

Tall Mass Timber in Portland: An Insider's Look at Prescriptive **Type IV-C Design**

Disclaimer: This presentation was developed by a third party and is not funded by WoodWorks or the Softwood Lumber Board

Brendan Sanchez AIA, LEED

Principal Access Architecture

David Burnett AIA

Project Architect Access Architecture

Shirley Chalupa PE, SE Principal

DCI Engineers

Justin Fenton PE

Senior PM DCI Engineers

ACCESS ARCHITECTURE FIRM OVERVIEW

Designing Connected Communities

limber/iew

PROJECT OVERVIEW

limberView **project introduction**

PROGRAM

105 Units of 60% AMI affordable housing 2,600 sf of Retail (future food hall)

OTHER PROJECT TEAM MEMBER

Developer: C&J Property Development General Contractor: Truebeck Constuction

CODE: Type IV-C, 2019 OSSC Appendix P, Prescriptive

limber View Building overview

BASEMENT

- Eight floors above grade with basement & mechanical penthouse
- Basement: Service spaces, bike storage, & laundry

limber View Building overview

FIRST FLOOR

Retail space, entry, offices and co-working space, service spaces

limber View Building overview

SECOND – SEVENTH FLOOR (TYPICAL UPPER FLOOR)

Residential units

TimberView **Building overview**

EIGHTH FLOOR

Community room and deck, additional units

limber View structural system

- Project Goal: Construction affordability Speed to market

Goa

- 8 story struct no podium Sustainable I Construction Speed to man
- Other considerations: Small footprint Site located at intersection of major streets Noise Low soil bearing values (1800psf at grade, 4000psf at basement) Adjacent building impact to shoring (less FDN means less excavation)

To build 8 story affordable housing units to provide product for the city's housing needs Opportunity to use sustainable materials

• Options considered: steel frame vs concrete frame vs mass timber (highest total values)

al	Steel Framed	Concrete Framed	Mass Timber
cture,	3	3	3
materials	2	1	3
n Cost	1	3	3
arket	2	1	3

imber/iew

ARCHITECTURAL CONSIDERATIONS

limber View where to expose wood fiber

TYPE IV-C ALLOWS FULL EXPOSURE OF WOOD STRUCTURE

ANALYSIS TO DETERMINE COST EFFECTIVE METHOD TO PROVIDE 2-HOUR PROTECTION.

Additional wood thickness

Gypsum wallboard wrap

OPTIMIZE THE USE AND VISUAL IMPACT OF THE EXPOSED STRUCTURE

BEAM TYPE 2

1 1/2" = 1'-0"

limber View BEAM DEPTHS & SPACE DESIGN

BUILDING HEIGHT

Type IV-C

Without additional budget consideration of a high rise building, limited to 75'

Zoning code requires 12' to underside of framing at ground floor

RESULTING IN A FLOOR TO FLOOR HEIGHT OF 9'-10"

9": Floor assembly

7'-6" or 7'-0": Code minimum required head height

1'-7" to 2'-1": Resulting allowable beam depth

limber View BEAM DEPTHS & SPACE DESIGN

POSSIBLE SOLUTIONS TO EXPLORE ON FUTURE PROJECTS

Utilize 2-way spanning capability of CLT and remove beams entirely

Reduce beam spans

Explore high-rise and Type IV-B construction options Use alternate beam system (steel)

| | | |

limber View detailing for deflection

GLULAM BEAMS LIKE OTHER STRUCTURAL SYSTEMS ARE SUBJECT TO DEFLECTION

Because the glulam beams and columns provide all of the structure the exterior and interior walls need to allow for plus/minus 1" deflection or a total 2" travel

Rated walls adjoin directly to the exposed structure of the CLT decking and need to maintain fire rating.

Due to desire to expose the underside of the CLT, Wall/ceiling intersections cannot be concealed or covered in G.W.B. or a dropped ceiling as is common in other construction.

THERMAL LA

Safti Seal, Fire Rated Gasket "FRG" Flex Lock Edge Joint Protection

FLEX-LOCK EDG

limber View mass timber design is rapidly evolving

DESPITE THE PROJECT FALLING UNDER A PRESCRIPTIVE CODE PATH, THE CODE, ENGINEERING, AND JURISDICTIONAL VIEWPOINTS PROGRESSED AS THE PROJECT UNDERWENT DESIGN DEVELOPMENT, **CONSTRUCTION DOCUMENTS, AND PERMITTING**

Engineering documentation for structural hangers

Interpretation and explicitness of proper methods to maintain fire rating left gray area that required an appeal to resolve

Sound ratings for floor-ceiling assemblies are rapidly being added as well as being revised

imberview

STRUCTURAL CONSIDERATIONS

limber View GRAVITY SYSTEM

Floor Assembly

- 5-Ply 6 7/8" El grade CLT (2-Hour Fire), Vl grade at Roof (1-Hour Fire)
- 1½" Gypcrete Topping
- Mild reinforced concrete slab at ground floor (over basement)

Glulam Beams

- Clear-span across double loaded corridor
- Approx 16' to 18' on center
- Typical sizing 8 ³/₄" Width x 25 ¹/₂" Deep
- Ricon S VS Series Hangers
- Steel Wide Flange Beams at 2nd Floor and sporadically at typical floor, where needed

Glulam Columns

- Typical sizing 14 ¼" Width x 16 ½" Deep
- Supported by concrete columns from foundation to ground floor

Typical Beam/Column Connection

limber View FIRE RATING

Beams, Columns and CLT Panels

- Type IV-C "primary structural frame" and "floor construction" elements are 2hr rated Rating achieved with two methods:
- - Gypsum Protection (3) layers of direct applied 5/8" type X gypsum board (40 minutes per layer, per 2021 IBC)
 - 2. Char of Exposed Mass Timber calculated methods prescribed in NDS
- Beams & Columns used a combination of these two methods
- 5-ply CLT panel achieved rating solely from char, allowing for exposed CLT ceilings

Connections

- 2021 IBC contains fire resistance rating requirements for connections
 - Based on limiting temperature rise for the connection
- The analysis followed guidelines in American Wood Council's Technical Report 10 "Calculating Fire Resistance of Wood Members and Assemblies" (TR-10)
- City of Portland was amenable and worked through this approach with the design team •
- compliance

The city still required an appeal for some provisions that lacked specific paths of

• Engineering judgement letter from fire stop product manufacturer was used in conjunction with the analysis

limber View LATERAL SYSTEM

WX Columr

Wx Beam

Buckling Restrained Braced Frames (BRBF)

- Portland is in a high seismic region, so seismic design requirements govern lateral system selection
- Benefits of BRBFs compared to other steel/concrete systems:

- - For an 8-story building, current code prescribed systems are either steel or concrete based
- - (e.g. columns, foundations) resulting in smaller sizes of those members
 - Flexible brace frame layout & orientation

Typical BRB Frame Elevation

<u>Typical Floor Plan – Lateral System Elements</u>

CLT Diaphragms

- City of Portland allowed use of new "CLT diaphragm" provisions
 - Provisions are part of the 2021 AWC "Special Design Provisions for Wind and
 - Seismic" (SDPWS), officially adopted as a reference standard in the 2021 IBC
- No structural concrete topping required
- Flat steel plates & light gauge straps used for chords, collectors, and panel
 - splines all concealed in non-structural gypcrete topping

• Higher ductility system (higher R value), which reduces forces to other elements

limberView

Thank you!

David R Burnett Project Architect C: 971.279.8903 davidb@access-arch.com

Shirley Chalupa Principal D: 503.850.9087 schalupa@dci-engineers.com

