				• • • • • • • • • • • • • • • • • • •						
Structural 1 sheathing (23/32)	TABLE A.1.5: ASD	diaphragn	1 seismic s	shear capa	acity for sp	aced fast	eners in s	pline contin	uec	
General sheathing (7/8)			-			ASD S	eismic Diar	hragm Cap	acity	
General sheathing (7/8)	Spline Material			Eastener		vasd = (4.5/2.8)Z*/S			@ Spacing	
General sheathing (7/8)	Spine m	ateriai		- datener		lines	Ginac	Ainac	2	
General sheathing (7/8)					14	-11.0.0.	0-in.o.c.	4-111. 0.6.	3	
Structural 1 sheathing (7/8)	CLT SG = 0.50									
Structural 1 sheathing (7/8)	General sheathing (2)	//32)		8d common	nail	118	236	354		
Structural 1 sheathing (7/8)	General sheathing (2)	3/32)	1	10d common nail		139	278	417		
Structural 1 sheathing (7/8)	General sheathing (22	3/32)		Example screw 1		130	260	390		
General sheathing (1-1/8)	General sheathing (23	3/32)	E	Example screw 2		154	307	461		
General sheathing (1-1/0)	-				1994 B		-	1000		

CLT Diaphragm Design Guide

of Fasteners, . Sa,b,c (plf)

in.o.c.

472

556

520 614

2-in.o.c.

709

834 781

922

Vendor Specific Steel Spline Straps

Source: Simpson Strong-Tie

Model No:	6a.	CLT Layup (min.)	Fastoners	Spacing	W	ind	Sei	smile	Slip Modulu Y IIb./in.i
		1911.00		(m.)	DF/SP	SPE/HF	DF/SP	SPF/HF	1.000
		#9 x 3" WSV	- 4	1,030	1,030	1,030	1,030	6,330	
	There all		2	2,240	2,240	2,240	2,240	6,330	
LD0948	.18) mee-pry	0.1401.014	4	430	430	430	430	7,685
		0.148° x 232° 2	820	820	820	820	7.685		

1. Neuroise bala an lease on increased for which will be the second product of the and V i will be the second product of the seco

- Fastener failure modes are Mode IIs or Mode IV.
 Nails: 0.148" x 2%" = nail dimension listed diameter by length; Screws: #9 x 3" WSV = model WSV3S.
- Nais: 0.148 X 212 = har dimension listed diameter by length; Schewis: #9 X 3 V/SV = hit 6. CLT panel minimum thickness is three-ply = 4.125'.
- 7 The component of disphragm deflection due to fastener slip at panel-to-panel joints calculated as 5, = Ci.e., where,
- $C = (1/P_1 + 1/P_{w})/2$
- PL = Length of individual CLT panel (ft.); Pw = Width of individual CLT panel (ft.)
- L = Overall length of diaphragm (ft.)
- en = Design load per fastener (b.) / Slip Modulus, Y (b./in.)
- (Reference Applied Technology Council: 1981, Guidelines for the design of horizontal wood displacement. Rediwood City, CA)

Product Information

Ordering SKU	Description	Quantit
100048	Light Dischagen Spling Strap (33/2) v 375/2 v 18 (sound)	1.10 ac.5

Source: Rothoblaas

Panel to Beam Connection Styles

Other CLT Diaphragm Components

Designed for **amplified** diaphragm design forces

Other Diaphragm Components

4.5 Cross-Laminated Timber (CLT) Diaphragms

4.5.1 Application Requirements

CLT diaphragms shall be permitted to be used to resist lateral forces provided the deflection in the plane of the diaphragm, as determined by calculations, tests, or analogies drawn therefrom, does not exceed the maximum permissible deflection limit of attached load distributing or resisting elements. Permissible deflection shall be that deflection that will permit the diaphragm and any attached elements to maintain their structural integrity and continue to support their prescribed loads as determined by the applicable building code or standard.

4.5.2 Deflection

CLT diaphragm deflection shall be determined using principles of engineering mechanics.

4.5.3 Unit Shear Capacity

CLT diaphragms shall be designed in accordance with principles of engineering mechanics using design values for wood members and connections in accordance with NDS provisions.

The nominal unit shear capacity, v_n, of CLT diaphragms shall be based on the nominal shear capacity for dowel-type fastener connections used to transfer diaphragm shear forces, as calculated per 4.5.4, Item 1. ASD allowable shear capacity or LRFD factored shear resistance for the CLT diaphragm and diaphragm shear connections shall be determined in accordance with 4.1.1.

4.5.4 Additional CLT Diaphragm Design Requirements

CLT diaphragms shall meet the following additional requirements:

 The nominal shear capacity for dowel-type fastener connections used to transfer diaphragm shear forces between CLT panels and between CLT panels and diaphragm boundary elements (chords and collectors) shall be taken as 4.5Z*, where Z* is Z multiplied by all applicable NDS

- tener yielding in accordance with NDS 12.3.1.Connections used to transfer diaphragm shear forces shan not be used to resist diaphragm ten-
- Wood elements, steel parts, and wood or steel chord splice connections shall be designed for 2.0 times the diaphragm forces associated with the shear forces induced from the design loads.

Exceptions:

sion forces

- Wood elements and wood splice connections shall be permitted to be designed for 1.5 times the diaphragm forces associated with the shear forces induced by the wind design loads.
- 2. Where dowel-type fasteners are used in chord splice connections and the connection is controlled by Mode IIIs or Mode IV fastener yielding in accordance with NDS 12.3.1, fasteners in the connection shall be permitted to be designed for 1.5 and 1.0 times the diaphragm forces associated with the shear forces induced by the prescribed seismic and wind design loads, respectively.

Diaphragm chord elements and chord splice connections using materials other than wood or steel shall be lesigned using provisions in NDS 1.4. Wood elements, steel parts, and wood or steel chord splice connections shall be designed for 2.0 times the diaphragm forces associated with the shear forces induced from the design loads.

Exceptions:

- Wood elements and wood splice connections shall be permitted to be designed for 1.5 times the diaphragm forces associated with the shear forces induced by the wind design loads.
- 2. Where dowel-type fasteners are used in chord splice connections and the connection is controlled by Mode III. or Mode IV fastener yielding in accordance with NDS 12.3.1, fasteners in the connection shall be permitted to be designed for 1.5 and 1.0 times the diaphragm forces associated with the shear forces induced by the prescribed seismic and wind design loads, respectively.

Other CLT Diaphragm Components

Component Design Capacity ≥ Increased Diaphragm Design Forces

$$v' \geq \gamma_D v$$

v'= Adjusted capacity calculated <u>per the NDS</u> <u>not 4.5 Z*</u>

v = wind or seismic diaphragm design force

2.0 for wood and steel components, except:

 $\gamma_D = 1.5$ wood members resisting wind loads 1.5 chord splice connections controlled by Mode IIIs or IV (seismic) 1.0 chord splice connections controlled by Mode IIIs or IV (wind)

See SDPWS 2021 Section 4.5.4 for the full information

Additional Resources

Additional Information

Short Paper Available from woodworks.org

https://www.woodworks.org/resources/ clt-diaphragm-design-for-wind-andseismic-resistance/

CLT Diaphragm Design for Wind and Seismic Resistance

Using SDPWS 2021 and ASCE 7-22

Cross-laminated timber (CLT) has become increasingly prominent in building construction and can be seen in buildings throughout the world. Specifically, the use of CLT floor and roof panels as a primary gravity forceresisting component has become relatively commonplace. Now, with availability of the 2021 Special Design Provisions for Wind and Seismic (SDPWS 2021) from the American Wood Council (AWC), U.S. designers have a standardized path to utilize CLT floor and roof panels as a structural diaphragm. Prior to publication of this document, projects typically had to receive approval to use CLT as a structural diaphragm on a case-by-case basis from the local Authority Having Jurisdiction (AHJ).

This paper highlights important provisions of SDPWS 2021 for CLT diaphragm design and recommendations developed by the authors in the more extensive CLT Diaphragm Design Guide, based on SDPWS 2021, published by WoodWorks – Wood Products Council.

AWC SDPWS 2021

SDPWS 2021 is the first edition to provide direct provisions for CLT to be used as an element in a diaphragm or shear wall. To differentiate between CLT and light-frame lateral force-resisting systems, it adopts the terminology *sheathed wood-frame* for light-frame diaphragms (SDPWS §4.2) and shear walls (SDPWS §4.3), and includes new sections for CLT diaphragms (SDPWS §4.5) and shear walls (SDPWS §4.6). SDPWS 2021 is referenced in the 2021 International Building Code (IBC).

Shear Capacity

SDPWS 2021 has a single nominal shear capacity for each set of construction details, v_n , defined in §4.1.4 for use with both wind and seismic design. From this nominal shear capacity, the Allowable Stress Design (ASD) and Load and Resistance Factor Design (LRFD) wind and seismic design capacities are determined by

> dividing by the ASD reduction factor, Ω_D , or multiplying by a resistance factor, φ_D , for LRFD design as summarized in Table 1. For sheathed woodframe diaphragms, the SDPWS

AUTHORS:

Scott Breneman, PhD, PE, SE WoodWorks – Wood Products Council

Eric McDonnell, PE Bill Tremayne, PE, SE Donovan Llancs, PE Jonas Houston, PE, SE Mengzhe Gu, PhD, PE Holmes

Reid Zimmerman, PE, SE KPFF Consulting Engineers

Additional Information

Extensive guide available from woodworks.org

https://www.woodworks.org/resources/cltdiaphragm-design-guide/

- Detailing for constructability
- Determination of diaphragm flexibility
- Calculation of diaphragm deflections
- Precalculated connection capacities
- Combination SDPWS γ_D and ACSE 7 Ω_o
- Worked examples

CLT Diaphragm Design Guide

BASED ON SDPWS 2021

Additional Resources – WoodWorks.org

QUESTIONS?

This concludes The American Institute of Architects Continuing Education Systems Course

Speaker name

Speaker organization

Speaker email address

Copyright Materials

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

© The Wood Products Council 2025

Funding provided in part by the Softwood Lumber Board

Disclaimer: The information in this presentation, including, without limitation, references to information contained in other publications or made available by other sources (collectively "information") should not be used or relied upon for any application without competent professional examination and verification of its accuracy, suitability, code compliance and applicability by a licensed engineer, architect or other professional. Neither the Wood Products Council nor its employees, consultants, nor any other individuals or entities who contributed to the information make any warranty, representative or guarantee, expressed or implied, that the information is suitable for any general or particular use, that it is compliant with applicable law, codes or ordinances, or that it is free from infringement of any patent(s), nor do they assume any legal liability or responsibility for the use, application of and/or reference to the information. Anyone making use of the information in any manner assumes all liability arising from such use.