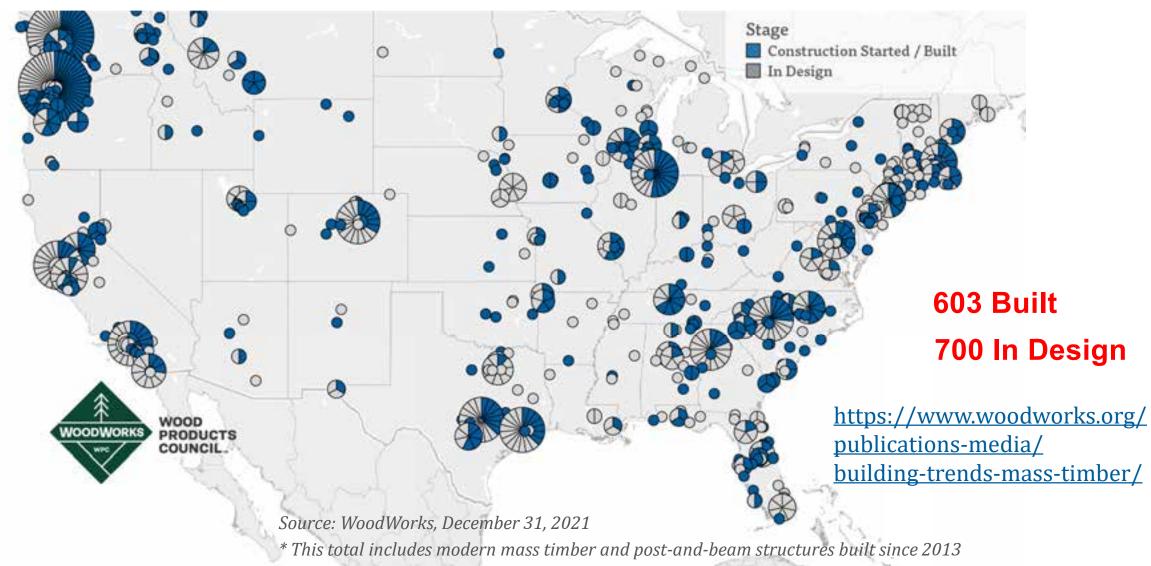
Mass Timber in Multi-Family Housing: Is It a Good Fit for Your Project?

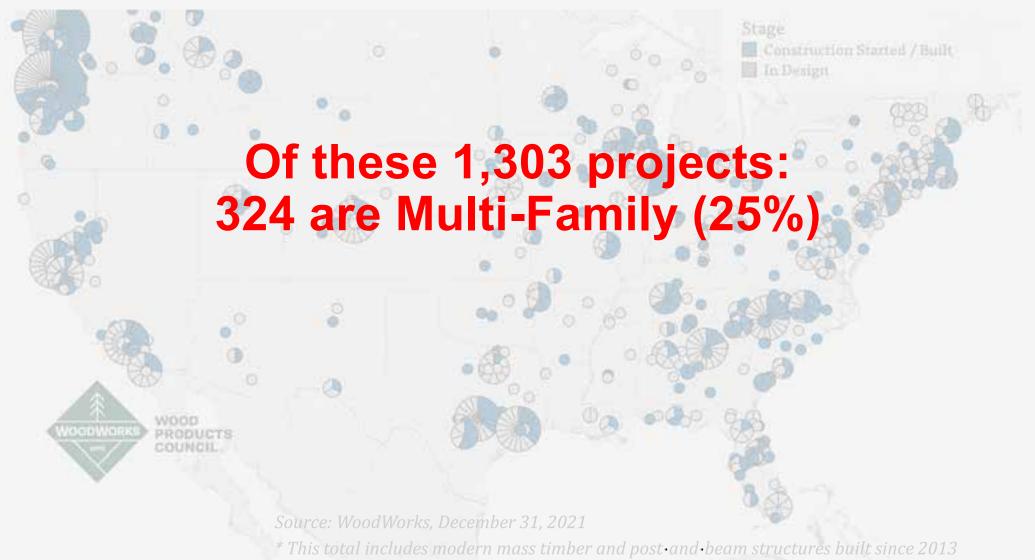
Presented by Momo Sun, PE, PEng Regional Director NY, NJ, PA

WoodWorks January 19, 2023 WOODWORKS


COUR

Is Mass Timber a Good Fit for Your Multi-Family Project?

Ascent, Milwaukee, WI Source: Korb & Associates Architects


Current State of Mass Timber Projects

As of December 2021, in the US, **1,303** multi-family, commercial, or institutional projects have been constructed with, or are in design with, mass timber.

Current State of Mass Timber Projects

As of December 2021, in the US, **1,303** multi-family, commercial, or institutional projects have been constructed with, or are in design with, mass timber.

Current State of Mass Timber Projects

As of December 2021, in the US, **1,303** multi-family, commercial, or institutional projects have been constructed with, or are in design with, mass timber.

It's <u>NOT</u> One Size Fits All:

Of these 324 Mass Timber Multi-Family Projects: 204 are 1-5 Stories (63%) 106 are 6-12 Stories (33%) 13 are 13+ Stories (4%)

PRODUCTI COUNCIL

Source: WoodWorks, December 31, 2021

* This total includes modern mass timber and post-and-beam structures built since 2013

MASS TIMBER IN MULTI-FAMILY

EVOLUTION

REVOLUTION?

 $(\mathbf{O}\mathbf{R})$

Multi-Housing Typologies

Multi-Housing Typologies

MT Floors & Roofs on LWF Bearing Walls

MT Floors & Roofs on Post & Beam Framing

MT Floors & Roofs on MT Bearing Walls

Credit: KL&A Engineers & Builders

Credit: ADX Creative and Engberg Anderson

Credit: Grey Organschi Architecture and Spiritos Properties

EVOLUTION INCREMENTAL CHANGE

REVOLUTIONA TRANSFORMATIONAL CHANGE

Low- and Mid-Rise Multi-Family

Credit: A Creative and Engberg Anderson

HYBRID LIGHT-FRAME + MASS TIMBER

THE KIND PROJECT, SACRAMENTO, CA

CONDOS AT LOST RABBIT, MS

Credit: Everett Consulting Group

THE POSTMARK APARTMENTS, SHORELINE, WA

Credit: Katerra, Hans-Erik Blomgren

CIRRUS, DENVER, CO

Credit: KL&A Engineers & Builders

CANYONS, PORTLAND, OR

Credit: Jeremy Bittermann & Kaiser + Path

THE DUKE, AUSTIN, TX

Credit: WGI

PROJECT ONE, OAKLAND, CA

Credit: Gurnet Point

WESSEX WOODS, PORTLAND, ME

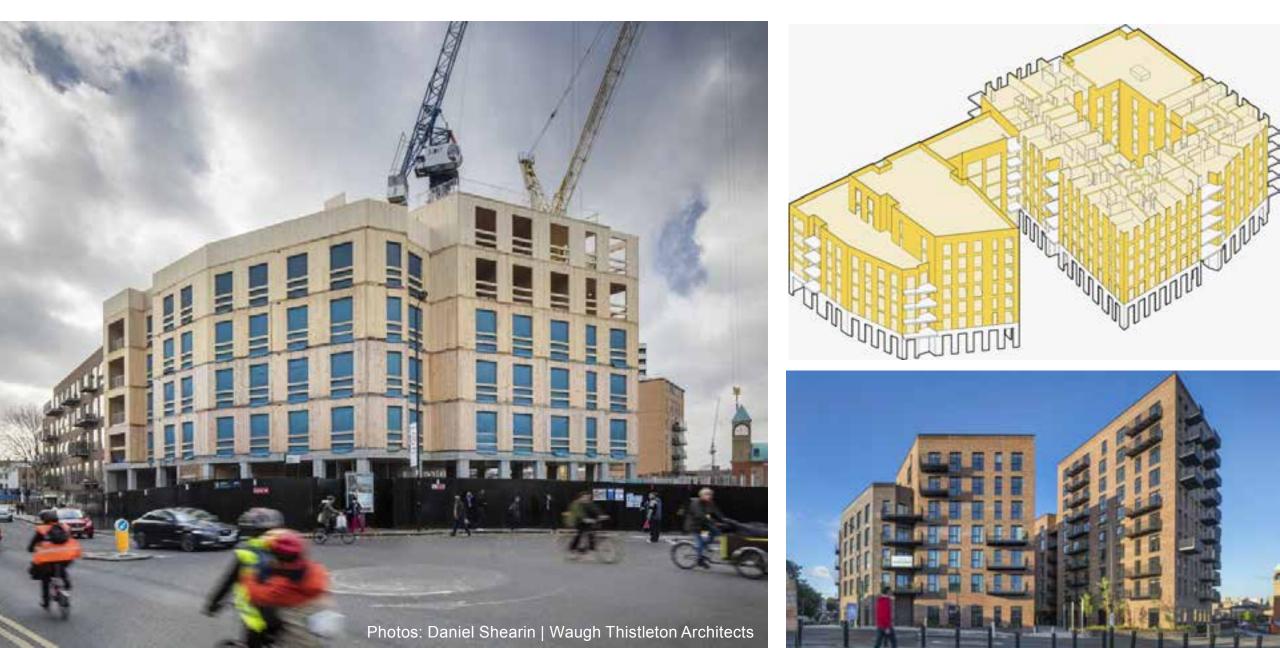
Credit: Avesta Housing

POST, BEAM + PLATE

320 AND 360 WYTHE AVENUE, BROOKLYN, NY

Credit: Flank

BARRACUDA CONDOS, MADISON, WI



Credit: Populance Architecture and Development

MASS TIMBER BEARING WALLS

DALSTON WORKS, LONDON

Model C, Roxbury, MA

Credit: John Klein, Generate Architecture

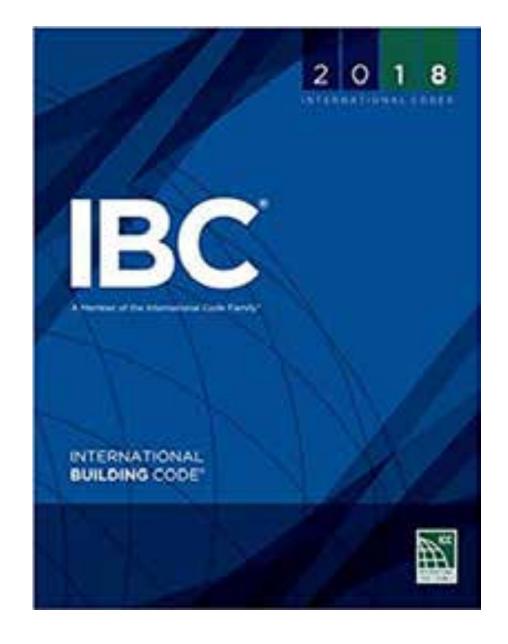
VERTICAL ADDITIONS AND ADAPTIVE REUSE

BREWERY LOFTS, TACOMA, WA

Brewery Lofts, Flynn Architecture, Eclipse Engineering, photos: Brewery Blocks Tacoma, SmartLam

AIN

G.


D

MASTER

When does the code allow mass timber to be used in low- and midrise multi-family projects?

IBC defines mass timber systems in IBC Chapter 2 and notes their acceptance and manufacturing standards in IBC Chapter 23

Permitted anywhere that combustible materials and heavy timber are allowed, plus more

IBC defines 5 construction types: I, II, III, IV, V A building must be classified as one of these

Construction Types I & II: All elements required to be non-combustible materials

However, there are exceptions including several for mass timber

All wood framed building options:

Type III

Exterior walls non-combustible (may be FRTW) Interior elements any allowed by code, including mass timber

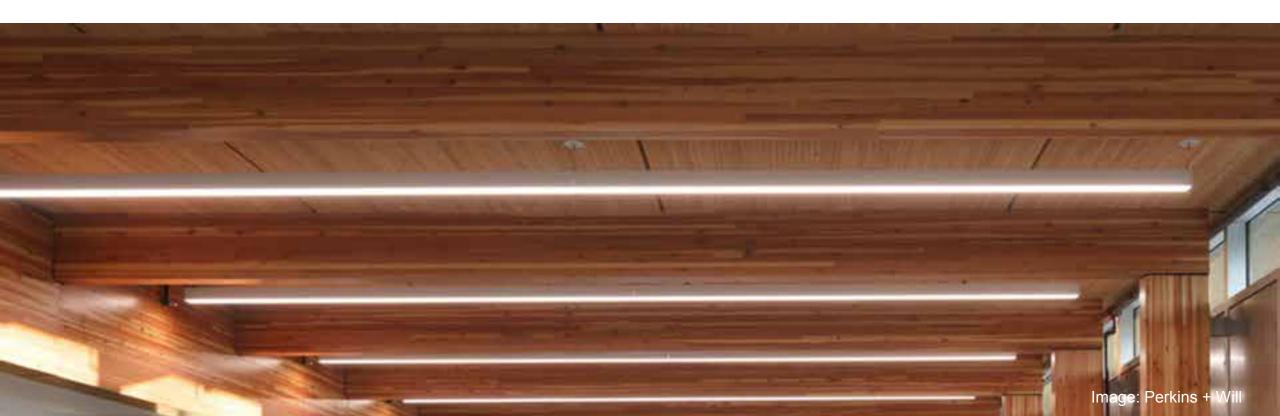
Type V

All building elements are any allowed by code, including mass timber

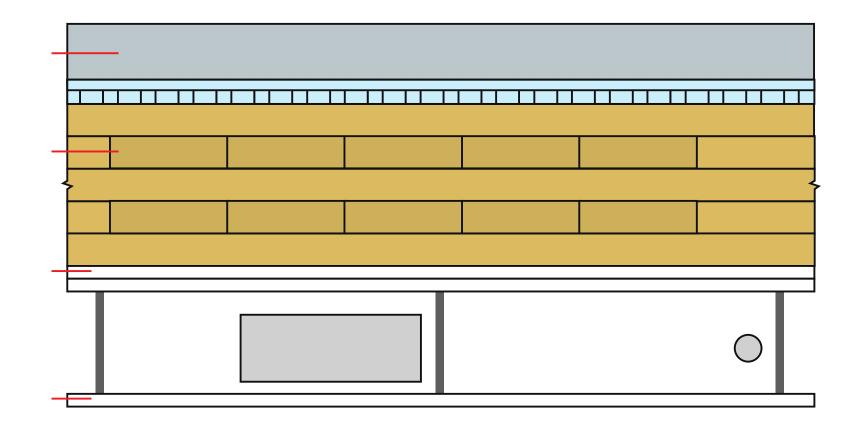
Types III and V are subdivided to A (protected) and B (unprotected)

Type IV (Heavy Timber)

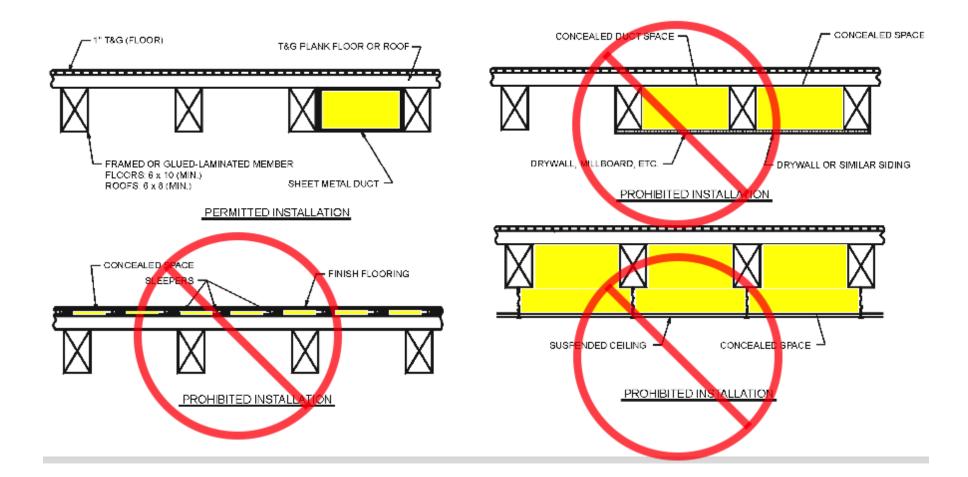
Exterior walls non-combustible (may be FRTW OR CLT) Interior elements qualify as Heavy Timber (min. sizes, no concealed spaces except in 2021 IBC)


Where does the code allow MT to be used?

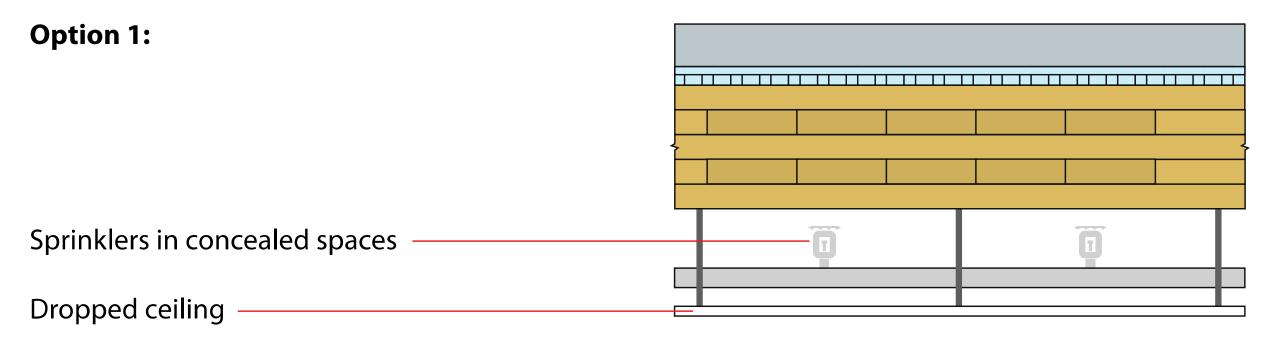
• <u>Type III</u>: Interior elements (floors, roofs, partitions/shafts) and exterior walls if FRT


Where does the code allow MT to be used?

 <u>Type IV</u>: Any exposed interior elements & roofs, must meet min. sizes; exterior walls if CLT or FRT. Concealed space limitations (varies by code version)

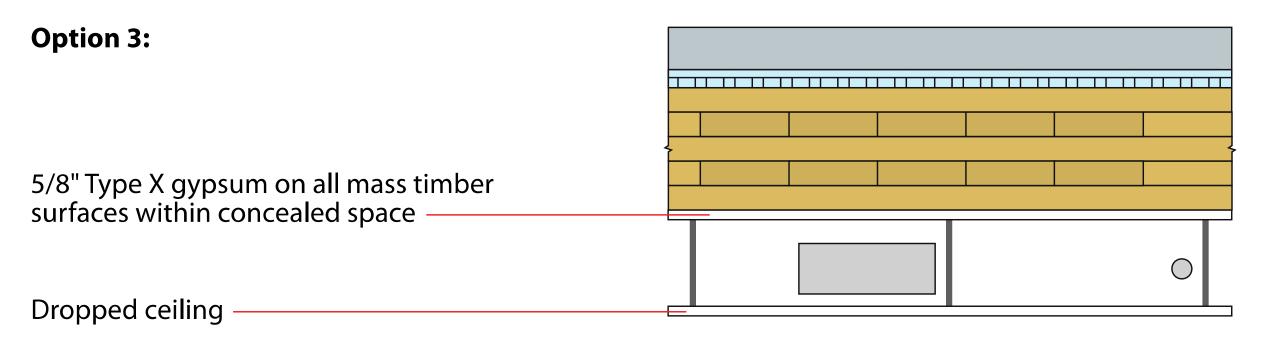

Type IV concealed spaces

Can I have a dropped ceiling? Raised access floor?



Type IV concealed spaces

Until 2021 IBC, Type IV-HT provisions prohibited concealed spaces


Type IV concealed space options within 2021 IBC

Type IV concealed space options within 2021 IBC

Type IV concealed space options within 2021 IBC

Concealed spaces solutions paper

Concealed Spaces in Mass Timber and Heavy Timber Structures

Pichard MoLars PE. JZ + Jamir Technical Director - Tall Hood, WoodWorks

Concelled spaces, such as those created by a dropped ceiling in a floot/ceiling assembly or by a stud well assembly, have unique requirements in the International Building Code BICI to address the potential of fire spread in non-visible areas of a building. Section 718 of the 2018/BIC includes prescriptive requirements for protection and/or compartmentalization of consulaid spaces through the use of shaft srepping, fire blocking, spinkliers, and other means. For information on these requirements, see the Wood/Works G&A, Are spinkliers requirements in concealed spaces such as floor and roof cavities in multi-femily ercod-flame buildings?

For mass timber building elements, the choice of construction type can have a significant impact on concession space requirements. Because mass timber products such as prosslaminated timber (CLT) are prescriptively recognized for Type IV construction. There is a common misperception that exposed miss timber building elements cannot be used or exposed in

> HTND, Cleveland I. Cleveland, Onio Traffor Res Real Estate Advance HPA Austriauture

other construction types. This is not the case, in addition to Type IV buildings, structurer mass timber elements—including CLT, glued-laminated timber (glulam), nai-laminated timber thill, to structural composite lumber (SCL), and tongue-andgroove (TAG) decking—can be utilized and exposed in the following construction types, whether or not a fire-resistance turing is negured.

- Type III Floors, roofs and interior walls may be any material permitted by code, including mass timber, exterior walls are required to be noncombustible or fire retardant-treated wood.
- Type V ~ Floors, routs, interior walls, and exterior walls E.e., the entire structural may be constructed of mass timber.
- Types I and II Mass timber may be used in select circumstances such as not construction — including the primary frame in the 2021 IBC — in Types I/B, II-A or 8-BC exterior columns and actives when 20 feet or more of horizontal separation is provided, and baloonies, canopies and similar projections.

https://www.woodworks.org/wp-content/uploads/wood_solution_paper-Concealed_Spaces_Timber_Structures.pdf

Where does the code allow MT to be used?

• <u>Type V</u>: All interior elements, roofs & exterior walls

EVOLUTION INCREMENTAL CHANGE

REVOLUTION TRANSFORMATIONAL CHANGE

Tall Mass Timber Multi-Family

Credit: Harbor Bay Real Estate Advisors, Purple Film, INTRO, Cleveland, OH

CARBON 12, PORTLAND, OR

Credit: Baumberger Studio/PATH Architecture

INTRO, CLEVELAND

9 Stories | 115 ft 8 Timber Over 1 Podium

Vast

512,000 SF 297 Apartments, Mixed-Use

Photo: Harbor Bay Real Estate Advisors, Purple Film | Architect: Hartshorne Plunkard Architecture

INTRO, CLEVELAND

9 Stories | 115 ft 8 Timber Over 1 Podium

Type IV-B Variance to expose ~50% ceilings

Photo: Harbor Bay Real Estate Advisors, Image Fiction | Architect: Hartshorne F

ard Architecture 🖃

ASCENT, MILWAUKEE

Photo: Korb & Associates Architects | Architect: Korb & Associates Architects

493,000 SF 259 APARTMENTS, MIXED-USE

ASCENT, MILWAUKEE

Tallest Mass Timber Building in the World

Photo: CD Smith Construction | Architect: Korb & Associates Architects

ASCENT, MILWAUKEE

25 STORIES 19 TIMBER OVER 6 PODIUM, 284 FT

Photo: Korb & Associates Architects | Architect: Korb & Associates Architects

11 E LENOX, BOSTON, MA

ATTENDATION AND ADDRESS AND

7 STORIES 70 FT Passive House Multi-Family

Credit: H + O Structural Engineering

11 E LENOX, BOSTON, MA

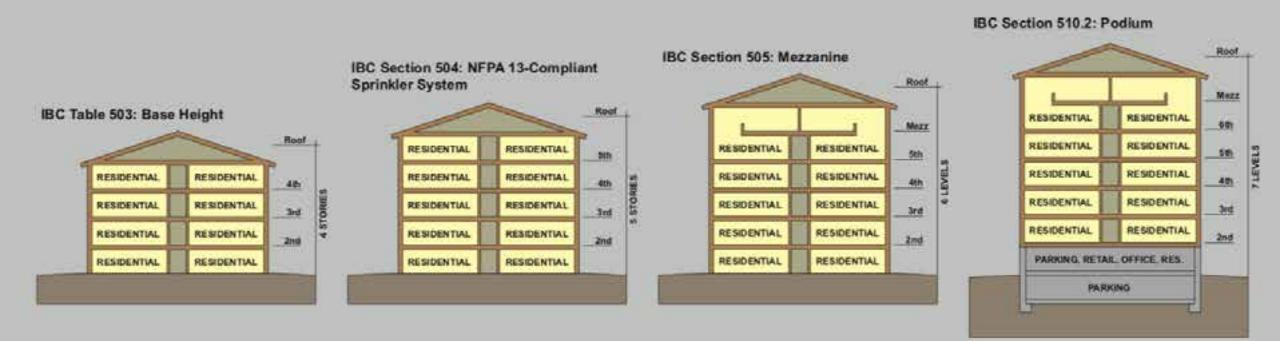
work of a contract

Credit: H + O Structural Engineering

CHURCHES CAUGES CAUGES

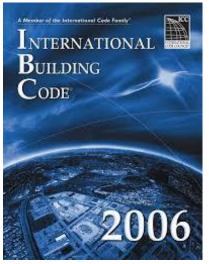
CHURST CH

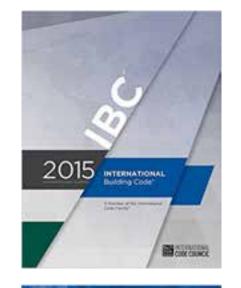
Test

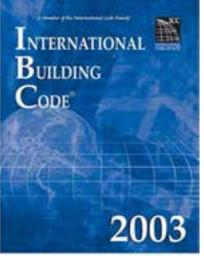

11 E LENOX, BOSTON, MA

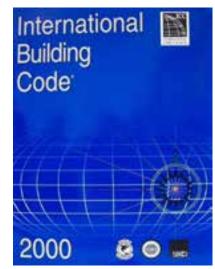

Credit: H+O Structural Engineering

PRESCRIPTIVE BUILDING CODES




3 YEAR CODE CYCLE





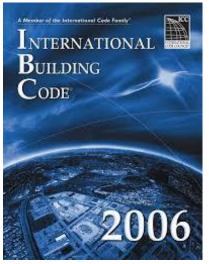
Source: ICC

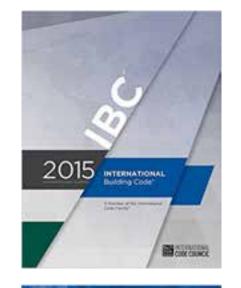
WoodWorks Online Event

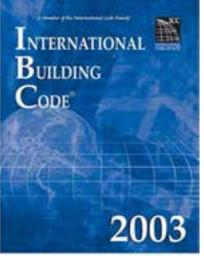

WOODWORKS

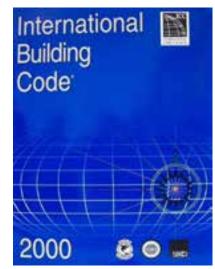
Kendeda Building for Innovataive Sustainable Design, The Miller Hull Partnership with Lord Aeck Sargent, photo Jonathan Hillyer 1430 Q. The HR Group Architects, Buehler Engineering, Greg Folkins Photography

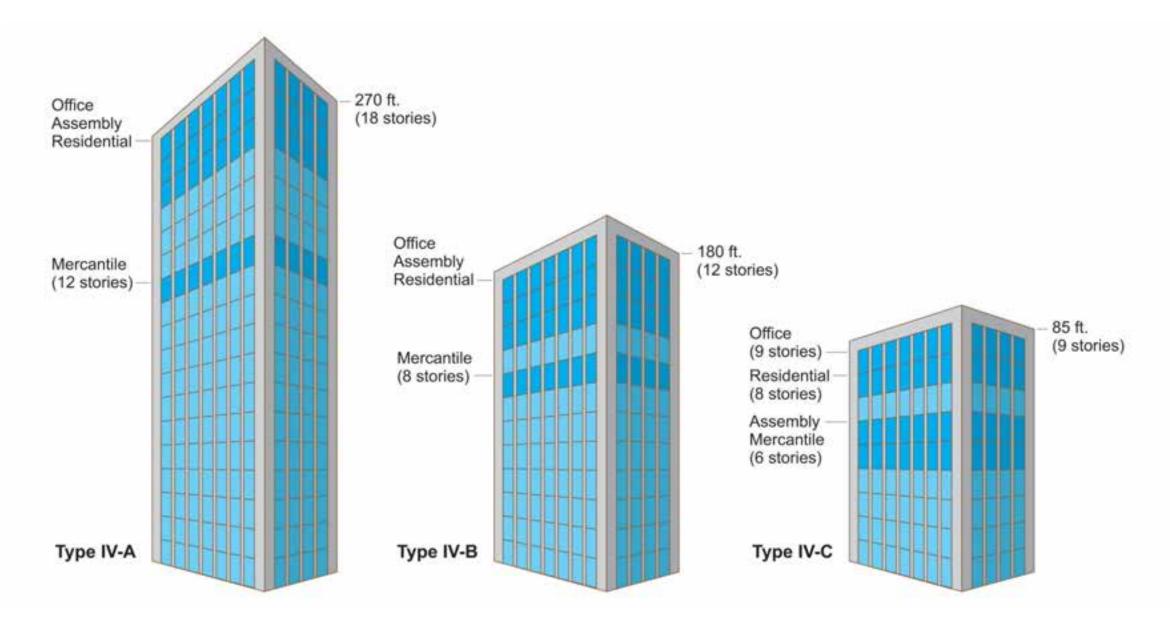
T3 Minneapolis, MGA, DLR Group, Magnusson Klemencic Associates, StructureCraft, photo Ema Peter




3 YEAR CODE CYCLE






Source: ICC

ATF Lab Tests, 2017 Photo: LendLease

ATF Lab Tests, 2017 Photo: LendLease -

PRESCRIPTIVE BUILDING CODES

Type IV-C

9 STORIES BUILDING HEIGHT 85' ALLOWABLE BUILDING AREA 405,000 SF AVERAGE AREA PER STORY 45,000 SF

TYPE IV-C

Photos: Baumberger Studio/PATH Architecture/Marcus Kauffman

Credit: Susan Jones, atelierjones

Type IV-C Height and Area Limits

IV-C

9 STORIES BUILDING HEIGHT 85' ALLOWABLE BUILDING AREA 405,000 SF AVERAGE AREA PER STORY 45,000 SF

TYPE IV-C

Credit: Susan Jones, atelierjones

Occupancy	# of Stories	Height	Area per Story	Building Area
A-2	6	85 ft	56,250 SF	168,750 SF
В	9	85 ft	135,000 SF	405,000 SF
Μ	6	85 ft	76,875 SF	230,625 SF
R-2	8	85 ft	76,875 SF	230,625 SF

Areas exclude potential frontage increase

In most cases, Type IV-C height allowances = Type IV-HT height allowances, but add'I stories permitted due to enhanced FRR Type IV-C area = 1.25 * Type IV-HT area

IV-C

9 STORIES BUILDING HEIGHT 85' ALLOWABLE BUILDING AREA 405,000 SF AVERAGE AREA PER STORY 45,000 SF

TYPE IV-C

All Mass Timber surfaces may be exposed

Exceptions: Shafts, concealed spaces, outside face of exterior walls

Ema Peter

Credit: Susan Jones, atelierjones

Type IV-B

12 STORIES BUILDING HEIGHT 180 FT ALLOWABLE BUILDING AREA 648,000 SF AVERAGE AREA PER STORY 54,000SF

TYPE IV-B

Credit: Susan Jones, atelierjones

Credit: LEVER Architecture

IV-B

12 STORIES BUILDING HEIGHT 180 FT ALLOWABLE BUILDING AREA 648,000 SF AVERAGE AREA PER STORY 54,000SF

TYPE IV-B

Credit: Susan Jones, atelierjones

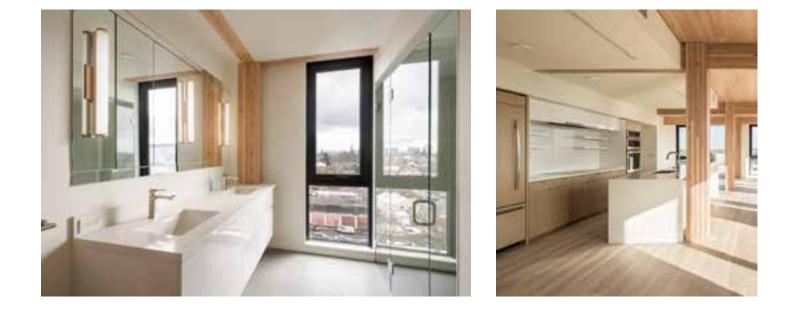
Type IV-B Height and Area Limits

Occupancy	# of Stories	Height	Area per Story	Building Area
A-2	12	180 ft	90,000 SF	270,000 SF
В	12	180 ft	216,000 SF	648,000 SF
Μ	8	180 ft	123,000 SF	369,000 SF
R-2	12	180 ft	123,000 SF	369,000 SF

Areas exclude potential frontage increase

In most cases, Type IV-B height & story allowances = Type I-B height & story allowances

Type IV-B area = 2 * Type IV-HT area



12 STORIES BUILDING HEIGHT 180 FT ALLOWABLE BUILDING AREA 648,000 SF AVERAGE AREA PER STORY 54,000SF

TYPE IV-B

Credit: Susan Jones, atelierjones

NC protection on all surfaces of Mass Timber except limited exposed areas ~20% of Ceiling or ~40% of Wall can be exposed

Limited Exposed MT allowed in Type IV-B for:

- MT beams and columns which are not integral part of walls or ceilings, no area limitation applies
- MT ceilings and beams up to 20% of floor area in dwelling unit or fire area, <u>or</u>
- MT walls and columns up to 40% of floor area in dwelling unit or fire area, <u>or</u>
- Combination of ceilings/beams and walls/columns, calculated as follows:

IV-B

Credit: Kaiser+Path

Mixed unprotected areas, exposing both ceilings and walls:

In each dwelling unit or fire area, max.
 unprotected area =

 $(\mathrm{U_{tc}}/\mathrm{U_{ac}}) + (\mathrm{U_{tw}}/\mathrm{U_{aw}}) \leq 1.0$

- U_{tc} = Total unprotected MT ceiling areas
- U_{ac} = Allowable unprotected MT ceiling areas
- U_{tw} = Total unprotected MT wall areas
- U_{aw} = Allowable unprotected MT wall areas

Credit: Kaiser+Path

Design Example: Mixing unprotected MT walls & ceilings

800 SF dwelling unit

- U_{ac} = (800 SF)*(0.20) = 160 SF
- U_{aw} = (800 SF)*(0.40) = 320 SF
- Could expose 160 SF of MT ceiling, <u>OR</u> 320 SF of MT Wall, <u>OR</u>

IV-B

 If desire to expose 100 SF of MT ceiling in Living Room, determine max. area of MT walls that can be exposed

Credit: AWC

Design Example: Mixing unprotected MT walls & ceilings

- $\begin{array}{l} (U_{tc}/U_{ac}) + (U_{tw}/U_{aw}) \leq 1.0 \\ (100/160) + (U_{tw}/320) \leq 1.0 \\ U_{tw} = 120 \; \text{SF} \end{array}$
- Can expose 120 SF of MT walls in dwelling unit in combination with exposing 100 SF of MT ceiling

IV-B

Credit: AWC

Type IV-A

 18 STORIES

 BUILDING HEIGHT
 270'

 ALLOWABLE BUILDING AREA
 972,000 SF

 AVERAGE AREA PER STORY
 54,000SF

TYPE IV-A

Credit: Susan Jones, atelierjones

Photos: Structurlam, naturally:wood, Fast + Epp IV-A

Type IV-A Height and Area Limits

18 STORIES BUILDING HEIGHT 270' ALLOWABLE BUILDING AREA 972,000 SF AVERAGE AREA PER STORY 54,000SF

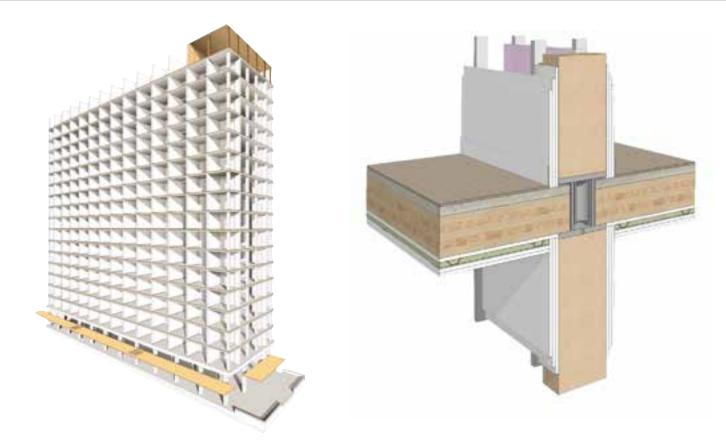
TYPE IV-A

Credit: Susan Jones, atelierjones

Occupancy	# of Stories	Height	Area per Story	Building Area
A-2	18	270 ft	135,000 SF	405,000 SF
В	18	270 ft	324,000 SF	972,000 SF
Μ	12	270 ft	184,500 SF	553,500 SF
R-2	18	270 ft	184,500 SF	553,500 SF

Areas exclude potential frontage increase

In most cases, Type IV-A height & story allowances = 1.5 * Type I-B height & story allowances Type IV-A area = 3 * Type IV-HT area IV-A


Type IV-A Protection vs. Exposed

18 STORIES BUILDING HEIGHT 270' ALLOWABLE BUILDING AREA 972,000 SF AVERAGE AREA PER STORY 54,000SF

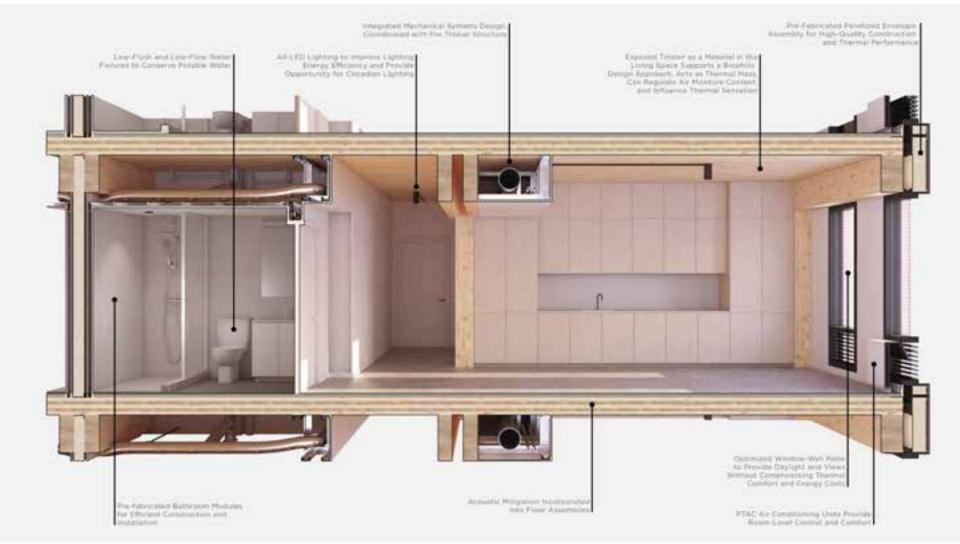
TYPE IV-A

Credit: Susan Jones, atelierjones

100% NC protection on all surfaces of Mass Timber

2024 IBC Changes

RISE Tests, 2020 Photo: RISE


KEY DESIGN CONSIDERATIONS

Ten berte

INTRO, Cleveland, OH. Credit: Harbor Bay Real Estate Advisors

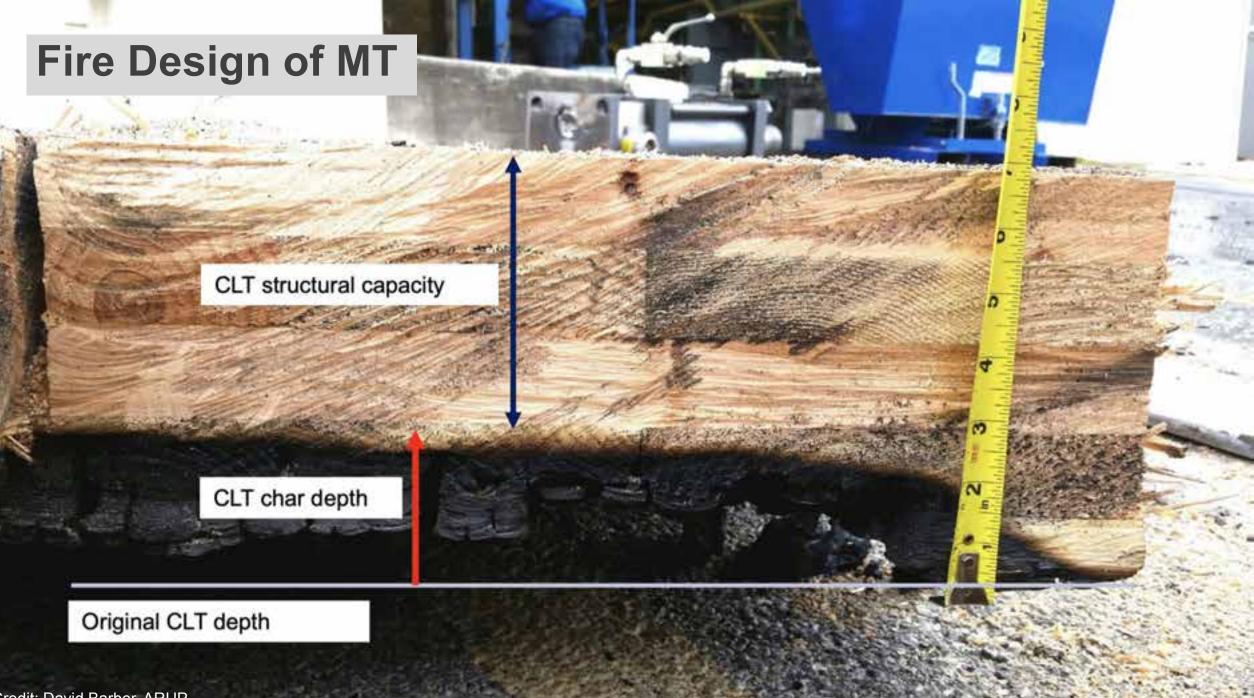
utual

MEP SYSTEMS, ROUTING, INTEGRATION

INTEGRATED SYSTEMS

Credit: John Klein, Generate Architecture

The Estimate statistics system provides the integration of course, expressing, and construction. This results in a rough performance taxable they turned to make average standard, and design ontaria that has been valued by constructed by expands to ensure fact, efficient production.


Utilizing Pre-Patricipated Pacade Paralle and Baltrezon Histories that are manufactured off-life in factories almost for reducing constitution time en-one higher quarity control practices, and safer labor conditions for conditioned workers. Efficient relating of duct-work conserver maturial, and associated antipoted conton, slowing more exercised timber all office providing the an quarity related for neeting living. Viater conserving factores reduce potable water use as a precision viscource, while maintaining reliable performance.

MEP Layout & Integration

Key considerations:

- Level of exposure desired
- Floor to floor, structure depth & desired head height
- Building occupancy and configuration (i.e. central core vs. double loaded corridor)
- Grid layout and beam orientations
- Need for future tenant reconfiguration
- Impact on fire & structural design: concealed spaces, penetrations

Credit: David Barber, ARUP

Fire-Resistance Ratings

- Driven primarily by construction type
- Rating achieved through timber alone or non-com protection required?

BUILDING ELEMENT		TYPE I		TYPE II		TYPE III		TYPE IV			TYPE V	
		В	Α	В	Α	В	Α	В	С	HT	Α	В
Primary structural frame ^f (see Section 202)	3ª, b	2 ^{a, b, c}	1 ^{b, c}	0°	1 ^{b, c}	0	3ª	2ª	2ª	HT	1 ^{b, c}	0
Bearing walls												
Exterior ^{e, f}	3	2	1	0	2	2	3	2	2	2	1	0
Interior	3ª	2ª	1	0	1	0	3	2	2	1/HT ^g	1	0
Nonbearing walls and partitions Exterior	See Table 705.5											
Nonbearing walls and partitions Interior ⁴	0	0	0	0	0	0	0	0	0	See Section 2304.11.2	0	0
Floor construction and associated secondary structural members (see Section 202)	2	2	1	0	1	0	2	2	2	HT	1	0
Roof construction and associated secondary structural members (see Section 202)	$1^{1}/_{2}^{b}$	1 ^{b,c}	1 ^{b,c}	0 °	1 ^{b,c}	0	1 ¹ / ₂	1	1	HT	1 ^{b,c}	0

TABLE 601 FIRE-RESISTANCE RATING REQUIREMENTS FOR BUILDING ELEMENTS (HOURS)

Fire-Resistance Ratings (FRR)

- Thinner panels (i.e. 3-ply) generally difficult to achieve a 1+ hour FRR
- 5-ply CLT / 2x6 NLT & DLT panels can usually achieve a 1- or 2hour FRR
- Construction Type | FRR | Member Size | Grid (or re-arrange that process but follow how one impacts the others)

Panel	Example Floor Span Ranges
3-ply CLT (4-1/8" thick)	Up to 12 ft
5-ply CLT (6-7/8" thick)	14 to 17 ft
7-ply CLT (9-5/8")	17 to 21 ft
2x4 NLT	Up to 12 ft
2x6 NLT	10 to 17 ft
2x8 NLT	14 to 21 ft
5" MPP	10 to 15 ft

Construction type influences FRR

	TYP	PE I	TYPE II		TYPE III		TYPE IV	TYPE V	
BUILDING ELEMENT	Α	В	Α	В	Α	В	HT	Α	В
Primary structural frame ^f (see Section 202)	3ª	2ª	1	0	1	0	HT	1	0
Bearing walls Exterior ^{e, f} Interior	3 3ª	2 2ª	1	0 0	2 1	20	2 1/HT	1 1	0
Nonbearing walls and partitions Exterior	See Table 602								
Nonbearing walls and partitions Interior ^d	0	0	0	0	0	0	See Section 602.4.6	0	0
Floor construction and associated secondary members (see Section 202)	2	2	1	0	1	0	HT	1	0
Roof construction and associated secondary members (see Section 202)	1 ¹ / ₂ ^b	1 ^{b,c}	1 ^{b,c}	0 ^e	1 ^{b,c}	0	HT	$1^{b,c}$	0

TABLE 601 FIRE-RESISTANCE RATING REQUIREMENTS FOR BUILDING ELEMENTS (HOURS)

Source: 2018 IBC

Construction type influences FRR

BUILDING ELEMENT		TYPE I		TYPE II		TYPE III		TYPE IV			TYPE V	
		В	A	в	A	В	Α	В	С	HT	A	В
Primary structural frame ^f (see Section 202)	3 ^{a, b}	2 ^{a, b, c}	1 ^{b, c}	0°	1 ^{b, c}	0	3ª	2ª	2ª	HT	1 ^{b, c}	0
Bearing walls				a			73. – 74 11. – 74				0	
Exterior ^{e, f}	3	2	1	0	2	2	3	2	2	2	1	0
Interior		2ª	1	0	- 1	0	3	2	2	1/HT ^g	1	0
Nonbearing walls and partitions Exterior		See Table 705.5										
Nonbearing walls and partitions Interior ^d	0	0	0	0	0	0	0	0	0	See Section 2304.11.2	0	0
Floor construction and associated secondary structural members (see Section 202)		2	1	0	1	0	2	2	2	HT	1	0
Roof construction and associated secondary structural members (see Section 202)	$1^{1/2}$	1 ^{b,c}	1 ^{b,c}	0 ^c	1 ^{b,c}	0	11/2	1	1	HT	$1^{b,c}$	0

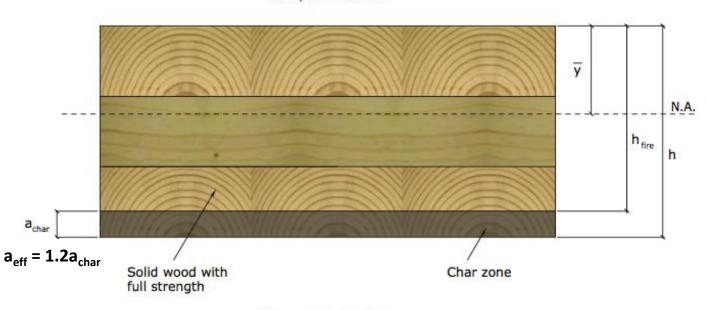
FIRE-RESISTANCE RATING REQUIREMENTS FOR BUILDING ELEMENTS (HOURS)

Source: 2021 IBC

Construction type influences FRR

- Type IV-HT Construction (minimum sizes)
- Other than type IV-HT: Demonstrated fire resistance

Method of demonstrating FRR (calculations or testing) can impact member sizing



Which Method of Demonstrating FRR of MT is Being Used?

- 1. Calculations in Accordance with IBC 722 -> NDS Chapter 16
- 2. Tests in Accordance with ASTM E119

Fire exposed surface

Unexposed surface

FRR Design of MT

WoodWorks Inventory of Fire Tested MT Assemblies

Table 1: North American Fire Resistance Tests of Mass Timber Floor / Roof Assemblies

CLT Pand	Manu factu ror	CLT Grade or Major x Minor Grade	Colling Protostion	Panel Connection in Test	Floor Topping	Load Rating	Fire Resistance Achieved (Hours)	Source	Turing Lab
3-ply CLT (114.mm 4.488.mt)	Nordic	67F 1656 /h 1.5EMSR x 57E //	2 Japan 1/2" Type X gyprom	Half-Lap	Note	Referred 34%Monuter Capacity	1 E	1 (Teit 1)	NRC Fire Laboratory
3-ply CU (101-mm 4.111-m)	Structurian	SPF #1/#2 x SPF #1/#2	1 key or 5-9" Type Xgyproon	Half-Lap	New	Roduced 75% Moment Capacity	0.0	1 (Turt 5)	NRC Fire Laboratory
5-ply CLT (123marii 823*)	Nonlie	. 10	New	Tepside Splins	2 maggined layers of 1/2 ⁴ cemmt bounds	Loaled. Sie Mensfaturei	2	2	NRC Fire Laboratory March 2016
5-ply CLT (175mmi#.875*)	Neolic	11	1 lay at of 5.4° Type Xgypsom under Z- channels and forcing strips with 5.5.9° (form law batte	Tops ide Splima	2 stagg and layers of 1/2° centers bounds	Loaled. SarManufacturer	2	5	NRC Fire Laboratory Nov 2014
5-ply CLT (175mm-6.875*)	Nordie	81	None	Topside Spline	3/4 in propriating gypenite over Mexicon acountical mar	Reduced 50% Moment Capacity	1.5	3	UL
5-ply CLT (175mm-6.875*)	Nordie	н.	1 layar 3/4° normal gypram	Topside Spline	3/4 in propriating gypenets over Maxion accustical mar or propriating accust board	Reduced 50% Manual Capacity	2	- 4	UL
3-ply CLT (175mm#-875*)	Nordie	н	Likyer 58° Type X Gyp under Baselani Channel under 7 59° L'Joint with 3 12° Mineral Wast bewen beim	Half-Lap	None	Leaded, See Monufacturer	2	21	Intertek 8/24/2012
5-q2y CLT (175mm/L875*)	Structure	E1 M5 MSR 2199 x 5PF #2	Near	Topside Spline	1-1-2" Maxx on Cyp-Goto 2000 over Mexx on Reinforcing Mash	Loaded, See Menufacturer	2.5		Intertek, 2/22/2016
5-ply CUF (175mm6.875*)	DR Johnson	vi	Netw	Holf-Lap & Topside Spline	2' gypnawingping	Loaded, Kar Manufacturet	2	7	SwRI (May 2016)
3-ply (LT (173mm#373*)	Nordic	SPF 1850 Fb MSR x SPF #3	Noter	Half-Lap	None	Robucol 59% Monute Capacity	13	L (Tot 3)	NRC Fire Laboratory
5-97) (LT (175mm-6-875*)	Structurtan	389 91.92 x 389 91.92	1 layur 3/8° Type Xgypsam	Half-Lep	Namy	Uninhood 101% Monant Capacity	2	1 (Tet I)	NRC Fire Laboratory
7-ph CLT (245mm 9.65*)	Structuriam	SPE #1/42 x SPE #1/#2	None	Half-Lap	Nine	Unriduced 101% Monisti Capacity	2.6	F (Ent.T)	NRC Fire Laboratory
5-ply-CLT (173mmit.875*)	SmartLam	8L-144	Netz	Half-Cap	neminal 1/2° plywood with #d nails,	Louded, Sie Menufacturet	2	12 (Tet 4)	Western Fire Center 10/26/2016
3-ply CLT (175mm& 375*)	SecuriLan	vi	Neter	Hulf-Lep	neminal 1/2*plymoid with Kd nails.	Loraded. Son Manufactures	2	12(Tet 5)	Western Fire Center 10/28/2016
5-ply CLT (175mm+375*)	DR.) ok nere	NI .	Noter	Half-Cap	nominal 1/2" plywood with \$4 nails.	Loaded. Swe Manufacturer	2	12(Tat 6)	Western Fire Center 11/01/2016
Septy CLT	6131	CV3M1	Note	Hell-Lap &	Nute	Localed,	10	18	SwRI

FRR Design of MT

WoodWorks

Fire-Resistive Design of Mass Timber Members

Code Applications, Construction Types and Fire Ratings

Hichard Mit Att, Att, PE, SE + Senter Rectinical Director + MotoMetores Soci55mmetral, PRC: PE 3E + Senter Technical Director + WoodHolde

For many years, exposed heavy timber framing elements have been permitted in U.S. buildings due to their inherent fre-resistance properties. The predictability of wood's char rate has been well-established for decades and has long been recognized in building codes and trandards.

Today, one of the existing trands in building design is the growing use of mats limiter—i.e., large sold wood panel products such as cross-laminated timber (CLT) and naillaminated timber (NLT)—for floor, wall and not construction. Like heavy timber, mass timber products have inherent fire resistance that allows them to be left supposed and still schieve a fire-resistance ratio. Because of their strength and dimensional stability, these products also offer a lowcation alternative to steel, concrete, and maxenty for many applications. It is this combination of exposed structure and strength fluit developers and despress across the coerty.

the rest of the second second

are leveraging to create innovative designs with a warm yet modern aesthetic, often for projects that go beyond traditional norms of wood design.

This paper has been written to support architects and engineers exploring the use of mass timber for commercial and multi-family construction. It focuses on how to meet fire-resistance requirements in the informational Building Code (IBC), including calculation and testing-based methods. Unless otherwise noted, references refer to the 2018 IBC

Mass Timber & Construction Type

Before demonstrating fire-resistance ratings of exposed mass timber elements, it's important to understand under what circumstances the code currently allows the use of mass timber in commercial and multi-family construction.

> A building's assigned construction type is the main indicator of where and when all wood systems can be used. IBC Section 602 defines the main options (Type I through V) with all but Type IV having subcategories A and B. Types III and V permit the use of wood framing throughout much of the structure and both are used extensively for modern mass timber buildings.

Type IV ISC 602.3 - Timber elements can be used in floom, noth and interior walls. Fire-retardart-twated wood IFITWI framing is permitted in extentor walls with a firemetistance rating of 2 hours or less.

Type V (BC,602.5) – Timber elements can be used throughout the structure, including foors, roots and both interior and exterior

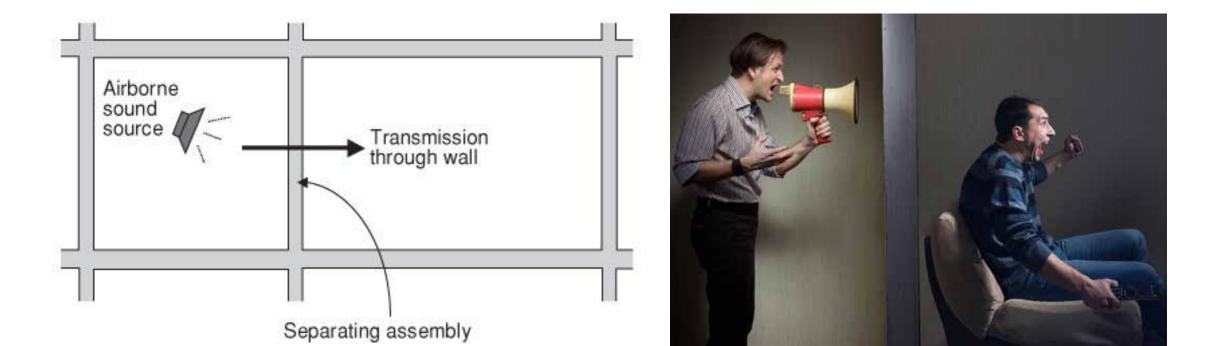
Type /V IBC 602.0 - Commonly referred to as "Heavy Timber" construction, this option

Mass Timber Fire Design Resource

- Code compliance options for demonstrating FRR
- Free download at woodworks.org

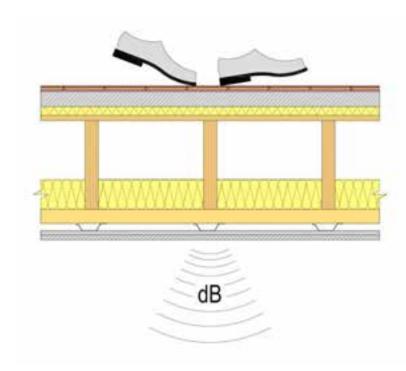
Consider Impacts of:

- Timber & Topping Thickness
- Panel Layout
- Gapped Panels
- Connections & Penetrations
- MEP Layout & Type



Finish Floor if Applicable	
Concrete/Gypsum Topping	
Acoustical Mat Product	
CLT Panel ————	
No direct applied or hung ceiling —	

Air-Borne Sound:

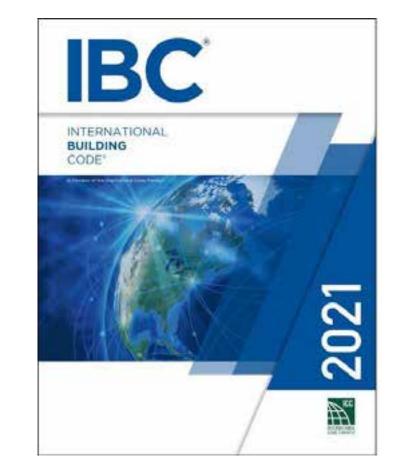

Sound Transmission Class (STC)

- Measures how effectively an assembly isolates air-borne sound and reduces the level that passes from one side to the other
- Applies to walls and floor/ceiling assemblies

<u>Structure-borne sound:</u> Impact Insulation Class (IIC)

- Evaluates how effectively an assembly blocks impact sound from passing through it
- Only applies to floor/ceiling assemblies

Code requirements only address residential occupancies:


For unit to unit or unit to public or service areas:

Min. STC of 50 (45 if field tested):

• Walls, Partitions, and Floor/Ceiling Assemblies

Min. IIC of 50 (45 if field tested) for:

• Floor/Ceiling Assemblies

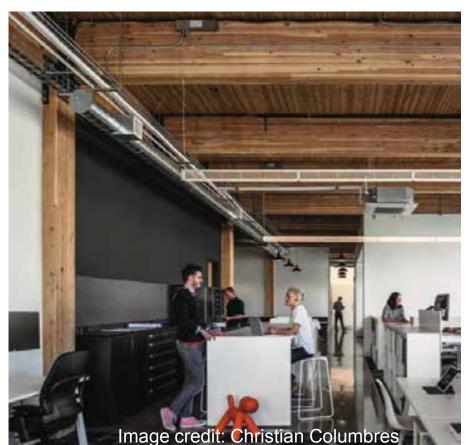
STC	What can be heard
25	Normal speech can be understood quite easily and distinctly through wall
30	Loud speech can be understood fairly well, normal speech heard but not understood
35	Loud speech audible but not intelligible
40	Onset of "privacy"
42	Loud speech audible as a murmur
45	Loud speech not audible; 90% of statistical population not annoyed
50	Very loud sounds such as musical instruments or a stereo can be faintly heard; 99% of population not annoyed.
60+	Superior soundproofing; most sounds inaudible

MT: Structure Often is Finish

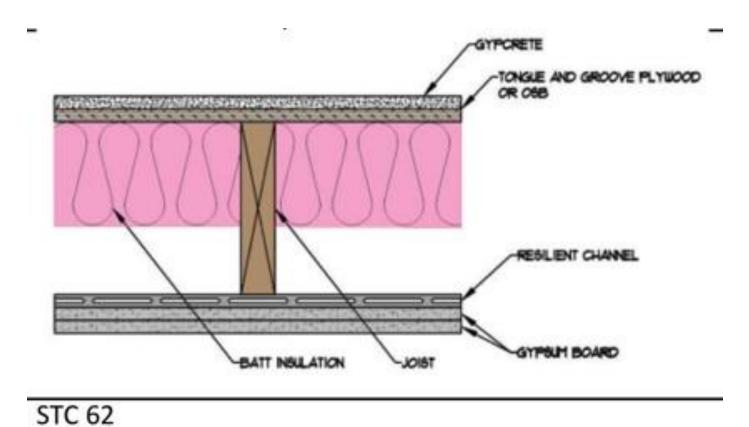
Photos: Baumberger Studio/PATH Architecture/Marcus Kauffman | Architect: Kaiser + PATH

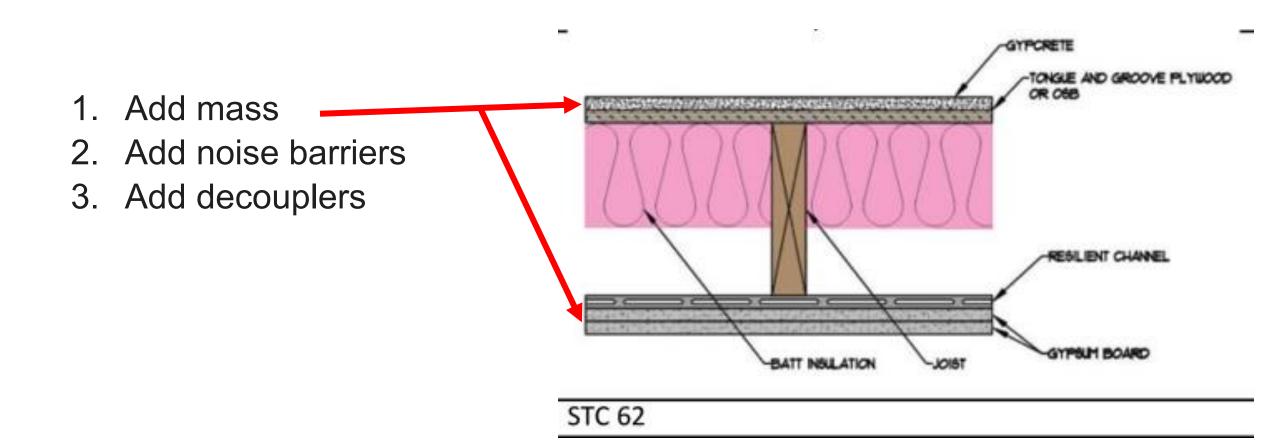
But by Itself, Not Adequate for Acoustics

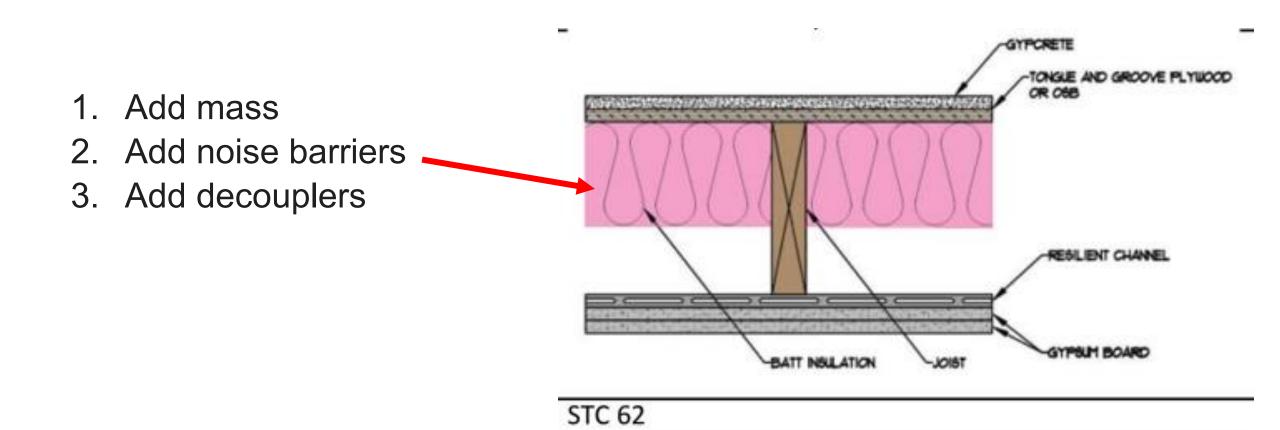
TABLE 1:

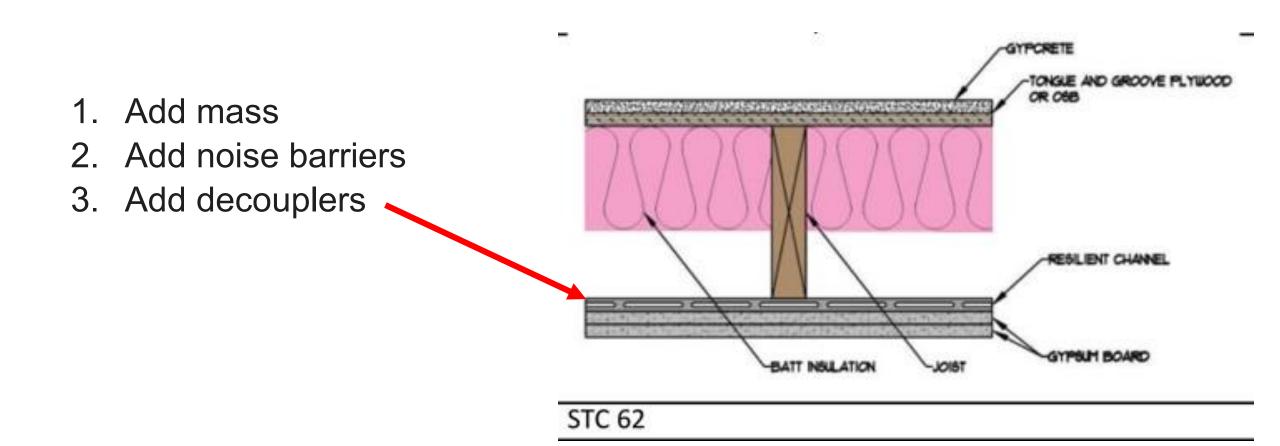

Examples of Acoustically-Tested Mass Timber Panels

Mass Timber Panel	Thickness	STC Rating	IIC Rating
3-ply CLT wall ⁴	3.07"	33	N/A
5-ply CLT wall⁴	6.875"	38	N/A
5-ply CLT floor ⁵	5.1875*	39	22
5-ply CLT floor ⁴	6.875*	41	25
7-ply CLT floor⁴	9.65"	44	30
2x4 NLT wall ⁶	3-1/2" bare NLT 4-1/4" with 3/4" plywood	24 bare NLT 29 with 3/4* plywood	N/A
2x6 NLT wall ⁶	5-1/2" bare NLT 6-1/4" with 3/4" plywood	22 bare NLT 31 with 3/4" plywood	N/A
6 NLT floor + 1/2* plywood ²	6" with 1/2" plywood	34	33

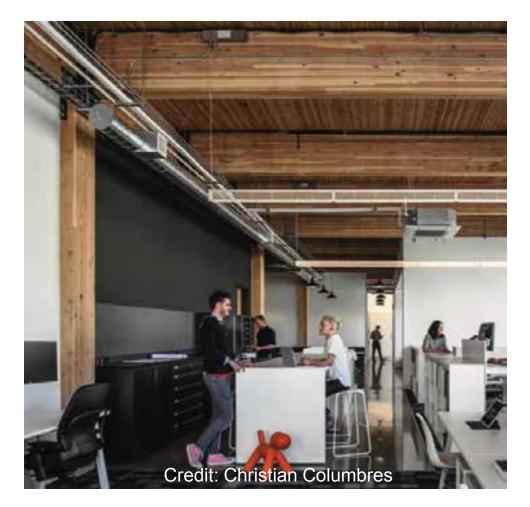

Source: Inventory of Acoustically-Tested Mass Timber Assemblies, WoodWorks7


Regardless of the structural materials used in a wall or floor ceiling assembly, there are 3 effective methods of improving acoustical performance:


- 1. Add mass
- 2. Add noise barriers
- 3. Add decouplers

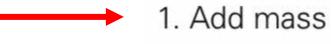


- 1. Add mass
- 2. Add noise barriers
- 3. Add decouplers



Mass timber has relatively low "mass" Recall the three ways to increase acoustical performance:

- 1. Add mass
- 2. Add noise barriers
- 3. Add decouplers



There are three main ways to improve an assembly's acoustical performance:

- 2. Add noise barriers
- Add decouplers

Finish Floor if Applicable							
Concrete/Gypsum Topping ———							
Acoustical Mat Product							
			 		20		
	4						
CLT Panel		х —		ů.	ф. 	··· ··· ··	
No direct applied or hung ceiling —							

There are three main ways to improve an assembly's acoustical performance:

1. Add mass

- 2. Add noise barriers
- 3. Add decouplers

Acoustical Mat:

- Typically roll out or board products
- Thicknesses vary: Usually ¼" to 1"+

Photo: Maxxon Corporation

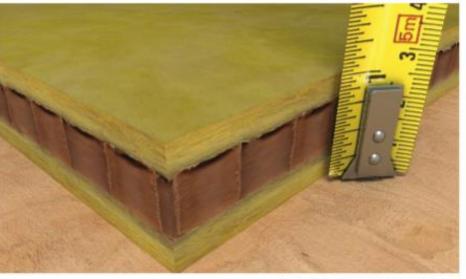


Photo: Kinetics Noise Control, Inc.,"

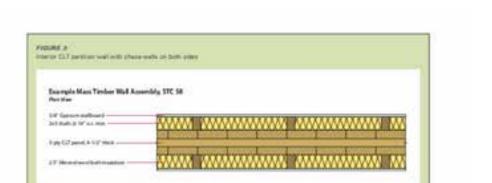
Common mass timber floor assembly:

- Finish floor (if applicable)
- Underlayment (if finish floor)
- 1.5" to 4" thick concrete/gypcrete topping
- Acoustical mat
- WSP (if applicable)
- Mass timber floor panels

Solutions Paper

Acoustics and Mass Timber: Room-to-Room Noise Control

History Millars, PE. 30. • Januar Technical Disease • Humathiaki



http://www.woodworks.org/wp-content/uploads/wood solution paper-

The growing evaluation and code acceptance of mean tertain-is a large satisf wood panel products such as created and and tertained tertain (KT)-- for face, well and into construction has given designers a low-carbon alternative to steel, concrete, and mascery for many applications, However, the use of mean tertain influence means account challenge presents unique accounts challings.

MASS-TIMBER-ACOUSTICS.pdf

While laboratory measurements of this empirical and achorine accurat isolation of traditional traditing assemblies such as (get) woods frames, sheat and connecte any wolder available. Answer resources exist that particly the acoustic performance of meass forear accentishes. Additionally, one of the meast desteed aspects of meass imber construction is the ability to hear at facilities of meass index construction is the ability to hear at facilities and the second the society to hear at facilities and the second second second the meast for accentishing term meass of the society and detailing, mean timber building term meass.

Mass Timber Assembly Options: Walls

Mask timber parels tax and by used for interior and exterior. walla-stoch bearing and roth-bearing. For intentin walls, the react to concast services such as alectrical and plumbing is an added consideration. Common approaches include. building a chase well in front of the mass timber wall or installing gypsum wallboard on realiant channels that are attached to the mass firther well. As with both mass timber Riccr panels, bare mass timber wals don't typically provide adequate noise control, and chase wells also function as acoustical improvements. For exemple, a 3-ply CLT well parel with a thickness of 3.07" has an STC racing of 33." In contrast. Figure 3 shows at interior CLT partition wall with chase wells. on both sides. This assembly achieves an STC rating of S8. accending the IBC's accordical reclarements for multi-family construction. Other exemples are included in the inventory. of taxial assembles whet above.

Acoustical Differences between Mass Timber Panel Options

The majority of accustically-fested mass timber existing include CLT. However, such such as NLT and Soviet amment timber grant cattern such as NLT and Soviet terminated timber (SLT), as well as toational heavy timber groups such as longue and pocove ducking. Must timbe move concluded that CLT adoptical performance is slightly better than that of other mass tontion options, length termine the cross dimension of terminations in CLT paint into posed flavking.

For those interested in comparing period assemblies and mass brides panel types and thicknesses, the inventory moted above conterns tested assemblies using CLT, NLT, guest-beninged tensor panels (SLT), entrongue and groove decking

Improving Performance by Minimizing Flanking

Even when the assembles in a loading are sample designed and installed for high socialities performance, consideration of faining paths—In areas such as assembly intersectors, beam to column/vell contractions, and VEP participation—In tractionary for a Building to meet overall accounted performance objectives.

Annual 128 July Insulated

One way to minimum favore parties at these connections and manifaces is to use mailwest connection isolation and session trips. These products are capable of miniming structure loads is compression between structure mainting that, connections write providing mailation and breaking fixed, direct connections between members, in the contact of the threat methods for improving.

acoustical performance noted alone, these straps act as decouplies. With antight oprovidions, interfaces and parteriations, there is a much gradem chance that the acoustic partormatics of a meas temper building will meat aspectations.

Associate interest page.

Con Average

Inventory of Tested Assemblies

Acoustically-Tested Mass Timber Assemblies

Following is a list of mass timber assemblies that have been acoustically tested as of January 23, 2019. Sources are noted at the end of this document. For free technical assistance on any questions related to the acoustical design of mass timber assemblies, or free technical assistance related to any aspect of the design, engineering or construction of a commercial or multi-family wood building in the U.S., email help@woodworks.org or contact the WoodWorks Regional Director nearest you: http://www.woodworks.org/project-assistance

Contents:

Table 1: CLT Floor Assemblies with Concrete/Gypsum Topping, Ceiling Side Exposed	2
Table 2: CLT Floor Assemblies without Concrete/Gypsum Topping, Ceiling Side Exposed	
Table 3: CLT Floor Assemblies without Concrete/Gypsum Topping, with Wood Sleepers, Ceiling Side Exposed	
Table 4: NLT, GLT & T&G Decking Floor Assemblies, Ceiling Side Exposed	
Table 5: Mass Timber Floor Assemblies with Ceiling Side Concealed	
Table 6: Single CLT Wall	
Table 7: Single NLT Wall	
Table 8: Double CLT Wall	
Sources	
Disclaimer	

http://bit.ly/mass-timber-assemblies

Inventory of Tested Assemblies

		if Applicable				
	Acoustical I	Mat Product				
	CLT Panel – No direct ap	oplied or hung ceiling				
CLT Panel	Concrete/Gypsum Topping	Acoustical Mat Product Between CLT and Topping	Finish Floor	STC1	IIC1	Source
	A.		None	47 ² ASTC	47 ² AIIC	1
			LVT	-	49 ² AIIC	1
		· · · · · · · · · · · · · · · · · · ·	Carpet + Pad	540 C	75 ² AIIC	1
		Maxxon Acousti-Mat® 3/4	LVT on Acousti-Top®	1	52 ² AIIC	1
	1-1/2" Gyp-Crete®		Eng Wood on Acousti- Top®	-	51 ² AIIC	1
			None	49 ² ASTC	45 ² AIIC	1
		Maxxon Acousti-Mat [®] ¾ Premium	LVT		47 ² AIIC	1
			LVT on Acousti-Top*	1.00	49 ² AIIC	1
				455	205	1 45
			None	456	396	15
1000 10			LVT	486	475	16
CLT 5-ply		USG SAM N25 Ultra	LVT Plus	486	496	58
(6.875")			Eng Wood	476	476	59
			Carpet + Pad	456	676	60
	3		Ceramic Tile None	50 ⁶ 45 ⁶	46 ⁶ 42 ⁶	61 15
						1 1 1 hr

Speed of Construction

Market Distinction

Lightweight


Sustainability

Leasing Velocity

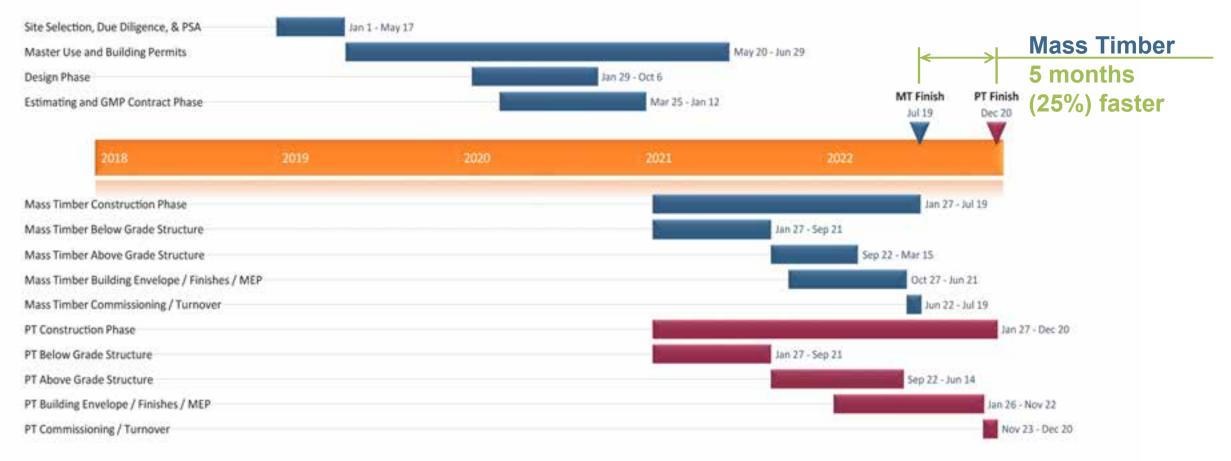
Cost

Urban Density

Seattle Mass Timber Tower: Detailed Cost Comparison Fast Construction

- Textbook example done by industry experts
- Mass timber vs. PT conc
- Detailed cost, material takeoff & schedule comparisons

"The initial advantage of Mass Timber office projects in Seattle will come through the


leasing velocity

that developers will experience."

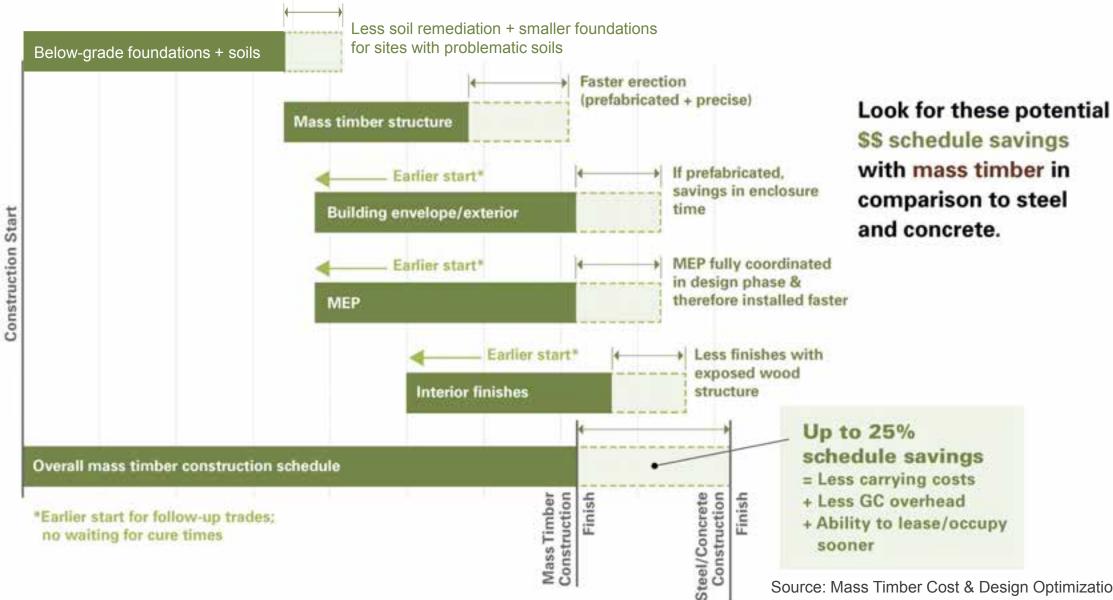
- Connor Mclain, Colliers

Seattle Mass Timber Tower Fast Construction

Construction Schedule:

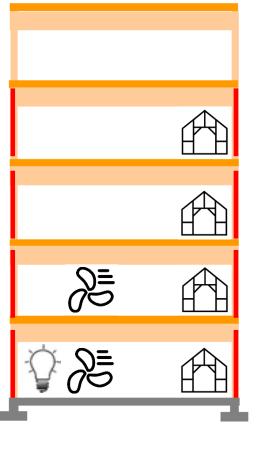
Source: Tall With Timber A Seattle Mass Timber Tower Case Study by DLR Group¹

Seattle Mass Timber Tower

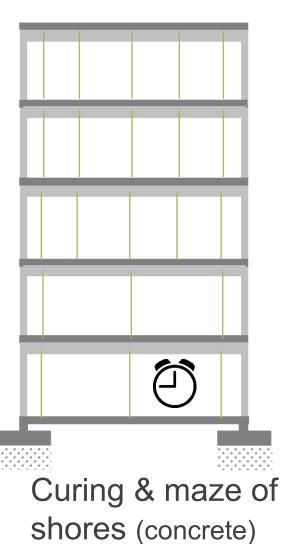

Faster Construction + Higher Material Costs = Cost Competitive

System	Mass Timber Design	PT Concrete Design	Mass Timber Savings
Direct Cost of Work	\$86,997,136	\$85,105,091	2.2%
Project Overhead	\$ 9,393,750	\$11,768,750	-20.2%
Add-Ons	\$ 8,387,345	\$ 8,429,368	-0.5%
Total	\$104,778,231	\$105,303,209	-0.5%

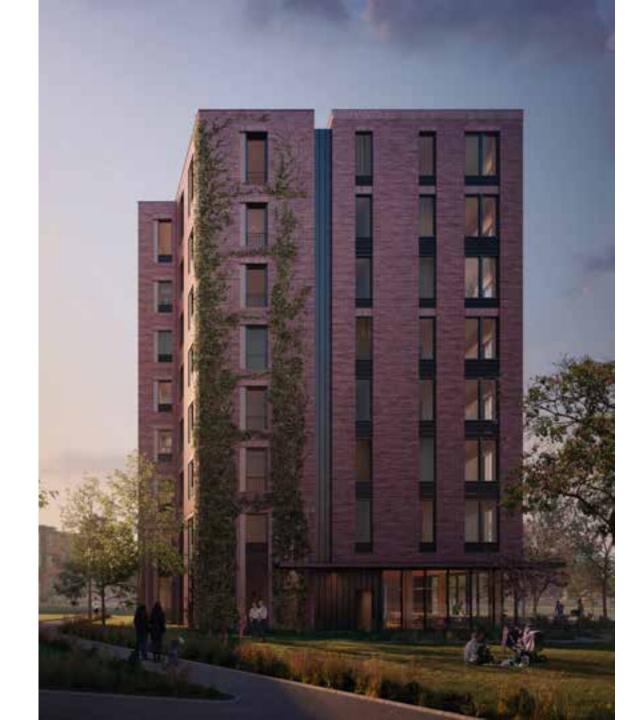
Source: DLR Group | Fast + Epp | Swinerton Builders


Compressing the Typical Schedule

Fast Construction



Source: Mass Timber Cost & Design Optimization, WoodWorks²


Schedule Savings for Rough-In Trades Fast Construction

NO curing (mass timber)

Source: Generate Architecture + Technologies

Holistic Cost Assessment

Reference 1 Concrete Slabs on Steel Deck; Steel Frame; Concrete Cores

Reference 2 Concrete Flat Slab; Concrete Cores

Timber Use 1 Timber Floors; Steel Frame; Concrete Cores

Timber Use 2 Timber Post, Beam, & Piate; Concrete Cores

Timber Use 3 Timber Floors; LGM Framing; Steel Frame Podium Timber Use 4 Timber Floors & Shear Walls; Steel Frame Podium

Source: Generate Architecture + Technologies

Sustainability Impacts

GLOBAL WARMING POTENTIAL & MATERIAL MASS (PER BUILDING ASSEMBLY)

Source: Generate Architecture + Technologies

The total ghitts warring potential (SWP) of each option is stored with a breakdown by building assambly. The Concrete With Steel Prame and Concrete Flat. Bab options have the highest GWP, with the lock of the impact embedded in the floor state. The Timper Use T (Floor Saloc, Steel Frame) option others a state reduction in GWP, with the most of the savings also embedded in the floor stabs. The Timber Use 2 (Post, Beam, and Plate) option offers a relatively typical approach to building with bittber, showing savings in floor statts, beams and columns. Since Timber Use 3 and 4 are cellular approaches with load-beams; wells, these options included steel accommodate the pround floor program. Timber Use 3 shores how a hybrid approach with light gauge metal yields GWP savings in structure wills and extension with, departs the addition of the populari. Lastly, Tintlee Use 4 emphasizes how a completely cellular CLT Imitiet approach yields impressive reductions in nearly every category.

Reduce Risk Optimize Costs

Wood PRODUCTS COUNCIL

For the entire project team, not just builders

Lots of reference documents

Download Checklists at

www.woodworks.org

www.woodworks.org/wp-content/uploads/wood_solution_paper-Mass-Timber-Design-Cost-Optimization-Checklists.pdf

Mass Timber Cost and Design Optimization Checklists

WoodWorks has developed the following checklists to assist in the design and cost optimization of mass timber projects. The design optimization checklists are intended for building designers (architects and engineers), but many of the topics should also be discussed with the fabricators and builders. The cost optimization checklists will help guide coordination between designers and builders (general contractors, construction managers, estimators, fabricators, installers, etc.) as they are estimating and making cost-related decisions on a mass timber project.

Most resources listed in this paper can be found on the WoodWorks website. Please see the end notes for URLs. Flight Tech Federal Craft Unice inhibition, Util Michael Hacker Hacker Experies Germe A Associations Experies Germaliting Histories Consulting Histories (Ten.

Keys to Mass Timber Success: Know Your WHY Design it as Mass Timber From the Start Leverage Manufacturer Capabilities **Understand Supply Chain Optimize Grid** Take Advantage of Prefabrication & Coordination **Expose the Timber Discuss Early with AHJ** Work with Experienced People Let WoodWorks Help for Free **Create Your Market Distinction**

The challenge is not in learning how to accept change, but in how to orchestrate the most efficient change

Carbon12, Portland, OR Credit: Kaiser + Path

Mass Timber in Multi-Family Housing: Is it a Good Fit for Your Project?

There's a good chance it is...Let's talk about it!

Credit: D/O Architects

Questions? Ask us anything.

Momo Sun, PE, PEng Regional Director | NY, NJ, PA (857) 242-8975 momo.sun@woodworks.org

901 East Sixth, Thoughtbarn-Delineate Studio, Leap!Structures, photo Casey Dunn

Copyright Materials

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

© The Wood Products Council 2022

Funding provided in part by the Softwood Lumber Board

Disclaimer: The information in this presentation, including, without limitation, references to information contained in other publications or made available by other sources (collectively "information") should not be used or relied upon for any application without competent professional examination and verification of its accuracy, suitability, code compliance and applicability by a licensed engineer, architect or other professional. Neither the Wood Products Council nor its employees, consultants, nor any other individuals or entities who contributed to the information make any warranty, representative or guarantee, expressed or implied, that the information is suitable for any general or particular use, that it is compliant with applicable law, codes or ordinances, or that it is free from infringement of any patent(s), nor do they assume any legal liability or responsibility for the use, application of and/or reference to the information. Anyone making use of the information in any manner assumes all liability arising from such use.