Acoustics, Floor Vibration, MEP Integration, Enclosure and Moisture Protection

March 27, 2023

Presented by Jessica Scarlett, Mark Bartlett and Jason Bahr

Adidas East Village Expansion / LEVER Architecture / photo Jeremy Bittermann

WOODWORKS

WPC

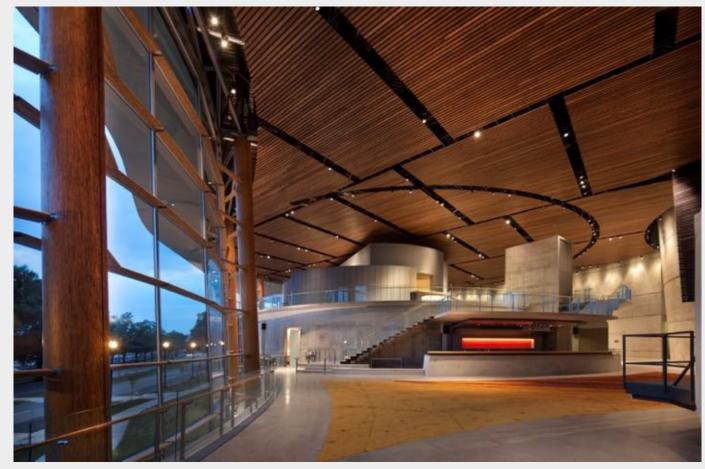
1 1 - 1 in mont

Whatever you call it, it all comes down to one thing: Occupant Comfort

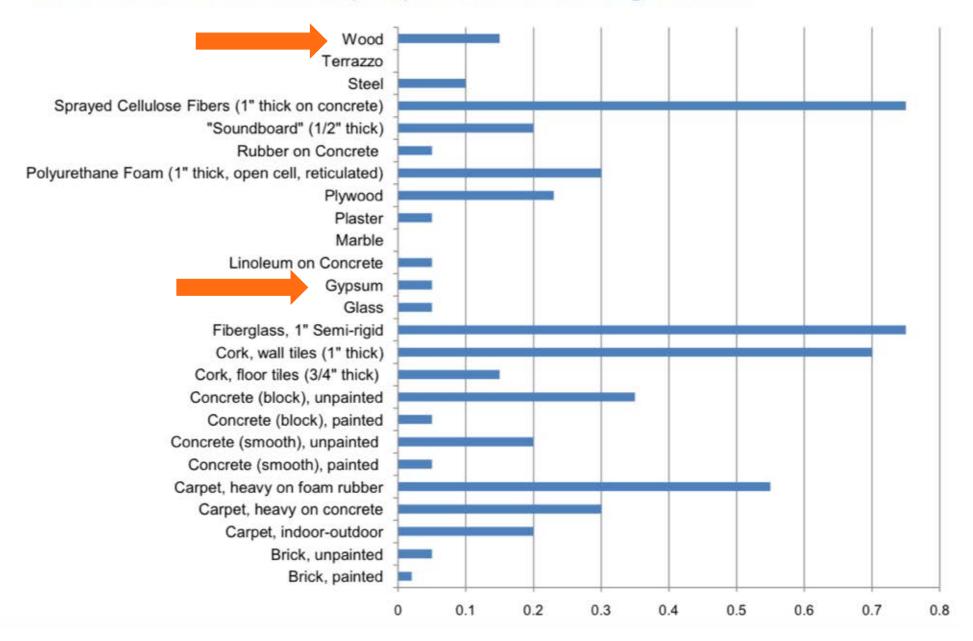
Acoustical Design

Types of noise to control: Exterior to interior

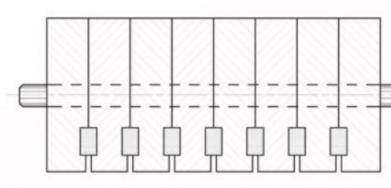
Acoustical Design


Types of noise to control: **Noise within a space**

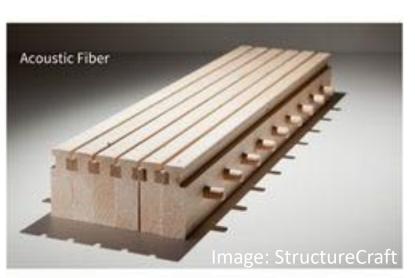
Room Acoustics

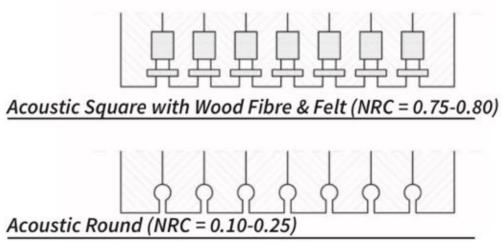

WHAT IS SOUND ABSORPTION?

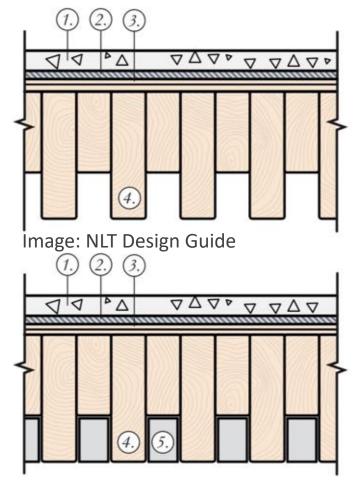
All materials absorb sound energy to some degree. Whenever sound waves strike a material, part of the acoustical energy in the wave is absorbed and/or transmitted, and the remainder is reflected.


Arena Stage, Washington, DC Photo: Nic Lehoux, Bing Thom Architects

Noise Reduction Coefficients (NRC) for Common Building Materials:



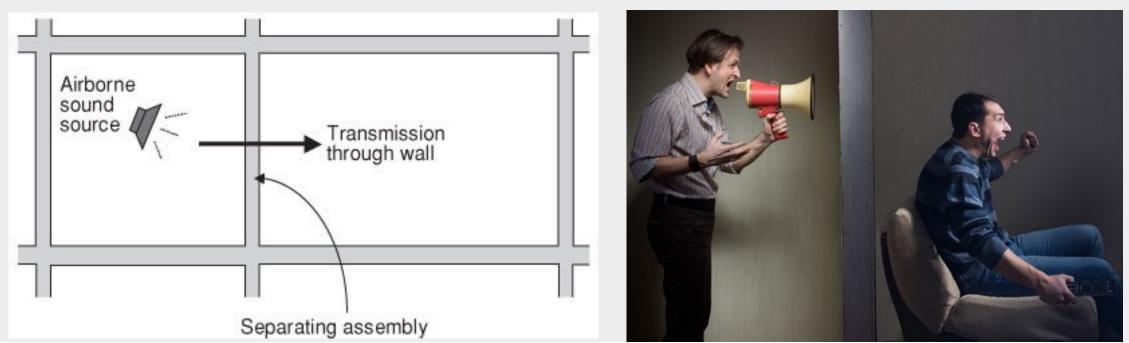

Room Acoustics


NRC of exposed wood panels like NLT & DLT can be improved with inset absorbing materials

Acoustic Square with Wood Fibre (NRC = 0.55-0.65)

Figure 2.16: Alternating 2x4 and 2x6 lumber with and without sound absorbing material.

Key

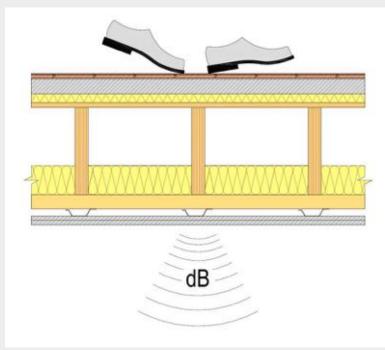

- 1. Concrete topping
- 2. Acoustic mat
- 3. Plywood/OSB
- 4. NLT
- 5. Sound absorbing material

Acoustical Design

Types of noise to control: Interior to interior

» <u>Air-Borne Sound</u>: Sound Transmission Class (STC)

Measures how effectively an assembly isolates air-borne sound and reduces the level that passes from one side to the other. Applies to walls and floor/ceiling assemblies



Acoustical Design

Types of noise to control: Interior to interior

» <u>Structure-borne sound</u>: Impact Insulation Class (IIC)

Evaluates how effectively an assembly blocks impact sound from passing through it. Only applies to floor/ceiling assemblies

Acoustical Criteria

Acoustical Isolation Between Units – Airborne (STC) / Impact (IIC)

Class Designation	Airborne Sound Isolation (STC)	Floor Ceiling Impact Isolation (IIC)
Entry level	50	50
Market rate	55	55
Luxury	60	60

Mass Timber Wall Acoustics: STC

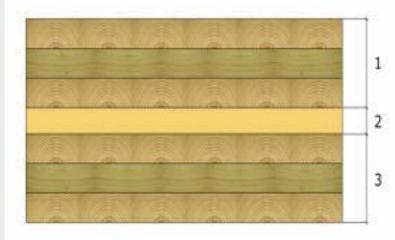

Photo: Pam Wean, MSES Architects

Photo: Lend Lease & Schaefer

Sound Insulation of Bare CLT Floors and Walls

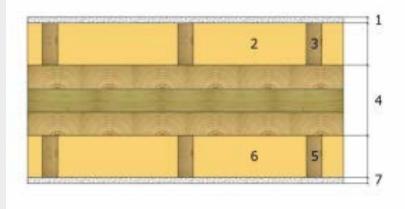
Number of layers	Thickness (in.)	Wall or Floor	STC	IIC
3	3-3/4 to 4-1/2	Wall	32-34	N.A.
5	5-1/3	Floor	39	23
5	5-3/4	Floor	39	24
	Measured on fiel	d bare CLT wall a	and floor	
Number of layers	Thickness in.	Assembly type	FSTC	FIIC
3	4-1/8	Wall	28	N.A.
7	8-1/5	Floor	N.A	25-30

Credit: US CLT Handbook

Design Examples for >50 STC Walls

STC 50:

1 and 3 = 4-1/2 in. CLT;


2 = 1-1/8 in. Mineral wool in the gap

STC 55:

Add 5/8 in. gypsum board directly to both sides

STC 60:

Gypsum boards plus double the thickness of the gap and mineral wool

STC 58:

- 1 and 7 = 5/8 in. gypsum boards
- 3 and 5 = 2 in. by 3 in. wood studs at least 16 in. o.c.
- 2 and 6 = 2.5 in. mineral wool
- 4 = 4-1/2 in. CLT

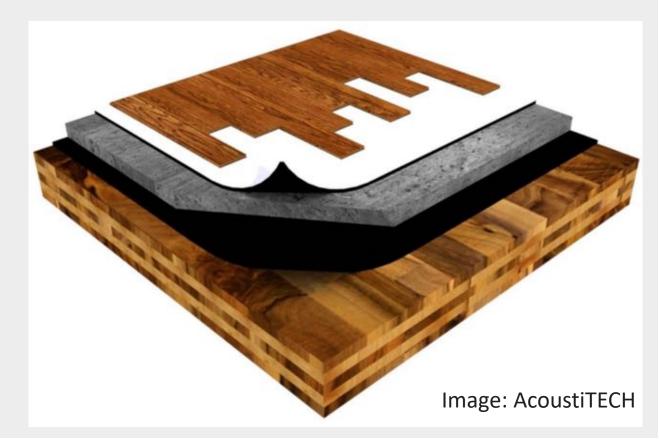
Credit: US CLT Handbook

Mass Timber Floor Acoustics – STC & IIC

Photo: John Stamets

Main difference between light frame wood floors and mass timber floors is that mass timber floors are usually left exposed on ceiling side. All acoustical products applied on top of assembly

Photo: Structurlam



Common mass timber floor assembly:

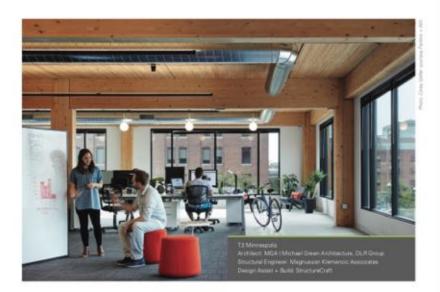
- » Finish floor (if applicable)
- » Underlayment (if finish floor)
- » 1.5" to 3" thick concrete/gypcrete topping
- » Acoustical mat
- » WSP (if applicable)
- » Mass timber floor panels

Options without concrete topping:

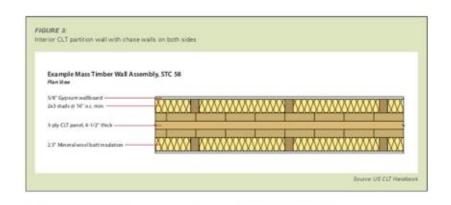
- » Gypsum/cement board (Fermacell, Permabase, etc.)
- » Proprietary products

Images: AcoustiTECH

Mass Timber Acoustics



Mass Timber Acoustics



Acoustics and Mass Timber: Room-to-Room Noise Control

Rehard McLain, PE, SE + Senior Technical Director + WoodWlaiks

The growing availability and code acceptance of mass timber—i.e., large solid wood panel products such as crosslaminated timber (ICLT) and nal-laminated timber (NLT) for floor, will and root construction has given designers a low-carbon alternative to steet, concrete, and masorry for many applications. However, the use of mass timber in multi-family and commercial buildings presents unique acoustic challenges. While laboratory measurements of the impact and airborne sound isolation of traditional building assemblies such as light wood-frame, streel and concrete are widely available, fewer resources exist that quantify the acoustic performance of mass timber assemblies. Additionally, one of the most desired aspects of mass timber construction is the ability to leave a building's structure exposed as finish, which creates the need for asymmetric assemblies. With careful design and detailing, mass timber buildings can meet the acoustic performance expectations of most building types.

Mass Timber Assembly Options: Walls

Mass timber panels can also be used for interior and exterior walls---both bearing and non-bearing. For interior walls, the need to conceal services such as electrical and plumbing is an added consideration. Common approaches include building a chase wall in front of the mass timber wall or installing gypsum wallboard on resilient channels that are attached to the mass timber wall. As with bare mass timber floor panels, bare mass timber walls don't typically provide adequate noise control, and chase walls also function as acoustical improvements. For example, a 3-ply CLT well panel with a thickness of 3.07" has an STC rating of 33.4 In contrast, Figure 3 shows an interior CLT partition wall with chase walls on both sides. This assembly achieves an STC rating of 58, exceeding the IBC's acoustical requirements for multi-family construction. Other examples are included in the inventory of tested assemblies noted above.

Acoustical Differences between Mass Timber Panel Options

The majority of acoustically-tested mass timber assemblies include CLT. However, tests have also been done on other mass timber panel options such as NLT and dowel-leminated timber (DLT), as well as traditional heavy timber options such as tongue and groove decking. Most tests have concluded that CLT acoustical performance is slightly better than that of other mass timber options, largely because the crossorientation of leminations in a CLT panel limits sound flarking.

For those interested in comparing similar assemblies and mass timber panel types and thicknesses, the inventory noted above contains tested assemblies using CLT, NLT, glued-laminated timber panels (GLT), and tongue and groove decking.

Improving Performance by Minimizing Flanking

Even when the assemblies in a building are carefully designed and installed for high acoustical performance, consideration of flanking paths—in areas such as assembly intersections, beam-to-column/wall connections, and MEP penetrations—is necessary for a building to meet overall acoustical performance objectives.

One way to minimize flanking paths at these connections and interfaces is to use resilent connection isolation and sealert strips. These products are capable of resisting structural loads in compression between structural members and connections while providing isolation and breaking hald, direct connectors between members. In the context of the three methods for improving

acoustical performance noted above, these strips act as decouplers. With artight connections, interfaces and penetrations, there is a much greater chance that the acoustic performance of a mass timber building will meet expectations.

https://www.woodworks.org/resources/acoustics-and-mass-timber-room-to-room-noise-control/

Mass Timber Acoustics

Acoustically-Tested Mass Timber Assemblies

Following is a list of mass timber assemblies that have been acoustically tested as of January 23, 2019. Sources are noted at the end of this document. For free technical assistance on any guestions related to the acoustical design of mass timber assemblies, or free technical assistance related to any aspect of the design, engineering or construction of a commercial or multi-family wood building in the U.S., email help@woodworks.org or contact the WoodWorks Regional Director nearest you: http://www.woodworks.org/project-assistance

Contents:

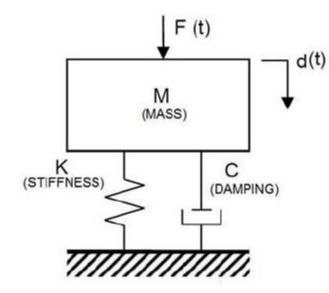
Table 1: CLT Floor Assemblies with Concrete/Gypsum Topping, Ceiling Side Exposed	
Table 2: CLT Floor Assemblies without Concrete/Gypsum Topping, Ceiling Side Exposed	
Table 3: CLT Floor Assemblies without Concrete/Gypsum Topping, with Wood Sleepers, Ceiling Side Exposed	
Table 4: NLT, GLT & T&G Decking Floor Assemblies, Ceiling Side Exposed	
Table 5: Mass Timber Floor Assemblies with Ceiling Side Concealed	
Table 6: Single CLT Wall	
Table 7: Single NLT Wall	
Table 8: Double CLT Wall	
Sources	
Disclaimer	

WoodWorks

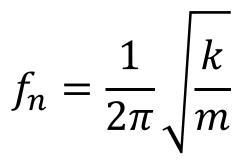
https://www.woodworks.org/resources/inventory-of-acoustically-tested-mass-timber-assemblies/

Floor Vibration Design

"One might almost say that strength is essential and otherwise unimportant"

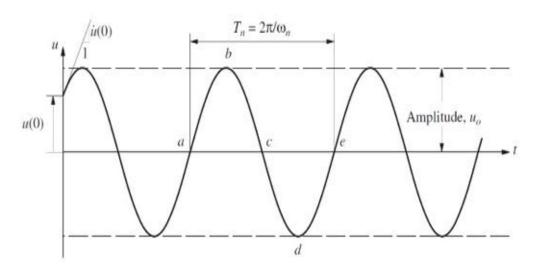

- Hardy Cross

US Building Code Requirements for Vibration



- » Barely discussed in IBC, NDS, etc.
- » ASCE 7 Commentary Appendix C has some discussion, no requirements

Floor Vibration Dynamics



Natural Frequency

Undamped Free Response

Period T = $1 / f_n$ Frequency

Walking Frequency $f_{\rm w}$

Walking Speed	Walking Frequency	Steps Per Minute
Very Slow	1.25 Hz	75 SPM
Slow	1.6 Hz	95 SPM
Moderate	1.85 Hz	110 SPM
Fast	2.1 Hz	126 SPM
Running	Up to 4.0 Hz	240 SPM
Practical Tip - walk to a metronome too understand the range		

The range of walking frequencies considered is an important consideration of vibration analysis

Vibration Design Methods

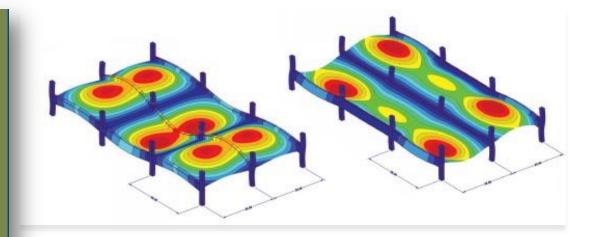
U.S. CLT Handbook, 2013 Canadian CLT Handbook 2nd Ed., 2019 FPInnovations

CLT Handbook Base Span Limit

For PRG 320-2019 Basic CLT Grades and Layups from Solid Sawn Lumber

Grade	Layup	Thickness	Base Span Limit
	3ply	4 1/8"	13.1
E1	5ply	6 7/8"	18.2
	7ply	9 5/8"	22.7
	3ply	4 1/8"	12.4
E2	5ply	6 7/8"	17.2
	7ply	9 5/8"	21.6
	3ply	4 1/8"	12.0
E3	5ply	6 7/8"	16.7
	7ply	9 5/8"	20.9
	3ply	4 1/8"	12.7
E4	5ply	6 7/8"	17.6
	7ply	9 5/8"	22.1
	3ply	4 1/8"	12.6
E5	5ply	6 7/8"	17.5
	7ply	9 5/8"	21.9

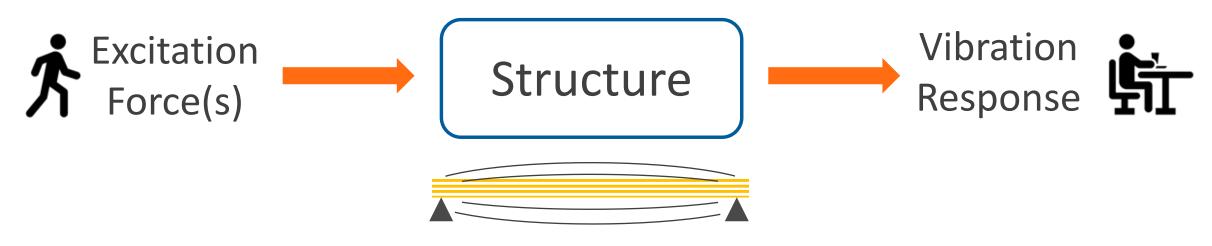
Grade	Layup	Thickness	FPI Span Limit
	3ply	4 1/8"	12.6
V1	5ply	6 7/8"	17.6
	7ply	9 5/8"	22.0
	3ply	4 1/8"	12.6
V1(N)	5ply	6 7/8"	17.6
	7ply	9 5/8"	22.0
	3ply	4 1/8"	12.4
V2	5ply	6 7/8"	17.2
	7ply	9 5/8"	21.5
	3ply	4 1/8"	12.0
V3	5ply	6 7/8"	16.7
	7ply	9 5/8"	20.9
	3ply	4 1/8"	11.7
V4	5ply	6 7/8"	16.3
	7ply	9 5/8"	20.4
	3ply	4 1/8"	12.1
V5	5ply	6 7/8"	16.8
	7ply	9 5/8"	21.0


Reference: US Mass Timber Floor Vibration Design Guide, assuming 12% M.C.

New Mass Timber Floor Vibration Design Guide

U.S. Mass Timber Floor Vibration

Design Guide

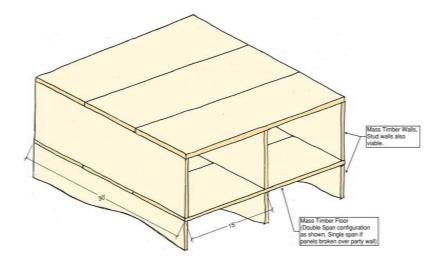


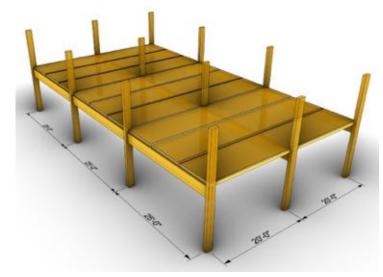
Worked office, lab and residential Examples

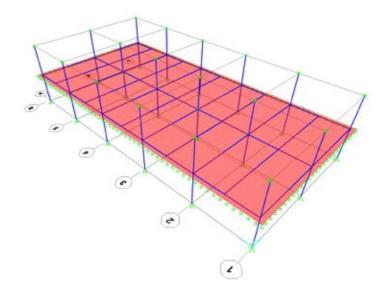
Covers simple and complex methods for bearing wall and frame supported floor systems

https://www.woodworks.org/publications-media/solution-papers/

Parameters of Modal Superposition Methods


Walking Frequency, f_w


...


Walking Location Walking Path Stiffness Mass/Weight Damping Boundary Conditions Performance Targets

Details of U.S. Mass Timber Floor Vibration Design Guide

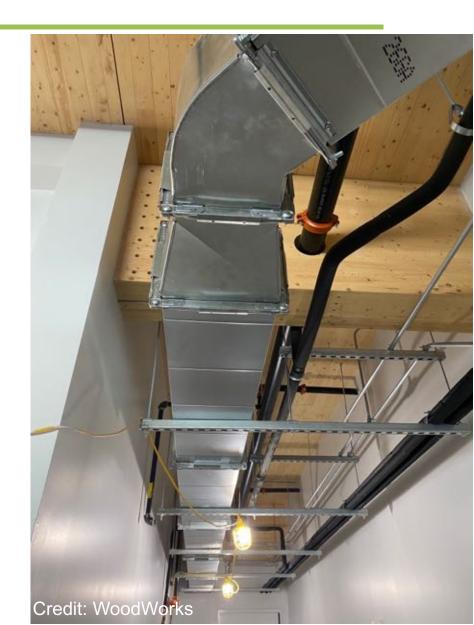
Vibration Design Examples

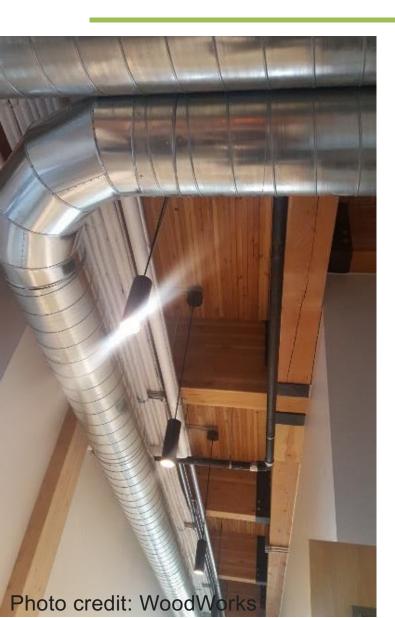
Residential Bearing Wall Building with CLT

Open Office with NLT on Glulam Frame

High Performance Lab Space with CLT on Glulam Frame

MEP DESIGN CONSIDERATIONS

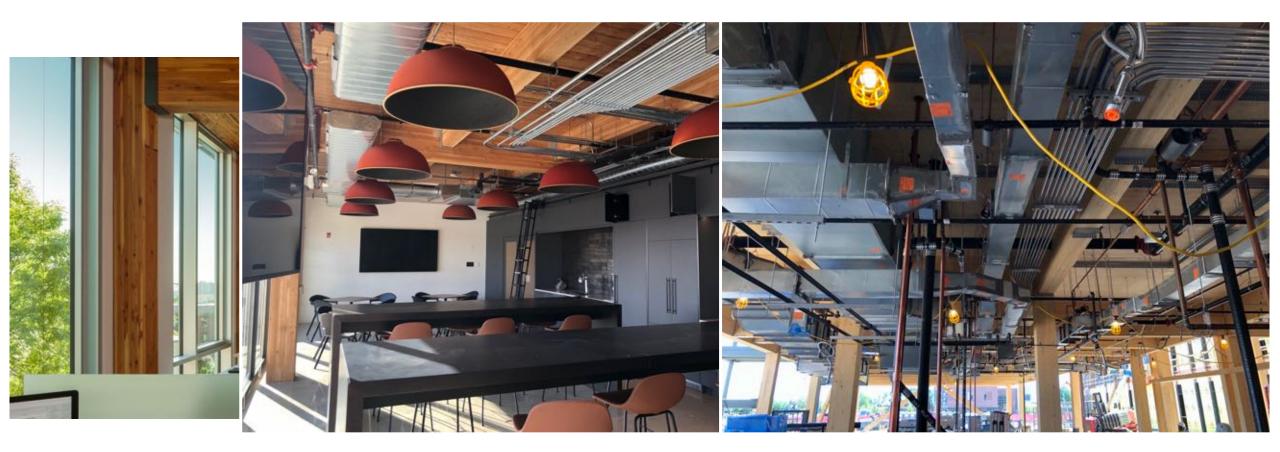



INTRO, Cleveland, OH. Credit: Harbor Bay Real Estate Advisors

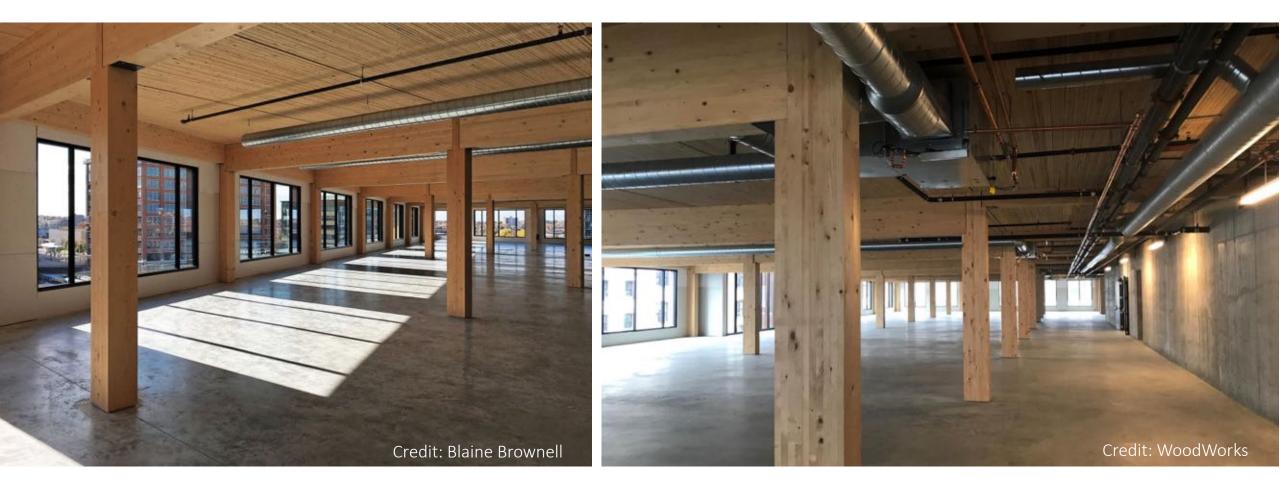
utual

Key considerations:

- Level of exposure desired
- Floor-to-floor structure depth & desired head height
- Building occupancy and configuration (i.e. central core vs. double loaded corridor)
- Grid layout and beam orientations
- Need for future tenant reconfiguration
- Impact on fire & structural design
- Concealed spaces
- Penetrations


Exposed MEP

MEP items often left exposed on the ceiling side of floor assembly


Set Realistic Owner Expectations About Aesthetics

• MEP fully exposed with MT structure, or limited exposure?

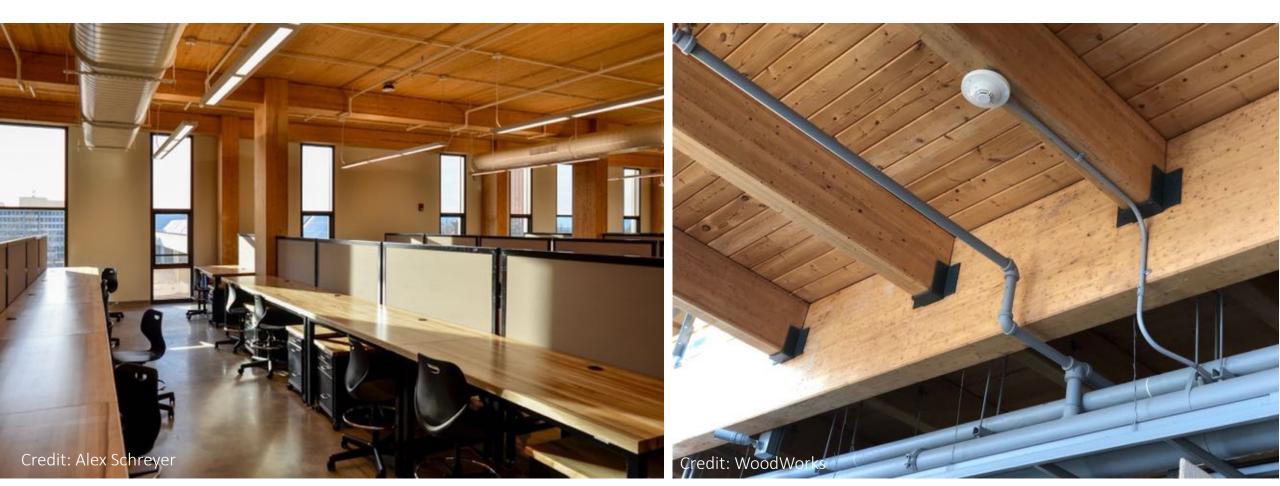
Smaller grid bays at central core (more head height)

• Main MEP trunk lines around core, smaller branches in exterior bays

Grid impact: one-way beam layout.

Columns/beams spaced at panel span limits in one direction.

Beam penetrations are minimized/eliminated


Recall typical panel span limits:

Panel	Example Floor Span Ranges
3-ply CLT (4-1/8" thick)	Up to 12 ft
5-ply CLT (6-7/8" thick)	14 to 17 ft
7-ply CLT (9-5/8")	17 to 21 ft
2x4 NLT	Up to 12 ft
2x6 NLT	10 to 17 ft
2x8 NLT	14 to 21 ft
5" MPP	10 to 15 ft

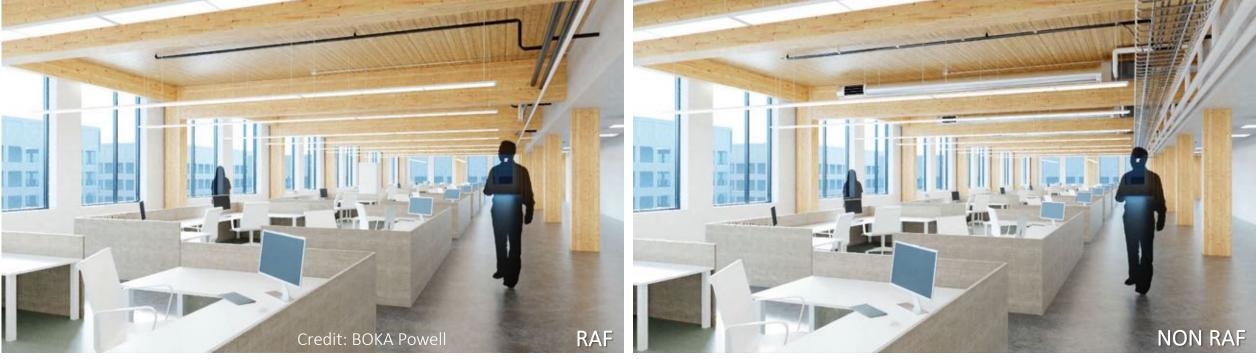
Dropped below MT framing

- Can simplify coordination (fewer penetrations)
- Bigger impact on head height

In penetrations through MT framing

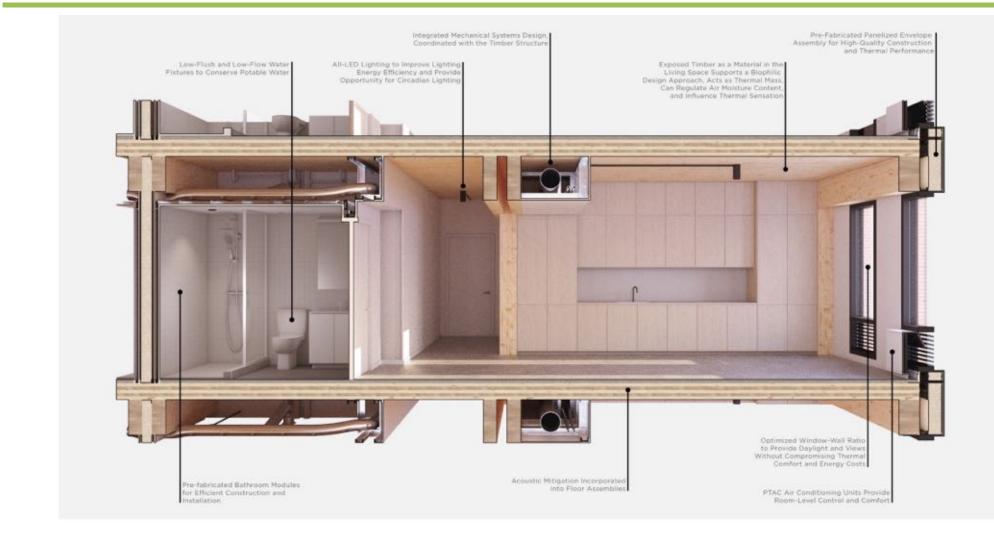
- Requires more coordination (penetrations)
- Bigger impact on structural capacity of penetrated members
- Minimal impact on head height

In chases above beams and below panels


- Fewer penetrations
- Bigger impact on head height (overall structure depth is greater)
- FRR impacts: top of beam exposure

In raised access floor (RAF) above MT

Aesthetics (minimal exposed MEP)

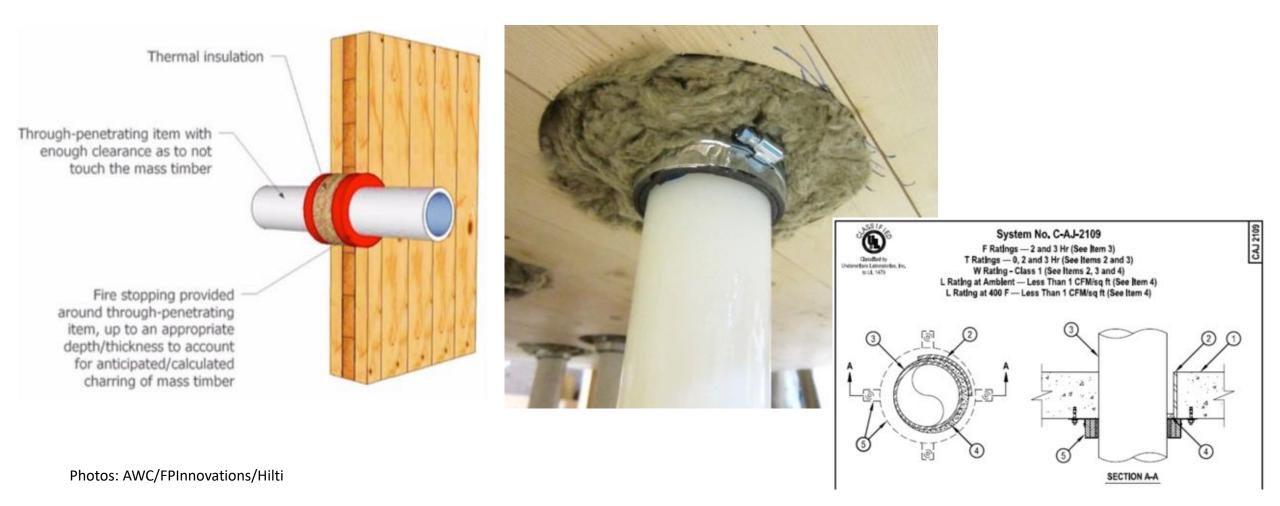


In raised access floor (RAF) above MT

- Impact on head height
- Concealed space code provisions

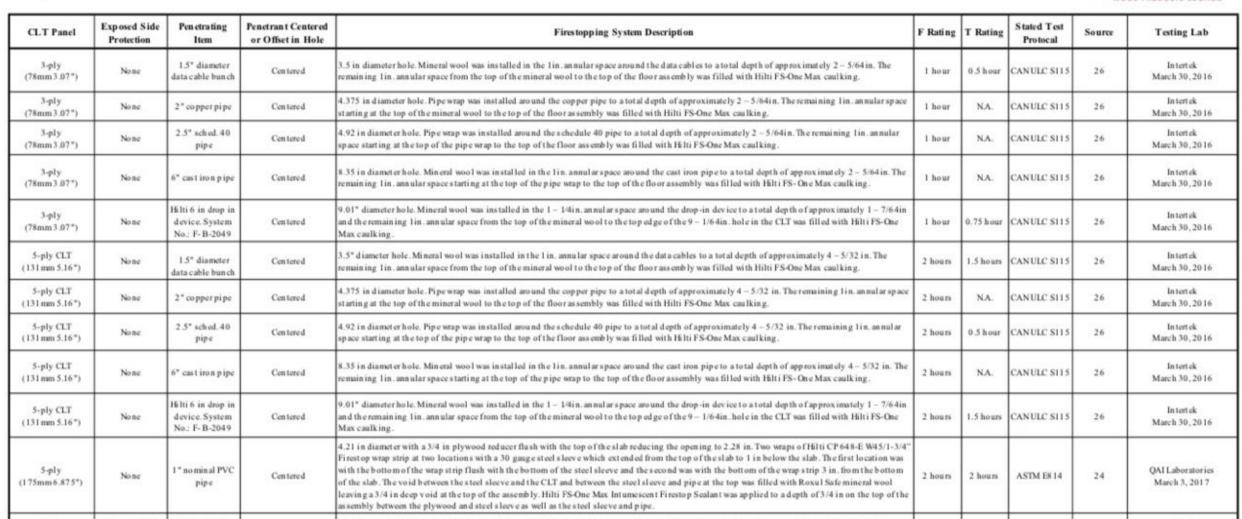
INTEGRATED SYSTEMS

Credit: John Klein, Generate Architecture


The Tailhouse building system prioritizes the integration of design, engineering, and construction. This results in a high performance building finely tuned to meet energy, comfort, acoustic, and design criteria that has been vetted by constructability experts to ensure fast, efficient production.

Utilizing Pre-Fabricated Facade Panels and Bathroom Modules that are manufactured off-site in factories allows for reducing construction time on-site, higher quality control practices, and safe labor conditions for construction workers. Efficient routing of duct-work conserves material, and associated embodied carbon, ellowing more exposed timber all while providing the air quality needed for healthy living. Water conserving fixtures reduce potable water use as a precisus resource, while maintaining reliable performance.

Although not a new code requirement or specific to tall wood, more testing & information is becoming available on firestopping of penetrations through MT assemblies


Most firestopping systems include combination of fire safing (eg. noncombustible materials such as mineral wool insulation) plus fire caulk

SOUTHWEST RESEARCH INSTITUTE® 6220 CULEBRA ROAD 78236-5186 + P.O. DRAWER 28510 78226-6510 + SAN ANTONIO, TEXAS, USA + (210) 684-5111 + WWW.SWRLORD CHEMISTRY AND CHEMICAL ENGINEERING DIVISION FIRE TECHNOLOGY DEPARTMENT WWW.RHELSWRLORD		Firestop systems tests on Mass Timber Contact WoodWorks for information		
	FAX (210) 522-3377	2018 World Conference on Timb August 28 - 23, 2018: Socid, Repub	018 er Engineering Rs of Korea	
FIRE RESISTANCE PERFORMANCE EVALUATION OF A PENETRATION FIRESTOP SYSTEM TESTED IN ACCORDANCE WITH ASTM E814-13A, STANDARD TEST METHOD FOR FIRE TESTS OF PENETRATION FIRESTOP SYSTEMS FINAL REPORT	FIRE PERFORMANCE OF FIRESTOPS, PENETRATIONS, AND FI DOORS IN MASS TIMBER ASSEMBLIES Lindsay Ranger ¹ , Christian Dagenais ¹ , Conroy Lum ¹ , Tony Thomas ¹ ABSTRACT: Integrity and continuity must be maintained for fire separations required to provide fir		GHL CONSULTANTS LTD	409 GRANVILLE STREET, SLITE 950 VANCOUVER, BC V6C 172 GANADA P 604 689 4449 F 604 6419 www.gH.ca Hotter of ABC Centificate of Practice
SwRI [®] Project No. 01.21428.01.001a Test Date: September 30, 2015 Report Date: October 22, 2015	prevent passage of hot gases or increased temperature on the unexposed side. Vulnerable locations, whet are introduced into mass timber systems, are susceptible to fire spread. Service and closure penetrat timber fire separation have been investigated. Many of the fire stop systems were able to achieve 1-½ accordance with CAN/ULC-S115, which would be required for 2-hr fire resistance rated assemblies, su tall wood buildings. Construction details are outlined which ensure adequate fire performance of these pe KEYWORDS: Firestop, through-penetrations, fire rated door, mass timber, cross-laminated timb buildings, fire resistance		FIRESTOPPING TEST WITNESS REPORT	
Prepared for: American Wood Council 222 Catoctin Circle SE Leesburg, VA 20175	1 INTRODUCTION Many tall wood buildings using mass timber are planme or are currently being designed for construction arour the world. A few have been built in Canada, includin an 18 storey cross-laminated timber (CLT) and glula building in British Columbia. The prescriptiv requirements in the National Building Code of Canar (NBCC) [1] do not (yet) permit the construction of woo buildings taller than six stories, however an alternative	Although the general fire performance of well documented, there are still sever warrant further investigation to ensure safety levels are met and a number available for designers to use. Generating energies are more to use and a number of available for designers to use and a number of generating and a set of the set of the set of the generating and the set of the set of the set of the set of the set of the set of t	NORDIC STRUCTURES	

Inventory of Fire Tested Penetrations in MT Assemblies

Table 3: North American Fire Tests of Penetrations and Fire Stops in CLT Assemblies

New for GCs and installers: U.S. Mass Timber Construction Manual

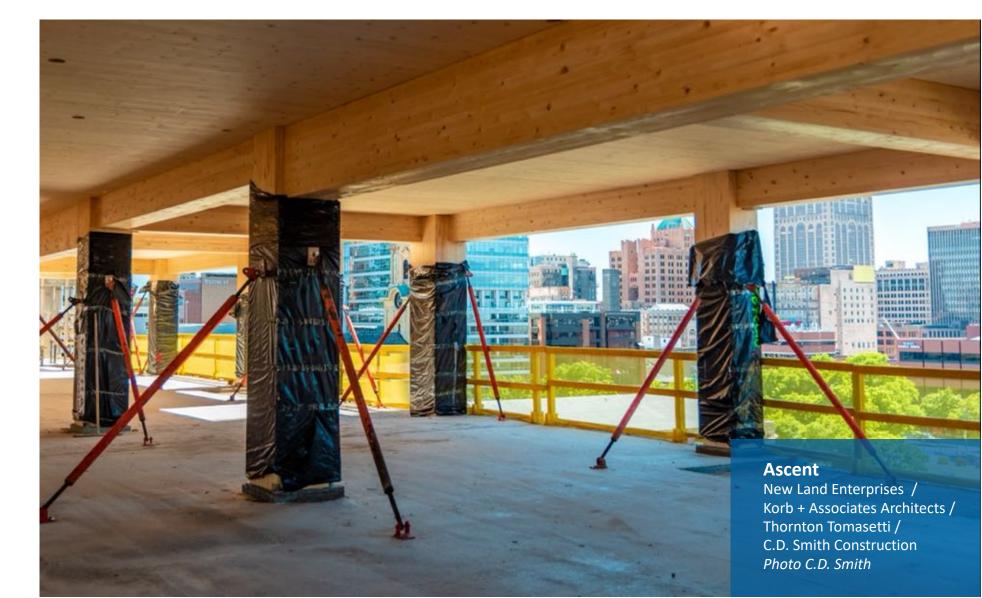
Download free at woodworks.org

New for GCs and installers: U.S. Mass Timber Construction Manual

- RDH Building Science. (2020). Moisture Risk Management Strategies for Mass Timber Buildings. <u>https://learnbuildingscience.com/products/moisture-risk-management-strategies-for-mass-timber-buildings</u>
- McLain, R., Steimle, D. WoodWorks. (2019). Accommodating Wood Shrinkage in Multi-Story Wood-Frame Buildings.

https://www.woodworks.org/wp-content/uploads/wood_solution_paper-Accomodating-Shrinkage.pdf

- RDH Building Science. (2020.) Mass Timber Building Enclosure Best Practice Design Guide. https://learnbuildingscience.com/products/mass-timber-building-enclosure-best-practice-design-guide
- US Department of Labor, Occupational Safety and Health Administration (OSHA). OSHA Requirements Related to Leading Hazards at Construction Sites. https://www.osha.gov/complianceassistance/guickstarts/construction#step1
- OSHA. Other OSHA Requirements That May Apply to Your Jobsite. <u>https://www.osha.gov/complianceassistance/quickstarts/construction#step2</u>
- OSHA. Survey Your Workplace for Additional Hazards. <u>https://www.osha.gov/complianceassistance/quickstarts/construction#step3</u>
- 22. OSHA. Develop a Jobsite Safety and Health Program.


https://www.osha.gov/complianceassistance/guickstarts/construction#step4

Download free at woodworks.org

WOODWORKS

Material Protection


- » Moisture
- » UV rays
- » Damage

Moisture Management

- Keep wood as dry as possible to avoid:
- » Stains and dirt
- » Shrinkage and swelling
- » Damage from prolonged moisture exposure

Mass timber can get wet—and will get wet on most projects. That is not a problem, provided an effective moisture management plan is in place.

Moisture Management Plan

Planning starts at the earliest stage and is collaborative.

Construction team responsibilities include:

- » Construction phase plan; on-site strategies based on risk evaluation
 - » Coverings
 - » Deflection/diversion
 - » Ventilation/drying
- » Anticipating and troubleshoots issues
- » Monitoring

Type and Extent of Protection

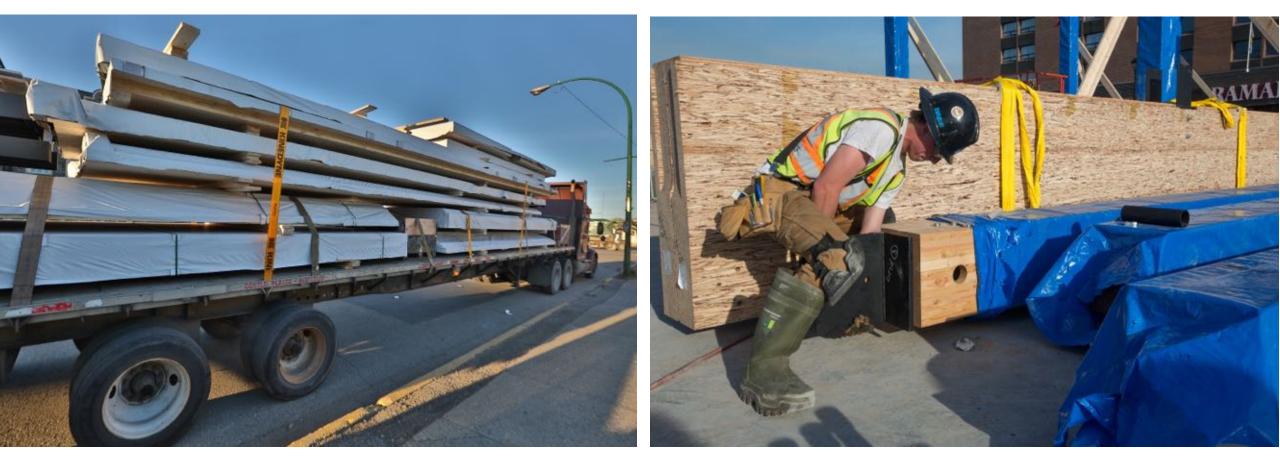
- · Decision by architect/contractor
- Appearance requirements
- · Extent and cost of protection methods
- · Protection in fabrication plant and/or on jobsite
- Capability of fabricator
- Capability of installer/moisture protection subcontractor
- Schedule protection plan
- Protection prior to installation
- Protection during installation
- Protection after installation

Moisture Management Responsibility and Risk

- · Responsibility for managing and cost of the plan
- Contractor and/or fabricator
- Conditions to be considered
- Schedule delays and revisions
- · Construction weather conditions (worst case)

Monitoring Moisture Before, During and After Construction

- · Coordination with concrete topping activities
- Roofing material
- Columns, beams and floor/wall panels


Factory-Applied Sealants & Coatings

Membranes can be spray-applied, sheet product (adhesive or non), or board/sheathing product.

Transportation & Storage

Photos Paul Alberts / Ardor Media / naturallywood.com

MATERIAL DELIVERY

6

Ocean

(604) 945-3718

66

Photo: Swinerton

00

Panel Joint Treatment

INTRO

Harbor Bay Ventures / Hartshorne Plunkard Architecture / Forefront Structural Engineers / Fast + Epp / Panzica Construction *Photos WoodWorks*

Deflection & Diversion

Platte Fifteen Oz Architecture / KL&A Engineers & Builders / Adolfson & Peterson Construction *Photo WoodWorks*

From Moisture Risk Management Strategies for Mass Timber Buildings, © 2020 RDH Building Science Inc.

Coverings

INTRO / Photos WoodWorks

Moisture Monitoring

Monitor the moisture content (MC) of wood materials throughout construction.

- » When materials are received
- » Regular intervals
- » After rainfall
- » Before drying in

Product	MC at Manufacture	Desired MC at Project Close-in with Direct-Applied Concrete Toppings
CLT	12% +/- 3%ª	<16%
GLT	12-16% [⊳]	<16%
NLT	< 19% °	<16%
DLT	15-19% ^d	<16%

Sources: ^aPRG-320 standard, ^bANSI A190.1, ^cNail-Laminated Timber Design Guide – U.S. Edition, and ^dDLT Design and Profile Guide The best way to minimize exposure to moisture is to close in the project quickly.

MASS TIMBER APPEAL

Reduced construction time

1 Floor = 3 Days

17 Floors Erected in 9.5 Weeks

Brock Commons, Vancouver, BC Source: naturally:wood⁵

Cleaning Mass Timber

Sanding and cleaning solutions are the most common ways to remove stains.

Photos WoodWorks

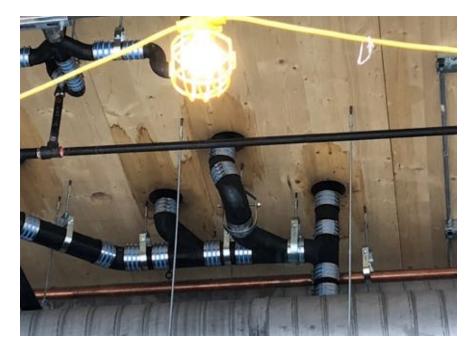
Planning for Environmental Exposures

- Plan Early
- Risk Evaluation
- Develop Construction Phase Plan
- Execute the Design and Moisture Management Plan
- Monitor

RDH Moisture Management Guide 1st Ed

Applying Finishes

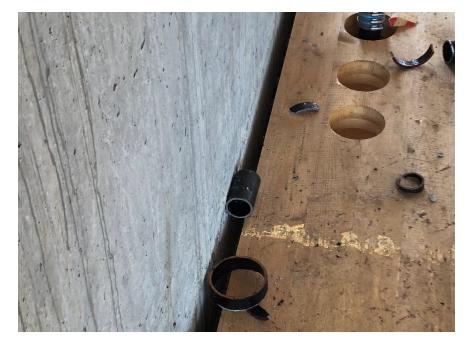
Below, glulam panels are coated in the controlled environment of a fabrication facility. On the right, a coating is being applied on the jobsite.



On Site Considerations

Ve

NOdna


Krap Vrap Hon

Onsite Considerations

Other Materials

Questions? Ask us anything.

Jessica Scarlett, EIT Regional Director | NC, SC, TN

(803) 616-621

jessica.scarlett@woodworks.org

Mark Bartlett, PE Regional Director | TX

(214) 679-1874

mark.bartlett@woodworks.org

Jason Bahr, PE Regional Director | KS, AR, MO, OK

(913) 732-0075

jason.bahr@woodworks.org

Visit us at Booth 440

籴

WOODWORKS

COUNCIL

MOOD PRODUCTS

Ask us anything!

Idaho Central Credit Union Arena / Opsis Architecture KPFF Consulting Engineers / Photo Lara Swimmer