Mass Timber: Early Design Decisions for Successful Multi-Family Housing

WOODWORKS

COUNCI

WOOD PRODU

Photo: Structurlam

Presented by John O'Donald II, PE, WoodWorks June 15, 2022 "The Wood Products Council" is a Registered Provider with The American Institute of Architects Continuing Education Systems (AIA/CES), Provider #G516.

Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request. This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

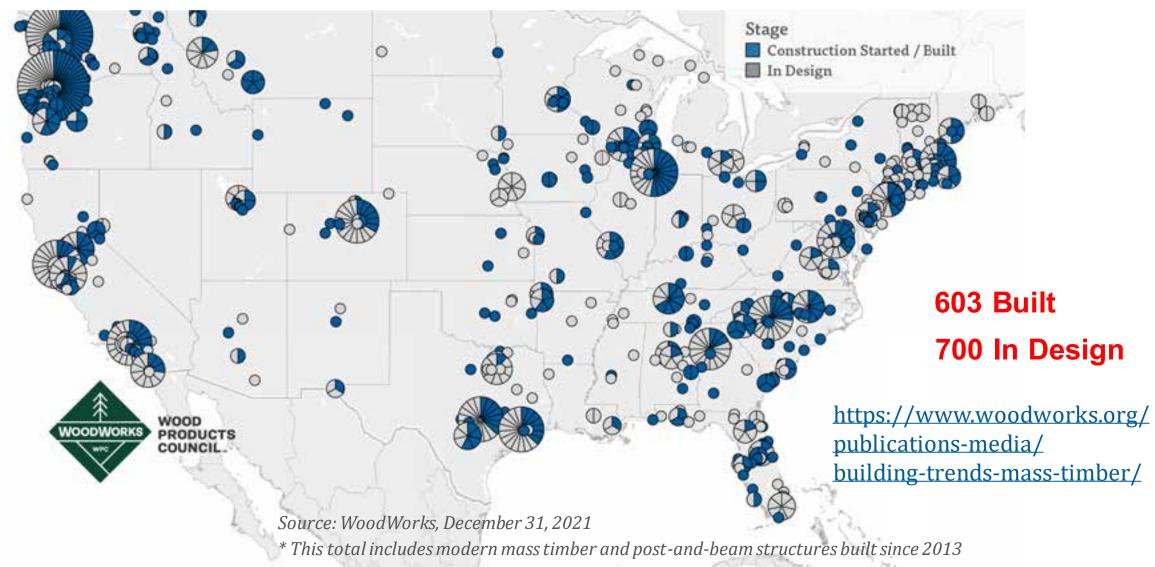
Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.



# **Course Description**

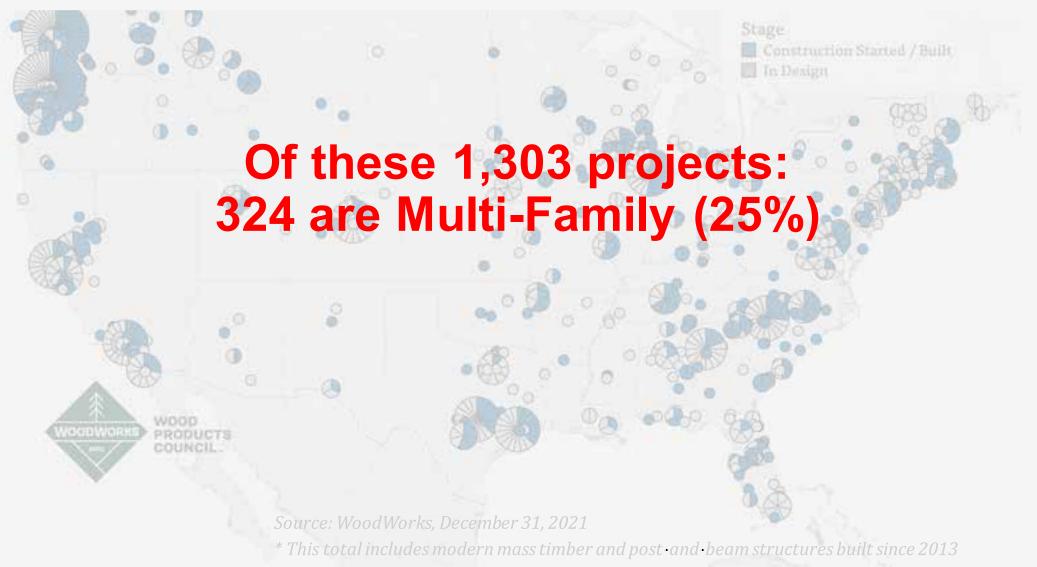
Mass timber is often attached to the stigma of being more expensive than other building materials. Because of this, some people assume it only makes sense for one-off projects where innovation is celebrated but repeatability is not. Is this true, or do its other benefits result in overall cost efficiency? If it is true, how can we expect to build the number of new housing units needed across our country in a sustainable and affordable manner? Typical multi-family housing developments are in the range of 4-6 stories, often utilizing podium or pedestal construction with 1-2 stories of steel and concrete topped with 3-5 stories of light wood framing. Beyond these heights, building codes have historically required steel or concrete framing and, to justify the added costs of these materials, projects often go much taller. This has created a critical gap in housing developments in the range of 6-12 stories. Can mass timber multi-family projects make financial sense in the 4-6 story range, used in conjunction with light wood-frame systems? What new opportunities will the 2021 International Building Code create for mass timber housing in the 6-18 story range? This presentation will answer these questions and much more.

# Learning Objectives


- 1. Evaluate the code opportunities for mass timber structures in residential mid-rise projects.
- 2. Discuss code-compliant options for exposing mass timber, where up to 2-hour fireresistance ratings are required, and demonstrate design methodologies for achieving these ratings.
- 3. Review code requirements unique to hybrid mass timber and light-frame housing projects, and emphasize solutions for criteria such as construction type, fire-resistance ratings and acoustics design.
- 4. Highlight the unique benefits of using exposed mass timber in taller multi-family buildings.

# Is Mass Timber a Good Fit for Your Multi-Family Project?

Ascent, Milwaukee, WI Source: Korb & Associates Architects


# **Current State of Mass Timber Projects**

As of December 2021, in the US, **1,303** multi-family, commercial, or institutional projects have been constructed with, or are in design with, mass timber.



# **Current State of Mass Timber Projects**

As of December 2021, in the US, **1,303** multi-family, commercial, or institutional projects have been constructed with, or are in design with, mass timber.



# **Current State of Mass Timber Projects**

As of December 2021, in the US, **1,303** multi-family, commercial, or institutional projects have been constructed with, or are in design with, mass timber.

# It's NOT One Size Fits All: **Of these 324 Mass Timber Multi-Family Projects: 204 are 1-5 Stories (63%)** 106 are 6-12 Stories (33%) 13 are 13+ Stories (4%)

Source: WoodWorks, December 31, 2021

\* This total includes modern mass timber and post and beam structures built since 2013

# MASS TIMBER IN MULTI-FAMILY

# EVOLUTION

# REVOLUTION?

# **Multi-Housing Typologies**

# **Multi-Housing Typologies**

MT Floors & Roofs on LWF Bearing Walls

#### MT Floors & Roofs on Post & Beam Framing

#### MT Floors & Roofs on MT Bearing Walls



Credit: KL&A Engineers & Builders

Credit: ADX Creative and Engberg Anderson

Credit: Grey Organschi Architecture and Spiritos Properties

# EVOLUTION

# INCREMENTAL CHANGE

# REVOLUTIONA TRANSFORMATIONAL CHANGE

# Low- and Mid-Rise Multi-Family

Credit: ACX Creative and Engberg Anderson



#### HYBRID LIGHT-FRAME + MASS TIMBER

#### **CONDOS AT LOST RABBIT, MS**



3 Story, 30,000 SF Units Completed in 3 Phases Completed in 4 Months

Lost Rabbit, MS Credit: Everett Consulting Group

#### CIRRUS, DENVER, CO



5 over 2, Type IIIA project 285,000 SF 5-ply and 7-ply Panels Used

#### CANYONS, PORTLAND, OR



5 over 1, Type IIIA project 70 apartments over 6 retail suites, 113,314 SF Business Case Study – Achieved 46% Higher Leasing for 1-BR

Credit: Jeremy Bittermann & Kaiser + Path

### THE DUKE, AUSTIN, TX



Credit: WGI

#### WESSEX WOODS, PORTLAND, ME



ASCE 7-22 Seismic Design values for CLT Shear Walls.

Height Restricted to 65 feet

Credit: Avesta Housing



POST, BEAM + PLATE

#### **360 WYTHE AVENUE, BROOKLYN, NY**





5 Stories, retail, office and residential 65,000SF, NLT floors w/ post and beam

Credit: Flank

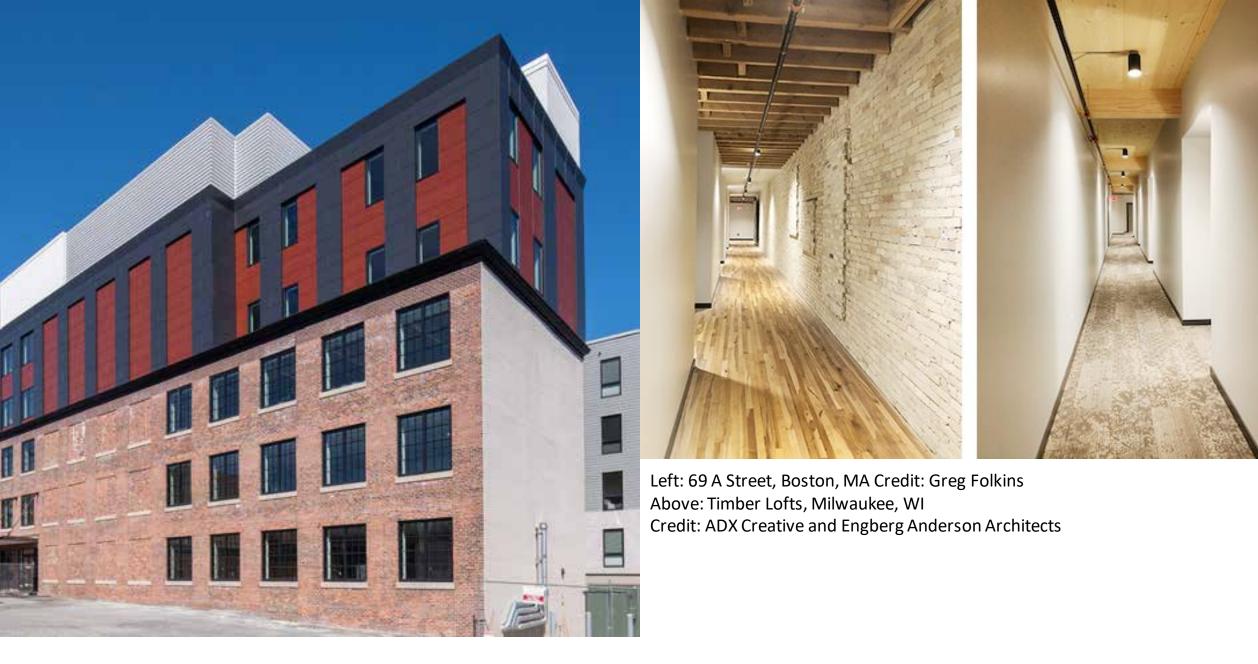
#### **BARRACUDA CONDOS, MADISON, WI**





5 over 2, GLT floors w/steel beams and columns 19 luxury 2BR/ 2BA, 1,400-1,730SF

Credit: Populance Architecture and Development




#### MASS TIMBER BEARING WALLS

#### Model C, Roxbury, MA



Credit: John Klein, Generate Architecture

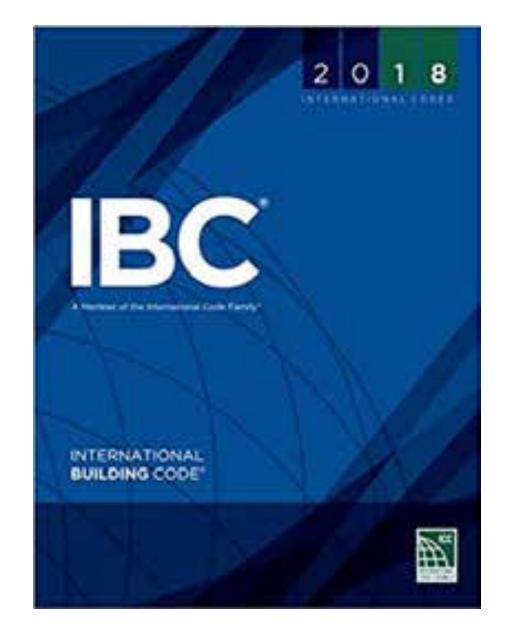


#### VERTICAL ADDITIONS AND ADAPTIVE REUSE

WAIN LOBBY

B.

۰.


D

MASTER


#### When does the code allow mass timber to be used in low- and midrise multi-family projects?

IBC defines mass timber systems in IBC Chapter 2 and notes their acceptance and manufacturing standards in IBC Chapter 23

Permitted anywhere that combustible materials and heavy timber are allowed, plus more



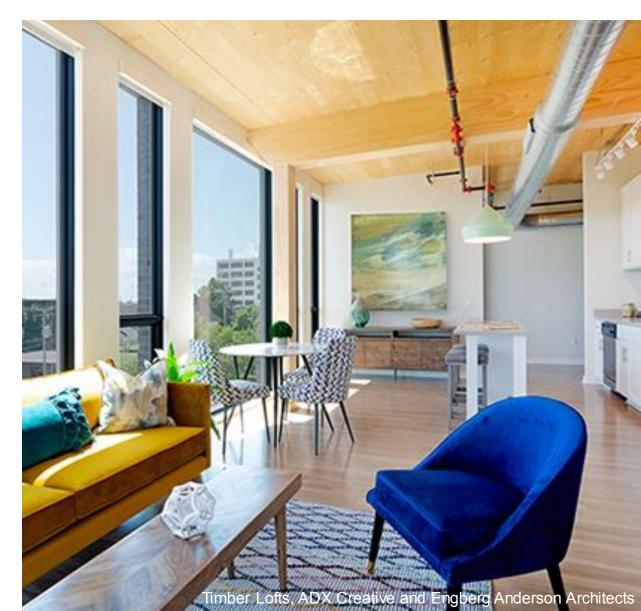
All wood framed building options:



Exterior walls non-combustible (may be FRTW) Interior elements any allowed by code, including mass timber

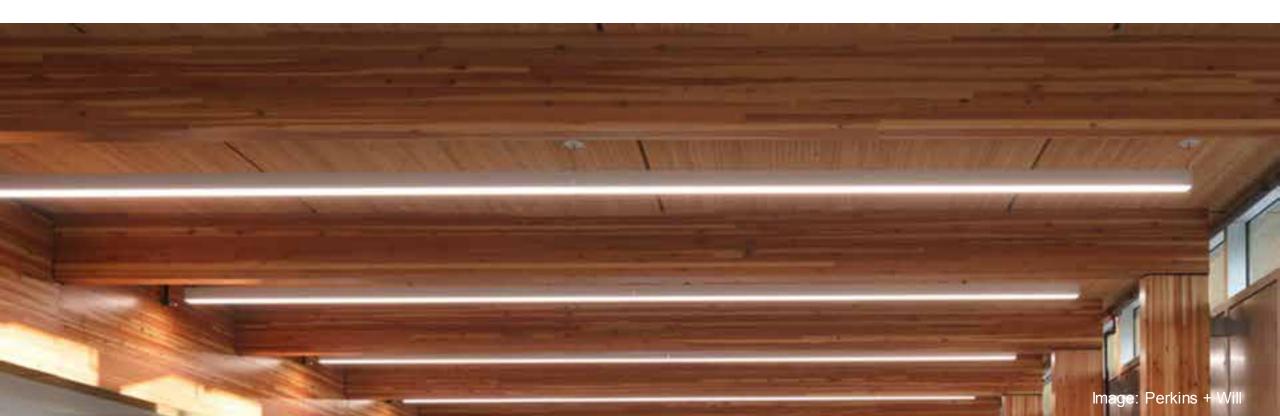
#### Type V

All building elements are any allowed by code, including mass timber


Types III and V are subdivided to A (protected) and B (unprotected)

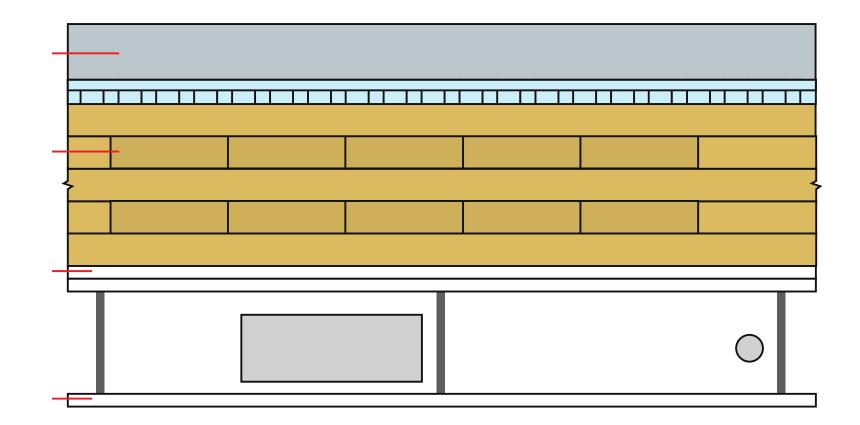
#### **Type IV (Heavy Timber)**

Exterior walls non-combustible (may be FRTW OR CLT) Interior elements qualify as Heavy Timber (min. sizes, no concealed spaces except in 2021 IBC)


Where does the code allow MT to be used?

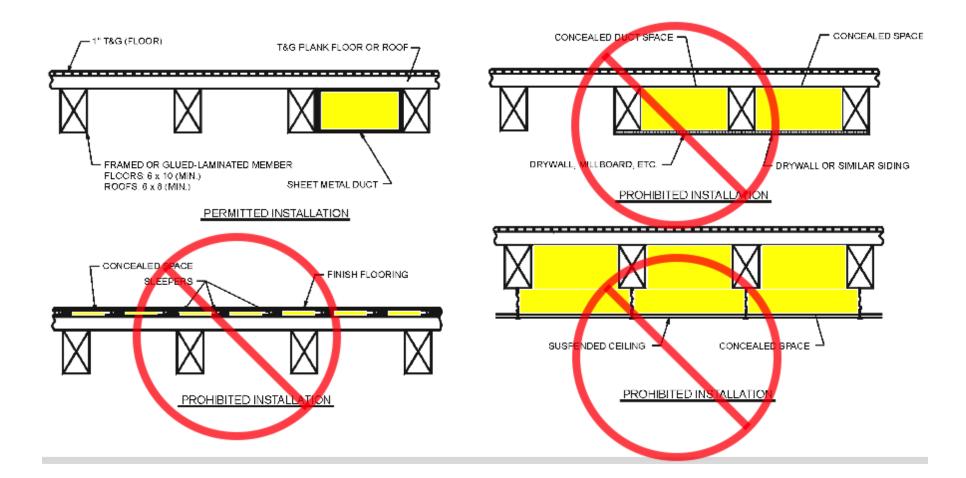
• <u>Type III</u>: Interior elements (floors, roofs, partitions/shafts) and exterior walls if FRT



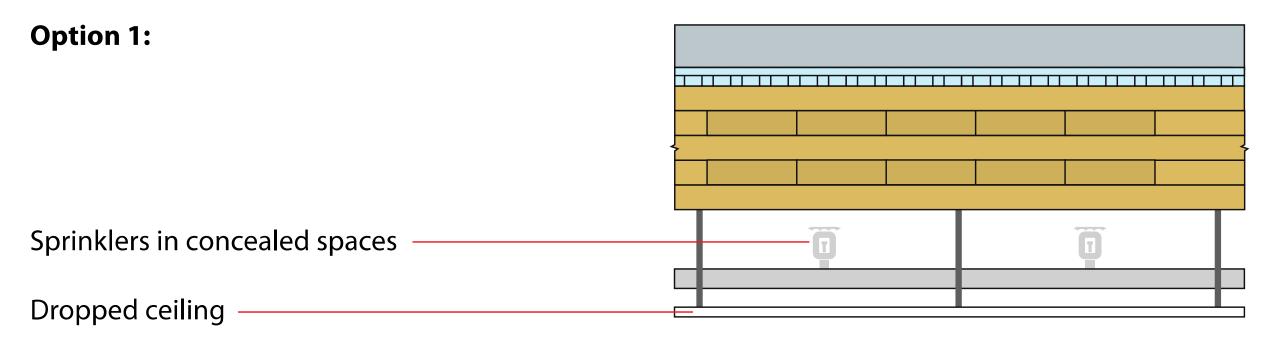

#### Where does the code allow MT to be used?

 <u>Type IV</u>: Any exposed interior elements & roofs, must meet min. sizes; exterior walls if CLT or FRT. Concealed space limitations (varies by code version)

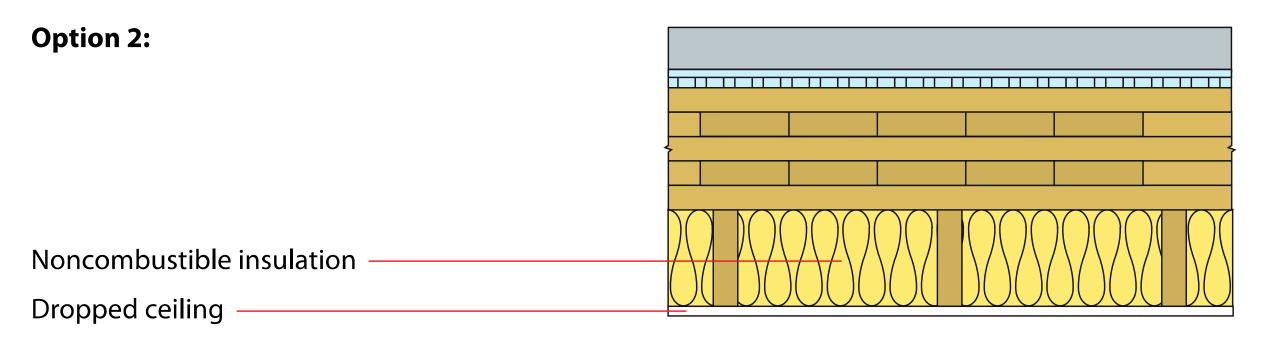



#### **Type IV concealed spaces**

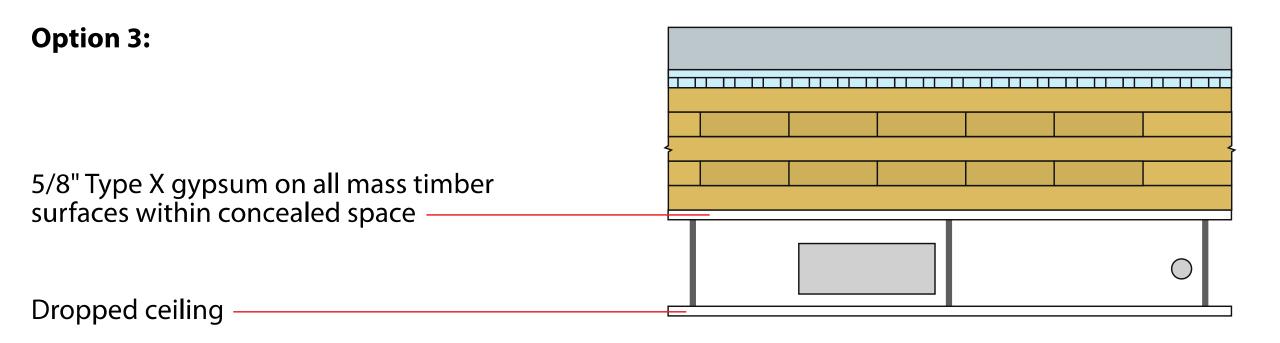
Can I have a dropped ceiling? Raised access floor?




#### **Type IV concealed spaces**


#### Until 2021 IBC, Type IV-HT provisions prohibited concealed spaces




#### Type IV concealed space options within 2021 IBC



#### Type IV concealed space options within 2021 IBC



#### Type IV concealed space options within 2021 IBC



#### **Concealed spaces solutions paper**



#### Concealed Spaces in Mass Timber and Heavy Timber Structures

Picture McLars PE. JE + Jamir Technical Director - Tal Hood, WeedNote -

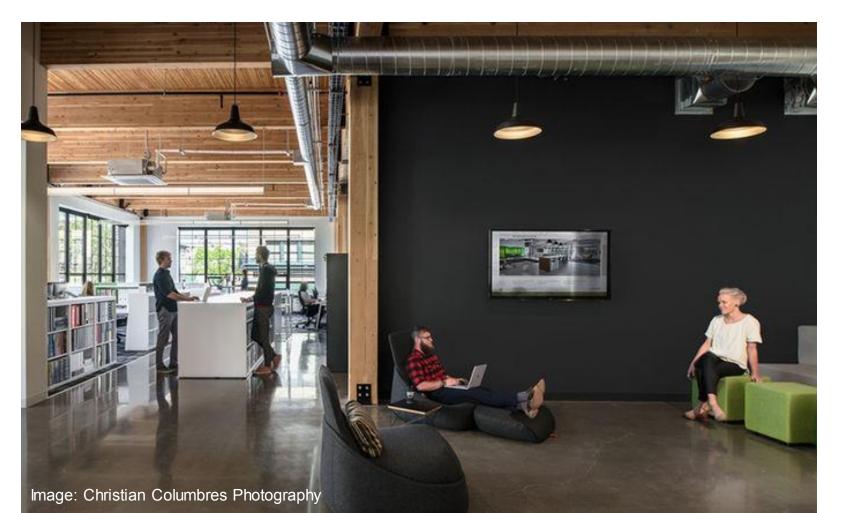
Conceased spaces, such as those created by a dropped ceiling in a floot/ceiling assembly or by a stud well assembly, have urique requirements in the International Building Code BIC3 to address the potential of fits spread in non-visible areas of a building. Section 718 of the 2018 IBC includes prescriptive requirements for protection and/or compartmentalization of consulaid spaces through the use of shaft stopping, fits blocking, spinklers, and other means. For information on these requirements, see the Wood/Works G&A, Are spinklers requirements in conceased apaces such as floor and roof cavities in multi-femily ercod-flame buildings?

For mass timber building elements, the choice of construction type can have a significant impact on concessied space requirements. Because mass timber products such as prosslaminated timber (CLT) are prescriptively recognized for Type IV construction. There is a common misperception that exposed mass timber building elements cannot be used or exposed in

> INTINO. Creveland I. Cleveland. Chile Institut Rev Real Estate Advisors INTA Autoissture

other construction types. This is not the case. In addition to Type IV buildings, structure mass timber elements—including CLT, glued-laminated timber (glulam), nai-laminated timber th8.T), structural composite lumber (SCL), and tongue-andgroove (TAG) decking—can be utilized and exposed in the following construction types, whether or not a fire-resistance nating in required.

- Type III Floors, roofs and interior walls may be any material permitted by code, including mass timber; exterior walls are required to be noncombustible or fire retardant-treated wood.
- Type V ~ Ficers, rests, interior walls, and exterior walls E.e., the entire atructural may be constructed of mass timber.
- Types I and II Mass sincer may be used in select circumstances such as not construction — including the primary frame in the 2021 IIIC — in Types I-ID, II-A or R-ID; exterior columns and actnes when 20 feet or more of horizontal separation is provided, and baloonies, canopies and similar projections.




https://www.woodworks.org/wp-content/uploads/wood\_solution\_paper-Concealed Spaces Timber Structures.pdf

### **Construction Types**

### Where does the code allow MT to be used?

• <u>Type V</u>: All interior elements, roofs & exterior walls



# **EVOLUTION** INCREMENTAL CHANGE

# REVOLUTION TRANSFORMATIONAL CHANGE

### **Tall Mass Timber Multi-Family**

Credit: Harbor Bay Real Estate Advisors, Purple Film, INTRO, Cleveland, OH

### CARBON 12, PORTLAND, OR



# **INTRO, CLEVELAND**

# 9 Stories | 115 ft

8 Timber Over 1 Podium

# 512,000 SF 297 Apartments, Mixed-Use

Photo: Harbor Bay Real Estate Advisors, Purple Film | Architect: Hartshorne Plunkard Architecture

# INTRO, CLEVELAND

### **9 Stories | 115 ft** 8 Timber Over 1 Podium

# Type IV-B Variance to expose ~50% ceilings

Photo: Harbor Bay Real Estate Advisors, Image Fiction | Architect: Hartshorne Pl

rd Architecture 🛁

# ASCENT, MILWAUKEE

# **493,000 SF** 259 APARTMENTS, MIXED-USE

Photo: Korb & Associates Architects | Architect: Korb & Associates Architects

# ASCENT, MILWAUKEE

# 25 STORIES 19 TIMBER OVER 6 PODIUM, 284 FT

Photo: Korb & Associates Architects | Architect: Korb & Associates Architects

# **11 E LENOX, BOSTON, MA**

AND REAL PROPERTY AND INCOME.

### 7 STORIES 70 FT Passive House Multi-Family

Credit: H + O Structural Engineering

redit: Monte French Design Studio

# 11 E LENOX, BOSTON, MA

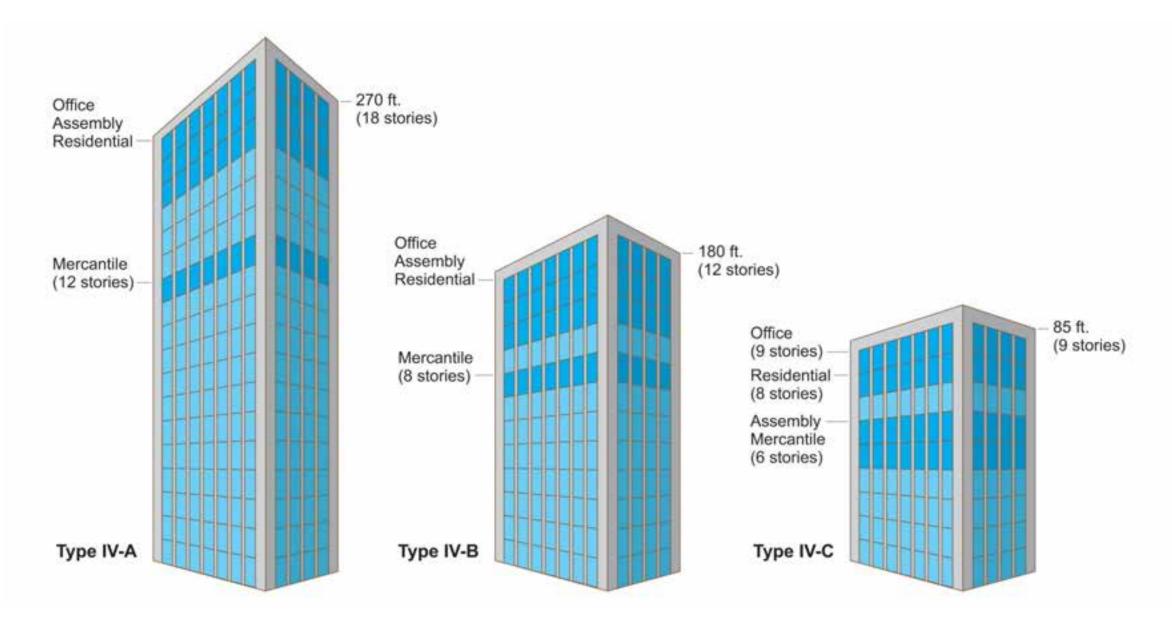
and the second

Credit: H + O Structural Engineering

CHURCHES CAUGES CAUGES

CHURST CH

Sec.




ATF Lab Tests, 2017 Photo: LendLease



ATF Lab Tests, 2017 Photo: LendLease ----

### **PRESCRIPTIVE BUILDING CODES**



### **Type IV-C**




9 STORIES BUILDING HEIGHT 85' ALLOWABLE BUILDING AREA 405,000 SF AVERAGE AREA PER STORY 45,000 SF

TYPE IV-C



Photos: Baumberger Studio/PATH Architecture/Marcus Kauffman







Credit: Susan Jones, atelierjones

# **Type IV-C Height and Area Limits**

IV-C



9 STORIES BUILDING HEIGHT 85' ALLOWABLE BUILDING AREA 405,000 SF AVERAGE AREA PER STORY 45,000 SF

#### TYPE IV-C

Credit: Susan Jones, atelierjones

| Occupancy | # of<br>Stories | Height | Area per<br>Story | Building<br>Area |
|-----------|-----------------|--------|-------------------|------------------|
| A-2       | 6               | 85 ft  | 56,250 SF         | 168,750 SF       |
| В         | 9               | 85 ft  | 135,000 SF        | 405,000 SF       |
| Μ         | 6               | 85 ft  | 76,875 SF         | 230,625 SF       |
| R-2       | 8               | 85 ft  | 76,875 SF         | 230,625 SF       |

Areas exclude potential frontage increase

In most cases, Type IV-C height allowances = Type IV-HT height allowances, but add'I stories permitted due to enhanced FRR Type IV-C area = 1.25 \* Type IV-HT area

IV-C



9 STORIES BUILDING HEIGHT 85' ALLOWABLE BUILDING AREA 405,000 SF AVERAGE AREA PER STORY 45,000 SF

#### TYPE IV-C



### All Mass Timber surfaces may be exposed

Exceptions: Shafts, concealed spaces, outside face of exterior walls

Credit: Susan Jones, atelierjones





### **Type IV-B**



12 STORIES BUILDING HEIGHT 180 FT ALLOWABLE BUILDING AREA AVERAGE AREA PER STORY 54,000SF

#### TYPE IV-B





Credit: Susan Jones, atelierjones

Credit: LEVER Architecture

IV-B

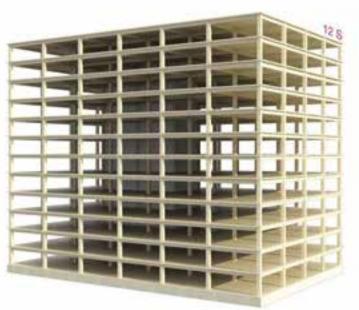


12 STORIES BUILDING HEIGHT 180 FT ALLOWABLE BUILDING AREA 648,000 SF AVERAGE AREA PER STORY 54,000SF

TYPE IV-B

Credit: Susan Jones, atelierjones

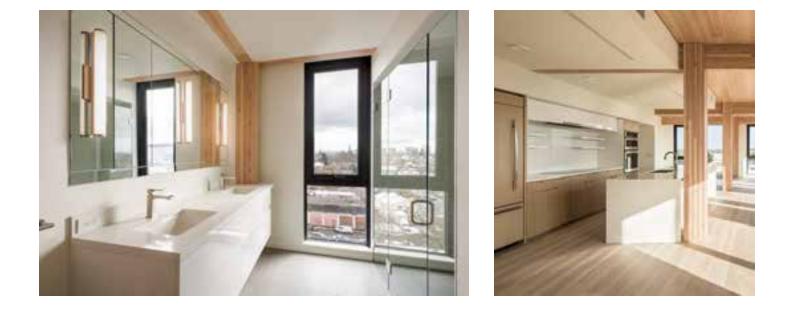
# **Type IV-B Height and Area Limits**


| Occupancy | # of<br>Stories | Height | Area per<br>Story | Building<br>Area |
|-----------|-----------------|--------|-------------------|------------------|
| A-2       | 12              | 180 ft | 90,000 SF         | 270,000 SF       |
| В         | 12              | 180 ft | 216,000 SF        | 648,000 SF       |
| Μ         | 8               | 180 ft | 123,000 SF        | 369,000 SF       |
| R-2       | 12              | 180 ft | 123,000 SF        | 369,000 SF       |

Areas exclude potential frontage increase

In most cases, Type IV-B height & story allowances = Type I-B height & story allowances

Type IV-B area = 2 \* Type IV-HT area






12 STORIES BUILDING HEIGHT 180 FT ALLOWABLE BUILDING AREA AVERAGE AREA PER STORY 54,000SF

#### TYPE IV-B


Credit: Susan Jones, atelierjones



### NC protection on all surfaces of Mass Timber except limited exposed areas ~20% of Ceiling or ~40% of Wall can be exposed

Limited Exposed MT allowed in Type IV-B for:

- MT beams and columns which are not integral part of walls or ceilings, no area limitation applies
- MT ceilings and beams up to 20% of floor area in dwelling unit or fire area, <u>or</u>
- MT walls and columns up to 40% of floor area in dwelling unit or fire area, <u>or</u>
- Combination of ceilings/beams and walls/columns, calculated as follows:



IV-B

Credit: Kaiser+Path

IV-B

Mixed unprotected areas, exposing both ceilings and walls:

In each dwelling unit or fire area, max.
 unprotected area =

 $(\mathrm{U_{tc}}/\mathrm{U_{ac}}) + (\mathrm{U_{tw}}/\mathrm{U_{aw}}) \leq 1.0$ 

- U<sub>tc</sub> = Total unprotected MT ceiling areas
- U<sub>ac</sub> = Allowable unprotected MT ceiling areas
- U<sub>tw</sub> = Total unprotected MT wall areas
- U<sub>aw</sub> = Allowable unprotected MT wall areas



Credit: Kaiser+Path

### Design Example: Mixing unprotected MT walls & ceilings



800 SF dwelling unit

- U<sub>ac</sub> = (800 SF)\*(0.20) = 160 SF
- U<sub>aw</sub> = (800 SF)\*(0.40) = 320 SF
- Could expose 160 SF of MT ceiling, OR 320 SF of MT Wall, OR

IV-B

 If desire to expose 100 SF of MT ceiling in Living Room, determine max. area of MT walls that can be exposed

Credit: AWC

### Design Example: Mixing unprotected MT walls & ceilings



- $\begin{array}{l} (U_{tc}/U_{ac}) + (U_{tw}/U_{aw}) \leq 1.0 \\ (100/160) + (U_{tw}/320) \leq 1.0 \\ U_{tw} = 120 \; \text{SF} \end{array}$
- Can expose 120 SF of MT walls in dwelling unit in combination with exposing 100 SF of MT ceiling

IV-B

Credit: AWC







## **Type IV-A**



18 STORIES BUILDING HEIGHT 270' ALLOWABLE BUILDING AREA 972,000 SF AVERAGE AREA PER STORY 54,000SF

TYPE IV-A

Credit: Susan Jones, atelierjones







Photos: Structurlam, naturally:wood, Fast + Epp IV-A

# **Type IV-A Height and Area Limits**



18 STORIES BUILDING HEIGHT 270' ALLOWABLE BUILDING AREA 972,000 SF AVERAGE AREA PER STORY 54,000SF

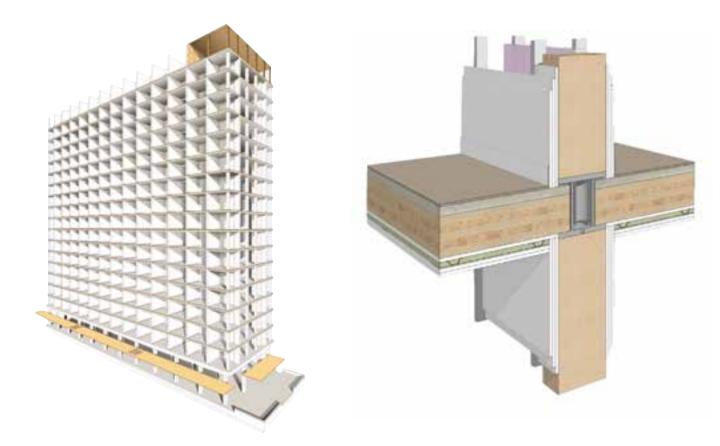
TYPE IV-A

Credit: Susan Jones, atelierjones

| Occupancy | # of<br>Stories | Height | Area per<br>Story | Building<br>Area |
|-----------|-----------------|--------|-------------------|------------------|
| A-2       | 18              | 270 ft | 135,000 SF        | 405,000 SF       |
| В         | 18              | 270 ft | 324,000 SF        | 972,000 SF       |
| Μ         | 12              | 270 ft | 184,500 SF        | 553,500 SF       |
| R-2       | 18              | 270 ft | 184,500 SF        | 553,500 SF       |

Areas exclude potential frontage increase

In most cases, Type IV-A height & story allowances = 1.5 \* Type I-B height & story allowances Type IV-A area = 3 \* Type IV-HT area IV-A


# **Type IV-A Protection vs. Exposed**



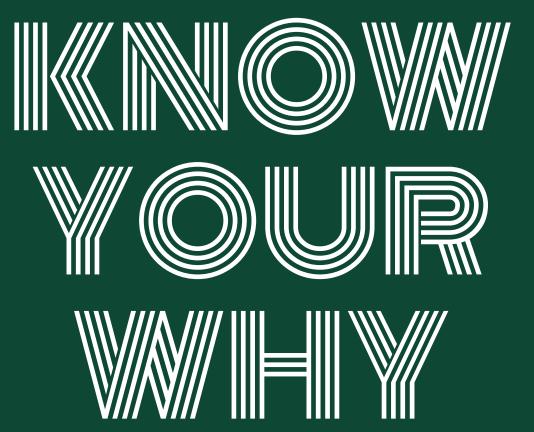
18 STORIES BUILDING HEIGHT 270' ALLOWABLE BUILDING AREA 972,000 SF AVERAGE AREA PER STORY 54,000SF

TYPE IV-A

Credit: Susan Jones, atelierjones



### 100% NC protection on all surfaces of Mass Timber




### 2024 IBC Changes

RISE Tests, 2020 Photo: RISE

#### Speed of Construction

**Market Distinction** 



Lightweight

Sustainability

Leasing Velocity

Cost

Urban Density

# Mass Timber: Structure Often is Finish



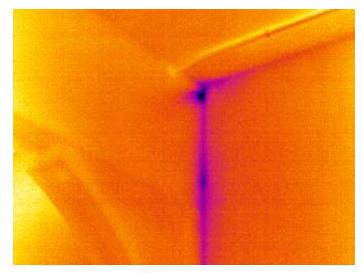
Photos: Baumberger Studio/PATH Architecture/Marcus Kauffman | Architect: PATH Architecture



# **MASS TIMBER APPEAL**

**MATERIAL MASS** 

# **75% LIGHTER WEIGHT THAN CONCRETE**

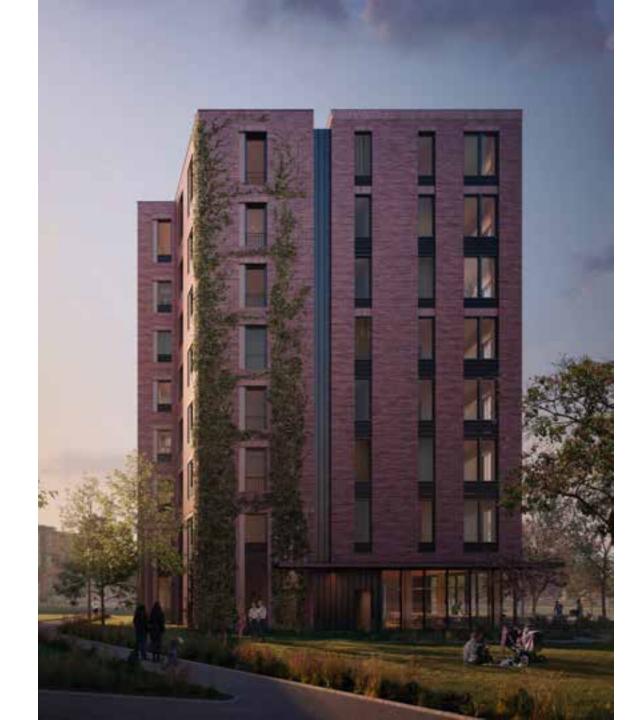





# **MASS TIMBER APPEAL**

### **ENERGY EFFICIENT**






#### Table 2

Thermal resistance of typical softwood at various thicknesses and 12% moisture content

| Thickness                                           | 1 in. (25 mm) | 4 in. (100 mm) | 6 in. (150 mm) | 8 in. (200 mm) |
|-----------------------------------------------------|---------------|----------------|----------------|----------------|
| R-value (h·ft. <sup>2</sup> ·°F·Btu <sup>-1</sup> ) | 1.25          | 5.00           | 7.50           | 10.00          |
| RSI (m <sup>2</sup> ·K·W <sup>-1</sup> )            | 0.22          | 0.88           | 1.30           | 1.80           |

### **CLT HAS AN R-VALUE OF APPROXIMATELY 1.25 PER INCH OF THICKNESS.** Source: US CLT Handbook





Source: Generate Architecture + Technologies

### Holistic Cost Assessment



Reference 1 Concrete Slabs on Steel Deck; Steel Frame; Concrete Cores

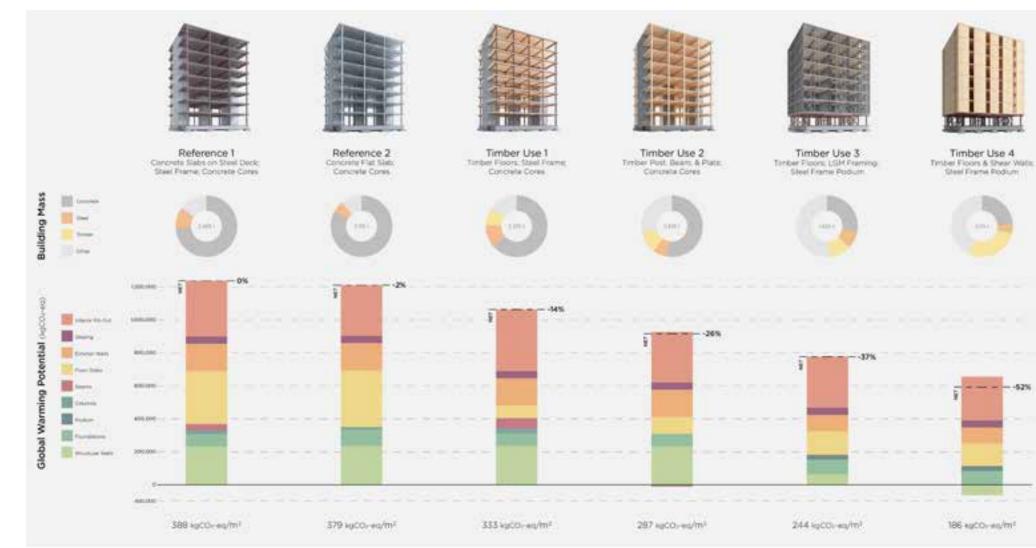


Reference 2 Concrete Flat Slab; Concrete Cores



Timber Use 1 Timber Floors; Steel Frame; Concrete Cores




Timber Use 2 Timber Post, Beam, & Plate; Concrete Cores



Timber Use 3 Timber Floors; LGM Framing; Steel Frame Podium Timber Use 4 Timber Floors & Shear Walls; Steel Frame Podium

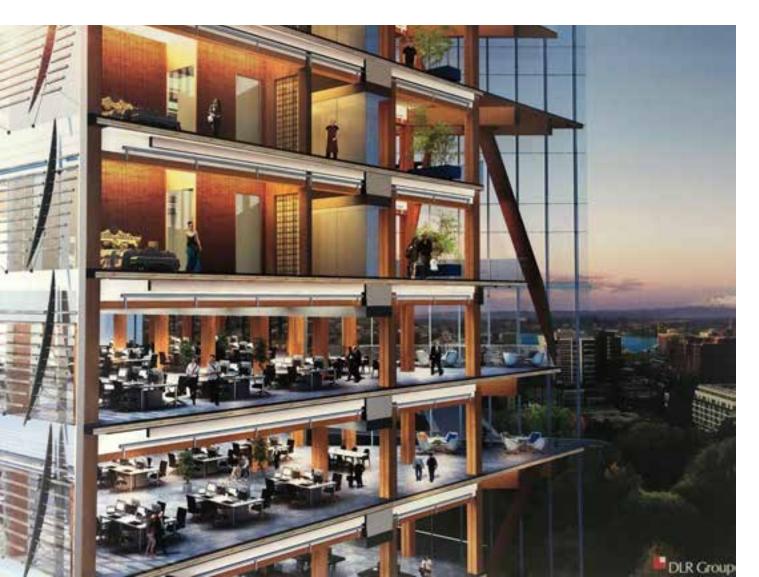
Source: Generate Architecture + Technologies

### Sustainability Impacts



#### **GLOBAL WARMING POTENTIAL & MATERIAL MASS** (PER BUILDING ASSEMBLY)

#### Source: Generate Architecture + Technologies


The total global warming potential (GWP) of each option is shown with a breakdown by building assembly. The Cohorete With Steer Frame and Cohorete Flat Sab options have the highest OWR with the bulk of the impect embedded in the floor slabs. The Timber Use I (Floor Slabs, Steel Frame) option offers a slight. reduction in GWP, with the most of the taxings also embedded in the foor slabs. The Tenter Use 2 (Post, Beem, and Plato) option offers a relatively typical approach to building with Smiber, showing serings in four static, beams and cotamer. Since Tanber Use 3 and 4 are callular approaches with laad calening wain, these options included steel podums to accommodate the ground four program. Timber Use 3 shows how a hybrid approach with 1977 gauge metal yields GWP savings in structure walls and extensor walls, depute the addition of the potium Lastly. Timber Use 4 emphasizes how a completely cellular CLT timbel approach yields impressive reductions in nearly every category.

## Carbon and Sustainability Value Add Services



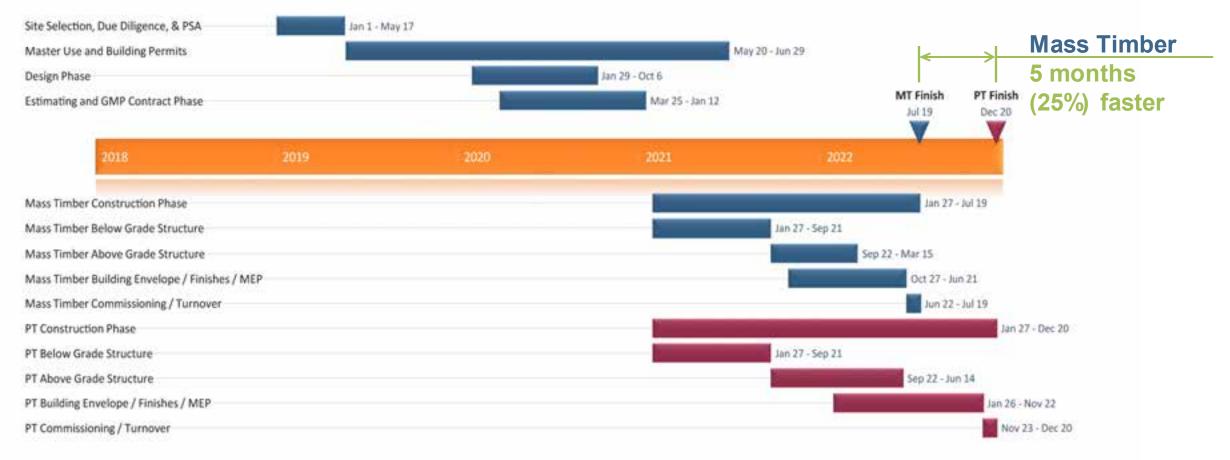


### Seattle Mass Timber Tower: Detailed Cost Comparison Fast Construction



- Textbook example done by industry experts
- Mass timber vs. PT conc
- Detailed cost, material takeoff & schedule comparisons

"The initial advantage of Mass Timber office projects in Seattle will come through the


### leasing velocity

that developers will experience."

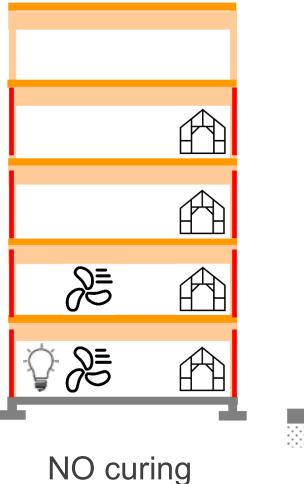
- Connor Mclain, Colliers

### Seattle Mass Timber Tower Fast Construction

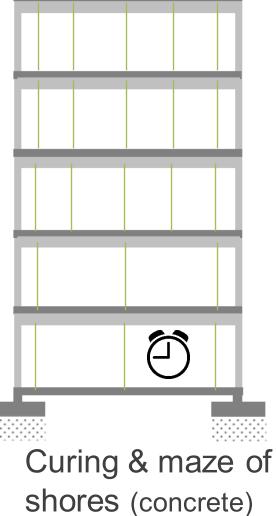
#### Construction Schedule:



Source: Tall With Timber A Seattle Mass Timber Tower Case Study by DLR Group<sup>1</sup>

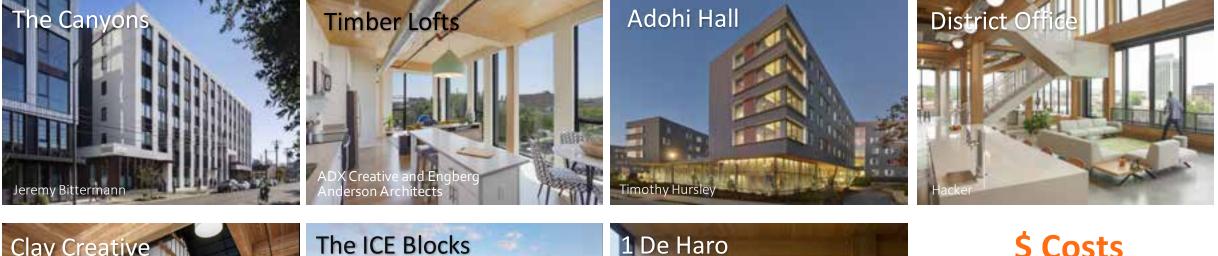

### **Seattle Mass Timber Tower**

Faster Construction + Higher Material Costs = Cost Competitive


| System              | Mass Timber<br>Design | PT Concrete<br>Design | Mass Timber<br>Savings |
|---------------------|-----------------------|-----------------------|------------------------|
| Direct Cost of Work | \$86,997,136          | \$85,105,091          | 2.2%                   |
| Project Overhead    | \$ 9,393,750          | \$11,768,750          | -20.2%                 |
| Add-Ons             | \$ 8,387,345          | \$ 8,429,368          | -0.5%                  |
| Total               | \$104,778,231         | \$105,303,209         | -0.5%                  |

Source: DLR Group | Fast + Epp | Swinerton Builders

### Schedule Savings for Rough-In Trades Fast Construction




(mass timber)





### Mass Timber Business Case Studies





\$ Costs \$ Returns Challenges Lessons Learned Successes



### **Download online**:

www.woodworks.org/mass-timber-business-case-studies

### 10-Minute Break!

Presented by John O'Donald II, PE, WoodWorks June 15, 2022

WOODWORKS

council

WOOD PRODUCT

Photo: Structurlam

### **KEY DESIGN CONSIDERATIONS**

Ten ber

INTRO, Cleveland, OH. Credit: Harbor Bay Real Estate Advisors

utual

What is the Single Most Important Early Design Decision on a Mass Timber Project? Is it:

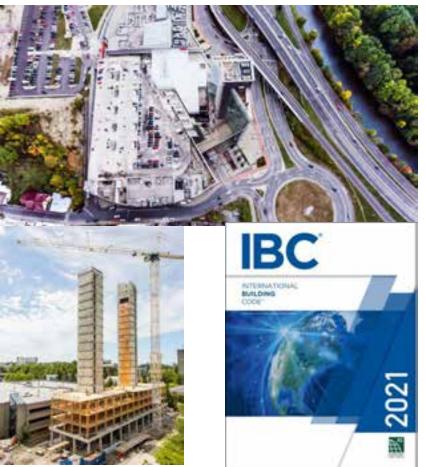
Construction Type Fire-Resistance Ratings Member Sizes Grids & Spans Exposed Timber (where & how much)

MEP Layout Acoustics Concealed Spaces Connections Penetrations

The Answer is...They All Need to Be Weighed (Plus Others)

### **Early = Efficient**

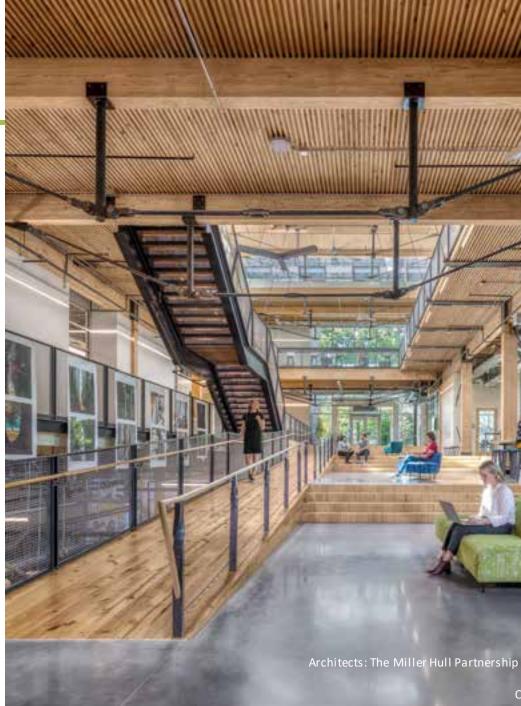
**Realize Efficiency in:** 


- Cost reduction
- Material use (optimize fiber use, minimize waste)
- Construction speed
- Trade coordination
- Minimize RFIs

**Commit to a mass timber design from the start** 



There are several project-specific factors that influence how early decisions are made, and in some cases, the order in which they are made:


- Site (size, orientation, zoning, cost)
- Building needs (size, occupancy(ies), layout, floor to floor, aesthetics, sustainability goals)
- Resulting code options & design implications



One *potential* design route:

- 1. Building size & occupancy informs construction type & grid
- 2. Construction type informs fire resistance ratings
- 3. Grid & fire resistance ratings inform timber member sizes & MEP layout

But that's not all...



**Other impactful decisions:** 

- Acoustics informs member sizes (and vice versa)
- Fire-resistance ratings inform connections & penetrations
- MEP layout informs use of concealed spaces

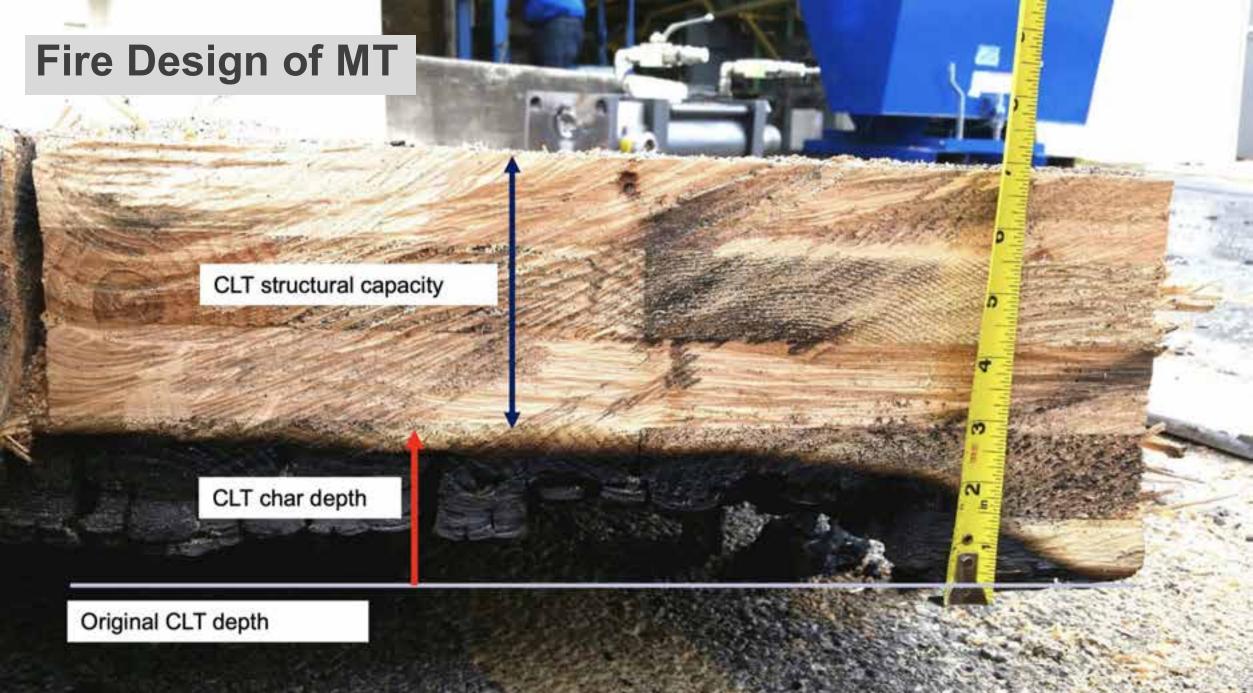




### **Construction Type** – Primarily based on building size & occupancy

|               |                                                                     | Construction Type (All Sprinklered Values) |                |                  |                            |               |        |        |  |  |  |  |  |  |
|---------------|---------------------------------------------------------------------|--------------------------------------------|----------------|------------------|----------------------------|---------------|--------|--------|--|--|--|--|--|--|
|               | IV-A                                                                | IV-B                                       | IV-C           | IV-HT            | III-A                      | III-B         | V-A    | V-B    |  |  |  |  |  |  |
| Occupancies   | Allowable Building Height above Grade Plane, Feet (IBC Table 504.3) |                                            |                |                  |                            |               |        |        |  |  |  |  |  |  |
| A, B, R       | 270                                                                 | 180                                        | 85             | 85               | 85                         | 85            | 70     | 60     |  |  |  |  |  |  |
|               | Allowable Number of Stories above Grade Plane (IBC Table 505.4)     |                                            |                |                  |                            |               |        |        |  |  |  |  |  |  |
| A-2, A-3, A-4 | 18                                                                  | 12                                         | 6              | 4                | 4                          | 3             | 3      | 2      |  |  |  |  |  |  |
| В             | 18                                                                  | 12                                         | 9              | 6                | 6                          | 4             | 4      | 3      |  |  |  |  |  |  |
| R-2           | 18                                                                  | 12                                         | 8              | 5                | 5                          | 5             | 4      | 3      |  |  |  |  |  |  |
|               |                                                                     | A                                          | Allowable Area | a Factor (At) fo | or SM, Feet <sup>2</sup> ( | IBC Table 506 | .2)    |        |  |  |  |  |  |  |
| A-2, A-3, A-4 | 135,000                                                             | 90,000                                     | 56,250         | 45,000           | 42,000                     | 28,500        | 34,500 | 18,000 |  |  |  |  |  |  |
| В             | 324,000                                                             | 216,000                                    | 135,000        | 108,000          | 85,500                     | 57,000        | 54,000 | 27,000 |  |  |  |  |  |  |
| R-2           | 184,500                                                             | 123,000                                    | 76,875         | 61,500           | 72,000                     | 48,000        | 36,000 | 21,000 |  |  |  |  |  |  |

### **Construction Type** – Primarily based on building size & occupancy


|               |         | Construction Type (All Sprinklered Values) |               |                  |                            |               |          |         |  |  |  |  |  |  |  |
|---------------|---------|--------------------------------------------|---------------|------------------|----------------------------|---------------|----------|---------|--|--|--|--|--|--|--|
|               | IV-A    | IV-B                                       | IV-C          | IV-HT            | III-A                      | III-B         | V-A      | V-B     |  |  |  |  |  |  |  |
| Occupancies   |         | Allowa                                     | able Building | Height above     | Grade Plane, I             | eet (IBC Tabl | e 504.3) | I       |  |  |  |  |  |  |  |
| A, B, R       | 270     | 180                                        | 85            | 85               | 85                         | 85            | 70       | 60      |  |  |  |  |  |  |  |
| For low       | - to mi | d-rise m                                   | lass tim      | ber build        | dings, th                  | ere ma        | y be mu  | ltiple  |  |  |  |  |  |  |  |
| options f     | or cons | structior                                  | n type. 1     | There ar         | e <mark>pro</mark> s a     | nd cons       | of each  | , don't |  |  |  |  |  |  |  |
| В             | 18      | assume                                     | that or       | e type i         | s always                   | best.         | 4        | 3       |  |  |  |  |  |  |  |
| R-2           | 18      | 12                                         | 8             | 5                | 5                          | 5             | 4        | 3       |  |  |  |  |  |  |  |
|               |         | ļ.                                         | Allowable Are | a Factor (At) fo | or SM, Feet <sup>2</sup> ( | IBC Table 506 | 5.2)     | I       |  |  |  |  |  |  |  |
| A-2, A-3, A-4 | 135,000 | 90,000                                     | 56,250        | 45,000           | 42,000                     | 28,500        | 34,500   | 18,000  |  |  |  |  |  |  |  |
| В             | 324,000 | 216,000                                    | 135,000       | 108,000          | 85,500                     | 57,000        | 54,000   | 27,000  |  |  |  |  |  |  |  |
| R-2           | 184,500 | 123,000                                    | 76,875        | 61,500           | 72,000                     | 48,000        | 36,000   | 21,000  |  |  |  |  |  |  |  |

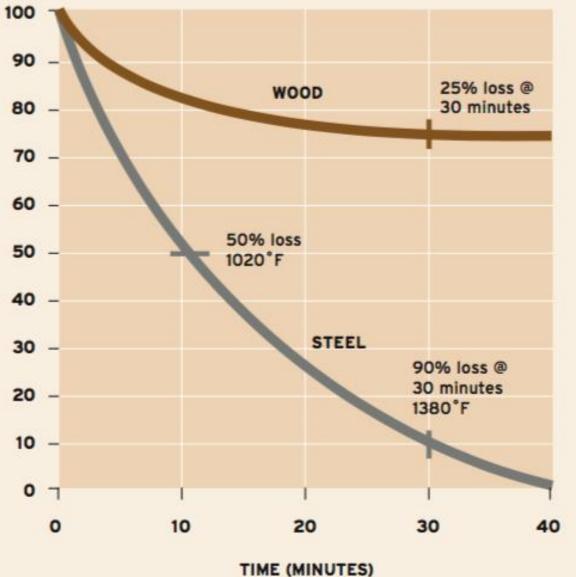
### **Fire-Resistance Ratings**

- Driven primarily by construction type
- Rating achieved through timber alone or non-com protection required?

| BUILDING ELEMENT                                                                    | TY                                                                      | PEI              | TYF              | PEII       | TYP               | E III |                               | Т  | YPE IV |                             | TYP               | ΈV |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------|------------------|------------|-------------------|-------|-------------------------------|----|--------|-----------------------------|-------------------|----|
| DOILDING ELEMENT                                                                    | Α                                                                       | В                | Α                | В          | Α                 | В     | Α                             | В  | С      | HT                          | Α                 | В  |
| Primary structural frame <sup>f</sup> (see Section 202)                             | 3 <sup>a, b</sup> 2 <sup>a, b, c</sup> 1 <sup>b, c</sup> 0 <sup>c</sup> |                  |                  |            | 1 <sup>b, c</sup> | 0     | 3ª                            | 2ª | 2ª     | HT                          | 1 <sup>b, c</sup> | 0  |
| Bearing walls                                                                       |                                                                         |                  |                  |            |                   |       |                               |    |        |                             |                   |    |
| Exterior <sup>•, f</sup>                                                            | 3                                                                       | 2                | 1                | 0          | 2                 | 2     | 3                             | 2  | 2      | 2                           | 1                 | 0  |
| Interior                                                                            | 3ª                                                                      | 2ª               | 1                | 0          | 1                 | 0     | 3                             | 2  | 2      | 1/HT <sup>g</sup>           | 1                 | 0  |
| Nonbearing walls and partitions<br>Exterior                                         | See Table 705.5                                                         |                  |                  |            |                   |       |                               |    |        |                             |                   |    |
| Nonbearing walls and partitions<br>Interior <sup>d</sup>                            | 0                                                                       | 0                | 0                | 0          | 0                 | 0     | 0                             | 0  | 0      | See<br>Section<br>2304.11.2 | 0                 | 0  |
| Floor construction and associated secondary<br>structural members (see Section 202) | 2                                                                       | 2                | 1                | 0          | 1                 | 0     | 2                             | 2  | 2      | HT                          | 1                 | 0  |
| Roof construction and associated secondary<br>structural members (see Section 202)  | 1 <sup>1</sup> / <sub>2</sub> <sup>b</sup>                              | 1 <sup>b,c</sup> | 1 <sup>b,c</sup> | <b>0</b> ° | 1 <sup>b,c</sup>  | 0     | 1 <sup>1</sup> / <sub>2</sub> | 1  | 1      | HT                          | 1 <sup>b,c</sup>  | 0  |

TABLE 601 FIRE-RESISTANCE RATING REQUIREMENTS FOR BUILDING ELEMENTS (HOURS)




Credit: David Barber, ARUP

#### COMPARATIVE STRENGTH LOSS OF WOOD VERSUS STEEL

# MASS TIMBER DESIGN

### **FIRE RESISTANCE**





Results from test sponsored by National Forest Products Association at the Southwest Research Institute

SOURCE: AITC

### **Fire-Resistance Ratings**

- Driven primarily by construction type
- Rating achieved through timber alone or non-com protection required?

| BUILDING ELEMENT                                                                    | TY                                                                  | PEI              | TYF              | PEII       | TYP               | PE III |                               | Т  | YPE IV |                             | TYP               | PEV |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------|------------------|------------|-------------------|--------|-------------------------------|----|--------|-----------------------------|-------------------|-----|
|                                                                                     | Α                                                                   | В                | Α                | В          | Α                 | В      | Α                             | В  | С      | HT                          | Α                 | В   |
| Primary structural frame <sup>f</sup> (see Section 202)                             | 3 <sup>a,b</sup> 2 <sup>a,b,c</sup> 1 <sup>b,c</sup> 0 <sup>c</sup> |                  |                  |            | 1 <sup>b, c</sup> | 0      | 3ª                            | 2ª | 2ª     | HT                          | 1 <sup>b, c</sup> | 0   |
| Bearing walls                                                                       |                                                                     |                  |                  |            |                   |        |                               |    |        |                             |                   |     |
| Exterior <sup>•, f</sup>                                                            | 3                                                                   | 2                | 1                | 0          | 2                 | 2      | 3                             | 2  | 2      | 2                           | 1                 | 0   |
| Interior                                                                            | 3ª                                                                  | 2ª               | 1                | 0          | 1                 | 0      | 3                             | 2  | 2      | 1/HT <sup>g</sup>           | 1                 | 0   |
| Nonbearing walls and partitions<br>Exterior                                         | See Table 705.5                                                     |                  |                  |            |                   |        |                               |    |        |                             |                   |     |
| Nonbearing walls and partitions<br>Interior <sup>d</sup>                            | 0                                                                   | 0                | 0                | 0          | 0                 | 0      | 0                             | 0  | 0      | See<br>Section<br>2304.11.2 | 0                 | 0   |
| Floor construction and associated secondary<br>structural members (see Section 202) | 2                                                                   | 2                | 1                | 0          | 1                 | 0      | 2                             | 2  | 2      | HT                          | 1                 | 0   |
| Roof construction and associated secondary<br>structural members (see Section 202)  | 1 <sup>1</sup> / <sub>2</sub> <sup>b</sup>                          | 1 <sup>b,c</sup> | 1 <sup>b,c</sup> | <b>0</b> ° | 1 <sup>b,c</sup>  | 0      | 1 <sup>1</sup> / <sub>2</sub> | 1  | 1      | HT                          | 1 <sup>b,c</sup>  | 0   |

TABLE 601 FIRE-RESISTANCE RATING REQUIREMENTS FOR BUILDING ELEMENTS (HOURS)

# **Fire-Resistance Ratings (FRR)**

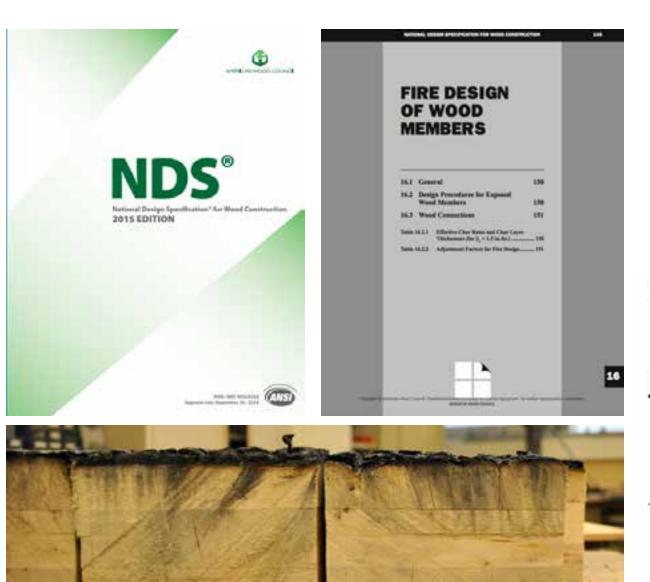
- Thinner panels (i.e. 3-ply) generally difficult to achieve a 1+ hour FRR
- 5-ply CLT / 2x6 NLT & DLT panels can usually achieve a 1- or 2hour FRR
- Construction Type | FRR | Member Size | Grid (or re-arrange that process but follow how one impacts the others)

| Panel                    | Example Floor Span Ranges |
|--------------------------|---------------------------|
| 3-ply CLT (4-1/8" thick) | Up to 12 ft               |
| 5-ply CLT (6-7/8" thick) | 14 to 17 ft               |
| 7-ply CLT (9-5/8")       | 17 to 21 ft               |
| 2x4 NLT                  | Up to 12 ft               |
| 2x6 NLT                  | 10 to 17 ft               |
| 2x8 NLT                  | 14 to 21 ft               |
| 5" MPP                   | 10 to 15 ft               |



Construction type influences FRR

- Type IV-HT Construction (minimum sizes)
- Other than type IV-HT: Demonstrated fire resistance


Method of demonstrating FRR (calculations or testing) can impact member sizing





### FRR Design of MT

Credit: FPInnovations



NDS Chapter 16 includes calculation of fire resistance of NLT, CLT, Glulam, Solid Sawn and SCL wood products

Table 16.2.1B Effective Char Depths (for CLT

with  $\beta_n$ =1.5in./hr.)

| Required<br>Fire<br>Endurance       | -   | Effective Char Depths, a <sub>char</sub><br>(in.)<br>lamination thicknesses, h <sub>lam</sub> (in.) |     |     |       |       |       |       |     |  |  |  |  |
|-------------------------------------|-----|-----------------------------------------------------------------------------------------------------|-----|-----|-------|-------|-------|-------|-----|--|--|--|--|
| (hr.)                               | 5/8 | 3/4                                                                                                 | 7/8 | 1   | 1-1/4 | 1-3/8 | 1-1/2 | 1-3/4 | 2   |  |  |  |  |
| 1-Hour                              | 2.2 | 2.2                                                                                                 | 2.1 | 2.0 | 2.0   | 1.9   | 1.8   | 1.8   | 1.8 |  |  |  |  |
| 1 <sup>1</sup> / <sub>2</sub> -Hour | 3.4 | 3.2                                                                                                 | 3.1 | 3.0 | 2.9   | 2.8   | 2.8   | 2.8   | 2.6 |  |  |  |  |
| 2-Hour                              | 4.4 | 4.3                                                                                                 | 4.1 | 4.0 | 3.9   | 3.8   | 3.6   | 3.6   | 3.6 |  |  |  |  |

### FRR Design of MT

### **WoodWorks Inventory of Fire Tested MT Assemblies**

Table 1: North American Fire Resistance Tests of Mass Timber Floor / Roof Assemblies



| CLT Pand                      | Manu Isotu ror | CLT Grade<br>or Major x Minor Grade | Colling Prototion                                                                                          | Panel Connection in<br>Test  | Floor Topping                                                                        | Load Rating                        | Fire Resistance<br>Achieved (Hours) | Source     | Testing Lab                       |
|-------------------------------|----------------|-------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------|------------------------------------|-------------------------------------|------------|-----------------------------------|
| 3-ply CLT<br>(114,mm 4,488 m) | North          | 67F 1656 /6 1.5EMSR<br>x 57F #7     | 2 Japan 1/2" Type X gyprom                                                                                 | Half-Lap                     | Nume                                                                                 | Refuced<br>3495 Memori Capicity    | 1.                                  | 1 (Teit 1) | NRC Fire Laboratory               |
| 3-ply CU<br>(101-mm 4.133 m)  | Structurilam   | SPF #1/#2 x SPF #1/#2               | 1 key or 5-9" Type Xgyproon                                                                                | Half-Lag                     | Non                                                                                  | Rofaced<br>75% Moment Capacity     | [] 010                              | 1 (Turt 5) | NRC Fire Laboratory               |
| 5-ply CLT<br>(173mm+6.875*)   | Nonlie         | .84                                 | New                                                                                                        | Tepside Splins               | 2 maggated layers of 1/2 <sup>4</sup> centure bounds                                 | Loaled.<br>Siz Manufacturer        | 2                                   | 2          | NRC Fire Laboratory<br>March 2016 |
| 5-ply CLT<br>(175mmi#.875*)   | Nesdic         | 11                                  | 1 lay at a 5.4° Type Xgypsum under Z-<br>shannels and farring strips with 5.5/8°<br>(framelies batts)      | Tops ide Splima              | 2 stagg and layers of 1/2* censor (boards                                            | Loaled.<br>Sar Manufacturer        | 2                                   | 5          | NRC Fire Laboratory<br>Nov 2014   |
| 5-ply CLT<br>(175mm6.375*)    | Nordie         | 81                                  | None                                                                                                       | Topside Spline               | 3/4 in propriating gyperids over Mexicon<br>acountical mar                           | Reduced<br>50% Moment Capacity     | 1.8                                 | 3          | UL                                |
| 5-ply CLT<br>(175mm-6.875*)   | Nordie         | 81                                  | 1 layar 3/4° normal gypram                                                                                 | Topside Spline               | 3/4 in proprietary gyperits over Masson<br>accustical mar or proprietary sound board | Reduced<br>50% Manual Capacity     | 2                                   | - 4        | UL.                               |
| 3-ply CLT<br>(125mm#-875*)    | Nordie         | н                                   | Likyer 58* Type X Gyp under Reschere Channel<br>under 2 59* L'Joint with 3 12* Mancal Wast<br>bewent Inter | Half-Lap                     | N                                                                                    | Leaded.<br>See Monufacturer        | 2                                   | 21         | Intertek<br>8/24/2012             |
| 5-q2y CLT<br>(175mm4.875*)    | Structure      | E1 M5<br>MSR 2109 x 5PF #2          | Near                                                                                                       | Topside Spline               | 1-1/2" Marcon Cyp-Gote 2000 over Mexcen<br>Reinforcing Mash                          | Loaded,<br>See Menufacturer        | 2.5                                 |            | Intertek, 2/22/2016               |
| 5-pty-CUF<br>(175mm6.875*)    | DR Johnson     | vi                                  | Near                                                                                                       | Helf-Lap &<br>Topside Spline | 2' gypnawiopping                                                                     | Localed,<br>Kay Manufacturer       | 2                                   | 7          | SwR1 (May 2016)                   |
| 3-ply (LT<br>(173mm#373*)     | Nuelic         | SPF 1850 Pb MSR<br>x SPF #3         | Noter                                                                                                      | Half-Lap                     | None                                                                                 | Reduced<br>59% Monute Capacity     | 13                                  | 1 (Tot 3)  | NRC Fire Laboratory               |
| 5-93y 6LT<br>(175mm-6.875*)   | Structure      | 30F #1.92 x 50F #1.92               | 1 layur 3/8° Type Xgypiam                                                                                  | Half-Lep                     | Nony                                                                                 | Uninfocied<br>101% Momant Capacity | 1                                   | 1 (Tet 1)  | NRC Fire Laboratory               |
| 7-ply CLT<br>(245mm 9.65*)    | Structuriam    | SPE #1.92 x SPE #1.92               | None                                                                                                       | Half-Gap                     | Ning                                                                                 | Unroduced<br>101% Monuter Capacity | 2.6                                 | F (Tent T) | NRC Fire Laboratory               |
| 5-ply-CLT<br>(173mmit.875*)   | SnatLan        | 8L-144                              | New                                                                                                        | Hdf-Lap                      | neminal 1/2° plywood with #d nails.                                                  | Louded,<br>Sie Menufacturer        | 2                                   | 12 (Tet 4) | Western Fire Center<br>10/26/2016 |
| 3-ply CLT<br>(175mmii: 375*)  | SecuriLan      | vi                                  | New                                                                                                        | Half-Lap                     | nominal 1/2*plymod with Educate.                                                     | Loaded.<br>Sie Menaflicturer       | 2                                   | 12(Tet 5)  | Western Fire Center<br>10/28/2016 |
| 5-ply CLT<br>(175mm+-375*)    | DR. Jok name   | NI .                                | Noter                                                                                                      | Hilf-Lap                     | nominal 1/2" ply sood with \$d nails.                                                | Loaded.<br>Swe Mensifacturer       | 2                                   | 12(Tat 6)  | Western Fire Center<br>11/01/2016 |
| Septy CLT                     | 6231           | CV3MI                               | Nintel                                                                                                     | Hell-Lap &                   | Note                                                                                 | Localed,                           |                                     | 18         | SwRI                              |

### FRR Design of MT

Wood WoodWorks

#### Fire-Resistive Design of Mass Timber Members

**Code Applications, Construction Types and Fire Ratings** 

Hichard Mitz am, PK, SE + Sentor Technical Director + Woodvicitor Soci18mmertan, PRC: PE SE + Sentor Technical Director + Woodvicitor

For many years, exposed heavy timber framing elements have been permitted in U.S. buildings due to their inherent fre-resistance properties. The predictability of wood's char rate has been well-established for decades and has long been recognized in building codes and trandards.

Today, one of the exciting trands in building design is the growing use of mats timber—i.e., large sold wood panel products such as cross-laminated timber (CLT) and naillaminated timber (NLT)—for floor, wall and note construction. Like heavy timber, mass timber products have inherent fire resistance that allows them to be left exposed and still schleve a five-resistance ratio. Because of their strength and dimensional stability, these products also offer a low catton alternative to steel, concrete, and memory for many applications. It is the combination of exposed structure and strength fluit developers and despress across the coentry.

the rest of the re

are leveraging to create innovs/twe designs with a warm yet modern aesthetic, often for projects that go beyond traditional norms of wood design.

This paper has been written to support architects and engineers exploring the use of mass timber for commercial and multi-family construction. It focuses on how to meet fire-notistance requirements in the informational Building Code (IBC), including calculation and testing-based methods. Unless otherwise noted, references refer to the 2018 IBC

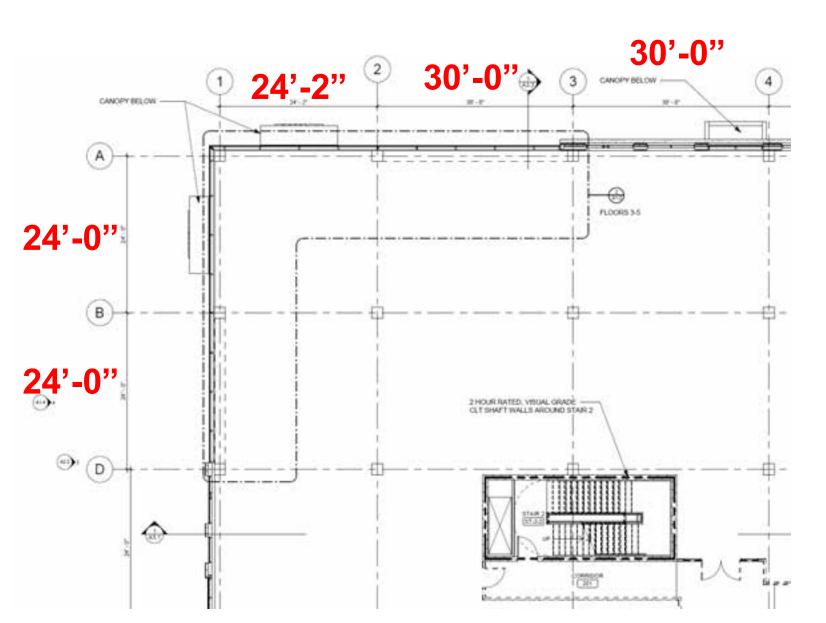
#### Mass Timber & Construction Type

Before demonstrating fre-resistance ratings of exposed mass timber elements, it's important to understand under what discumstances the code currently allows the use of mass timber in commercial and multi-family construction.

> A building's assigned construction type is the main indicator of where and when all wood systems can be used. IBC Section 602 defines the main options (7spe I through VI with all but Type IV having subcategories A and B. Types III and V permit the use of wood framing throughout much of the structure and both are used extensively for modern mass timber buildings.

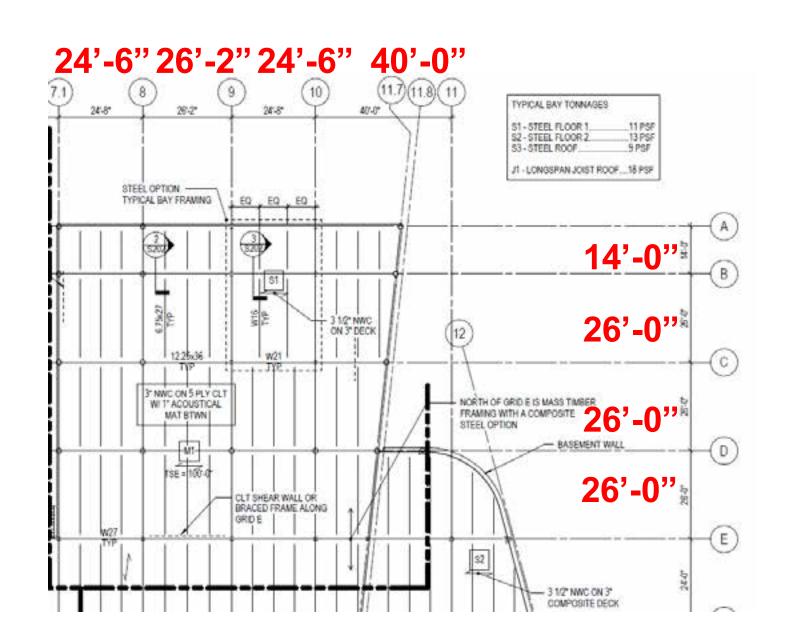
Type MVERC 602.2 - Timber elements can be used in floom, roots and interior walls. Fire-retardart-twated wood IFITWI framing is permitted in extentor walls with a fremelistance rating of 2 hours or less.

Type V (BC, 602.5) – Timber elements can be used throughout the structure, including foors, roots and both interior and exterior


Type IV IBC 602.0 - Commonly referred to as 'Heavy Timber' construction, this option

### Mass Timber Fire Design Resource

- Code compliance options for demonstrating FRR
- Free download at woodworks.org


# Grids & Spans

- Consider Efficient
  Layouts
- Repetition & Scale
- Manufacturer Panel Sizing
- Transportation



# **Grids & Spans**

- Consider Efficient
  Layouts
- Repetition & Scale
- Manufacturer Panel Sizing
- Transportation




### **Member Sizes**

- Impact of FRR on Sizing
- Impact of Sizing on Efficient Spans
- Consider connections can drive member sizing

### 0 HR FRR: Consider 3-ply Panel

- Efficient Spans of 10-12 ft
- Grids of 20x20 (1 purlin) to 30x30 (2 purlins) may be efficient

Platte Fifteen, Denver, CO 30x30 Grid, 2 purlins per bay 3-ply CLT Image: JC Buck

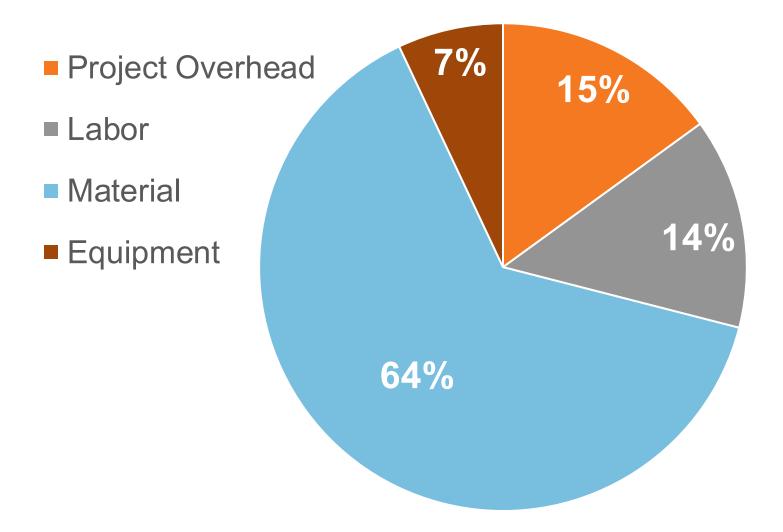


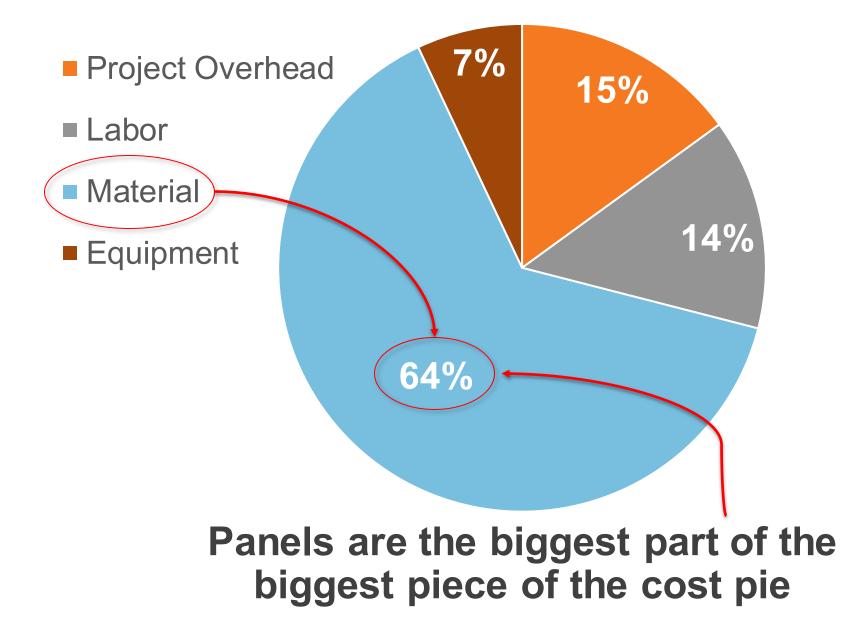
### **Member Sizes**

- Impact of FRR on Sizing
- Impact of Sizing on Efficient Spans
- Consider connections can drive member sizing

### 1 or 2 HR FRR: Likely 5-ply Panel

- Efficient spans of 14-17 ft
- Grids of 15x30 (no purlins) to 30x30 (1 purlin) may be efficient


Clay Creative, Portland, OR 30x30 Grid, 1 purlin per bay 2x6 NLT Image: Mackenzie




### Why so much focus on panel thickness?



#### **Typical MT Package Costs**

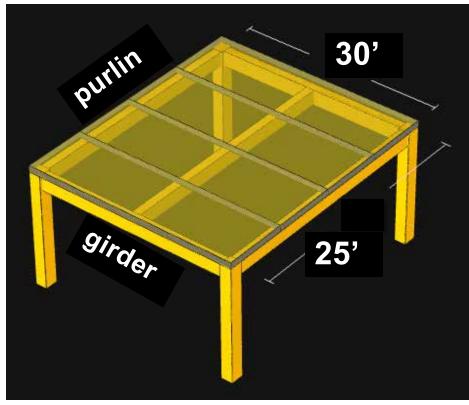




Source: Swinerton

#### **Construction Type Early Decision Example**

#### 7-story building on health campus


• Group R-2 occupancy, NFPA 13 sprinklers throughout

- Floor plate = 22,300 SF
- Total Building Area = 156,100 SF

#### **MT Construction Type Options:**

- If Building is < 85 ft
  - 7 stories of IV-C
  - 5 stories of IIIA or IV-HT over 2 story IA podium
- If Building is > 85 ft
  - 7 stories of IV-B

#### Panel volume usually 65-80% of MT package volume



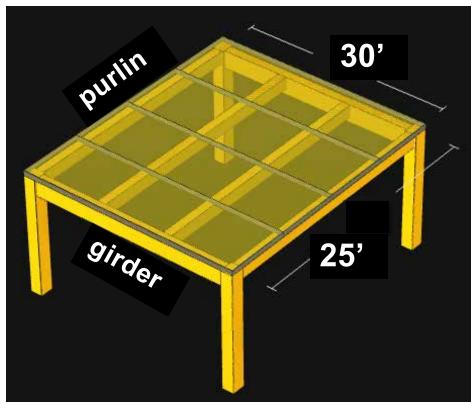
Source: Fast + Epp, Timber Bay Design Tool

**Type IIIA option 1** 1-hr FRR Purlin: 5.5"x28.5" Girder: 8.75"x33" Column: 10.5"x10.75" Floor panel: 5-ply

Glulam volume = 118 CF (22% of MT) CLT volume = 430 CF (78% of MT) Total volume = 0.73 CF / SF

#### Panel volume usually 65-80% of MT package volume



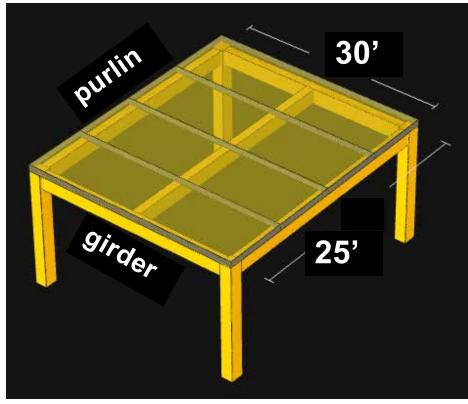

Source: Fast + Epp, Timber Bay Design Tool

Type IIIA option 2 1-hr FRR Purlin: 5.5"x24" Girder: 8.75"x33" Column: 10.5"x10.75" Floor panel: 5-ply

Glulam volume = 123 CF (22% of MT) CLT volume = 430 CF (78% of MT) Total volume = 0.74 CF / SF

Cost considerations: One additional beam (one additional erection pick), 2 more connections

#### Panel volume usually 65-80% of MT package volume

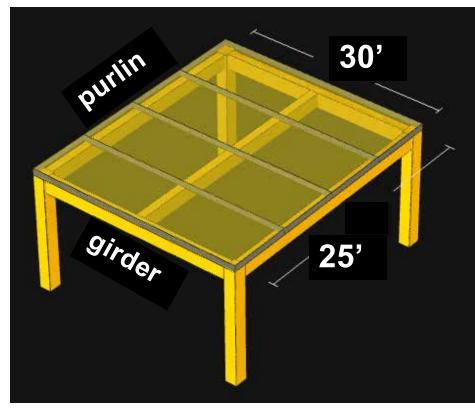



Source: Fast + Epp, Timber Bay Design Tool

#### **Type IV-HT** 0-hr FRR (min sizes per IBC) Purlin: 5.5"x24" (IBC min = 5"x10.5") Girder: 8.75"x33" (IBC min = 5"x10.5") Column: 10.5"x10.75" (IBC min = 6.75"x8.25") Floor panel: 3-ply (IBC min = 4" CLT)

Glulam volume = 120 CF (32% of MT) CLT volume = 258 CF (68% of MT) Total volume = 0.51 CF / SF

#### Panel volume usually 65-80% of MT package volume




Source: Fast + Epp, Timber Bay Design Tool

**Type IV-C** 2-hr FRR Purlin: 8.75"x28.5" Girder: 10.75"x33" Column: 13.5"x21.5" Floor panel: 5-ply

Glulam volume = 183 CF (30% of MT) CLT volume = 430 CF (70% of MT) Total volume = 0.82 CF / SF

#### Which is the most efficient option?




Source: Fast + Epp, Timber Bay Design Tool

|                 | Timber Volume<br>Ratio | Podium on 1 <sup>st</sup> & 2 <sup>nd</sup> Floor? |
|-----------------|------------------------|----------------------------------------------------|
| IIIA – Option 1 | 0.73 CF / SF           | Yes                                                |
| IIIA – Option 2 | 0.74 CF / SF           | Yes                                                |
| IV-HT           | 0.51 CF / SF           | Yes                                                |
| IV-C            | 0.82 CF / SF           | No                                                 |

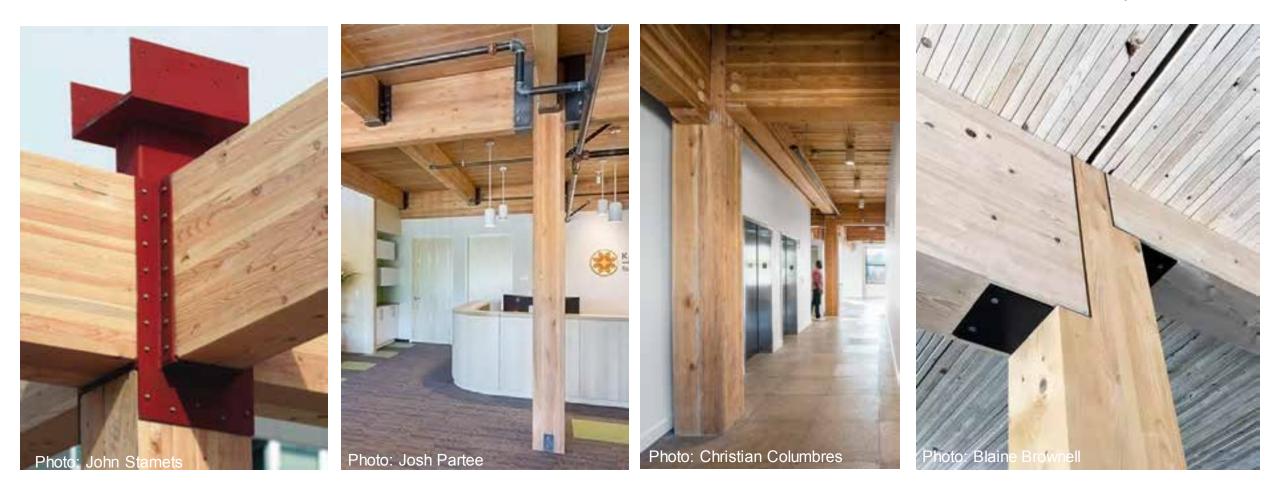
A general rule of thumb for efficient mass timber fiber volume is no higher than 0.75 CF per SF. Ratios in the 0.85 to 1.0 CF / SF range tend to become cost prohibitive

#### Which is the most efficient option?



Source: Fast + Epp, Timber Bay Design Tool

SF range tend to become cost prohibitive


# Connections

Credit: Structurlam

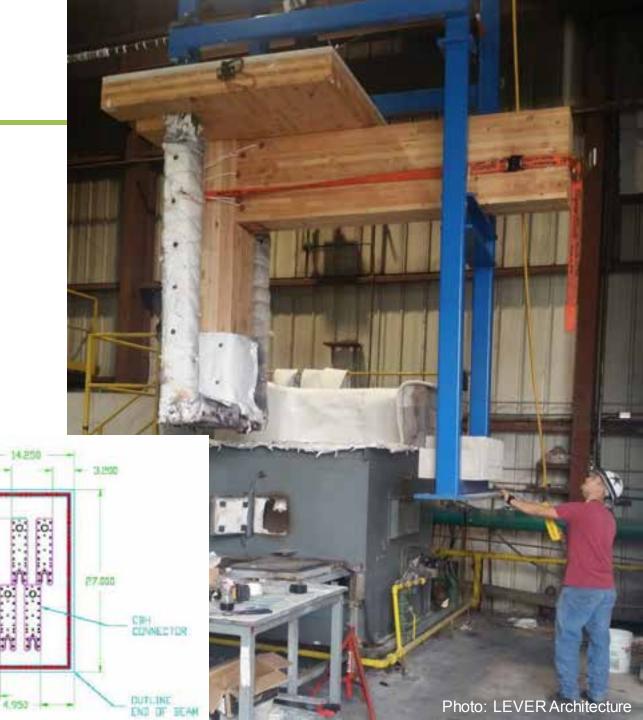
-----

A DISABATA A DISABATA A DISA

Many ways to demonstrate connection fire protection: calculations, prescriptive NC, test results, others as approved by AHJ



Steel hangers/hardware fully concealed within a timber-to-timber connection is a common method of fire protection




# Connection FRR and beam reactions could impact required beam/column sizes

4,300



Photos: Simpson Strong-Tie



Member to member bearing also commonly used, can avoid some/all steel hardware at connection



Member to member bearing also commonly used, can avoid some/all steel hardware at connection

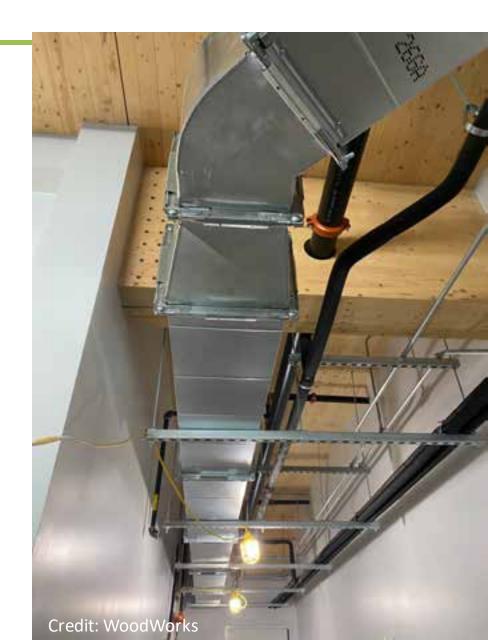


#### Style of connection also impacts and is impacted by grid layout and MEP integration



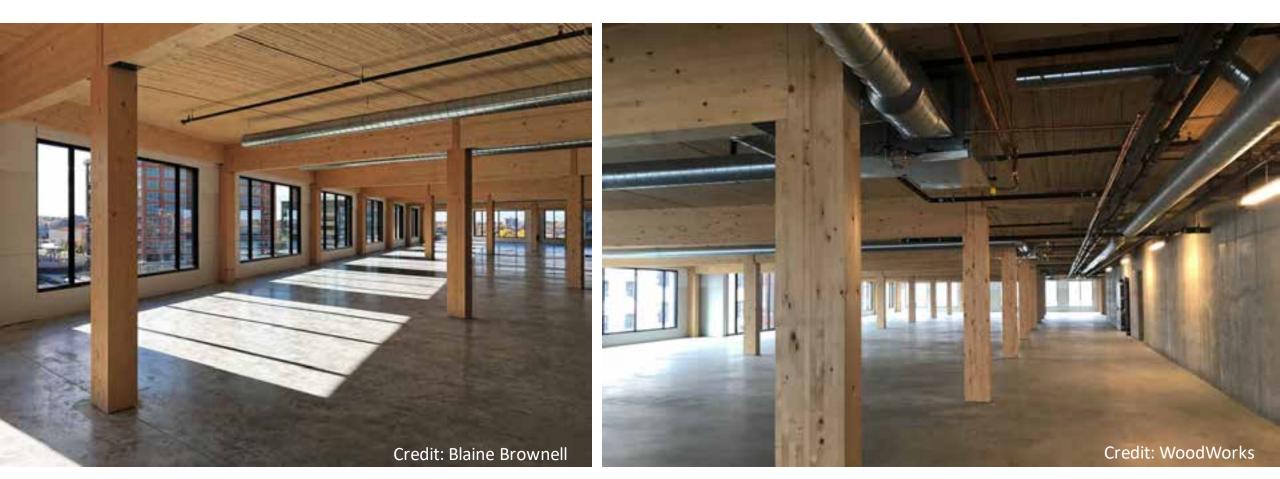
- Iter

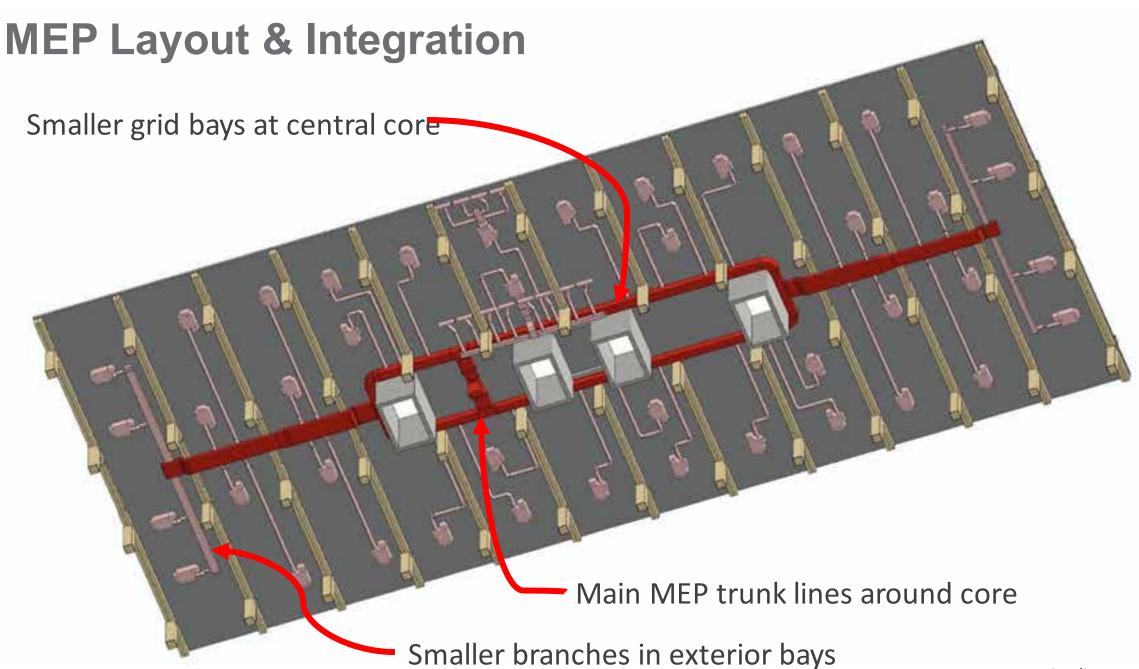
IN PLANE


Set Realistic Owner Expectations About Aesthetics

• MEP fully exposed with MT structure, or limited exposure?




Key considerations:


- Level of exposure desired
- Floor to floor, structure depth & desired head height
- Building occupancy and configuration (i.e. central core vs. double loaded corridor)
- Grid layout and beam orientations
- Need for future tenant reconfiguration
- Impact on fire & structural design: concealed spaces, penetrations



Smaller grid bays at central core (more head height)

• Main MEP trunk lines around core, smaller branches in exterior bays





Grid impact: Relies on oneway beam layout. Columns/beams spaced at panel span limits in one direction.

Beam penetrations are minimized/eliminated

Recall typical panel span limits:

| Panel                    | Example Floor Span Ranges |
|--------------------------|---------------------------|
| 3-ply CLT (4-1/8" thick) | Up to 12 ft               |
| 5-ply CLT (6-7/8" thick) | 14 to 17 ft               |
| 7-ply CLT (9-5/8")       | 17 to 21 ft               |
| 2x4 NLT                  | Up to 12 ft               |
| 2x6 NLT                  | 10 to 17 ft               |
| 2x8 NLT                  | 14 to 21 ft               |
| 5" MPP                   | 10 to 15 ft               |



Dropped below MT framing

- Can simplify coordination (fewer penetrations)
- Bigger impact on head height



In gaps between MT panels

• Fewer penetrations, can allow for easier modifications later



In penetrations through MT framing

- Requires more coordination (penetrations)
- Bigger impact on structural capacity of penetrated members
- Minimal impact on head height





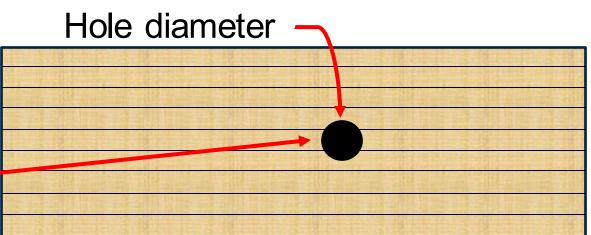
In chases above beams and below panels

- Fewer penetrations
- Bigger impact on head height (overall structure depth is greater)
- FRR impacts: top of beam exposure

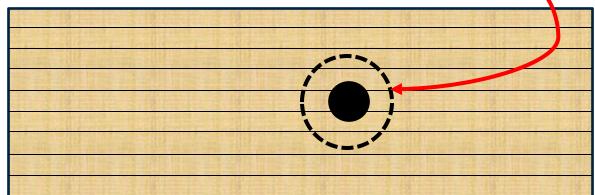


In chases above beams and below panels at Platte 15

• 30x30 grid, purlins at 10 ft, 3-ply CLT



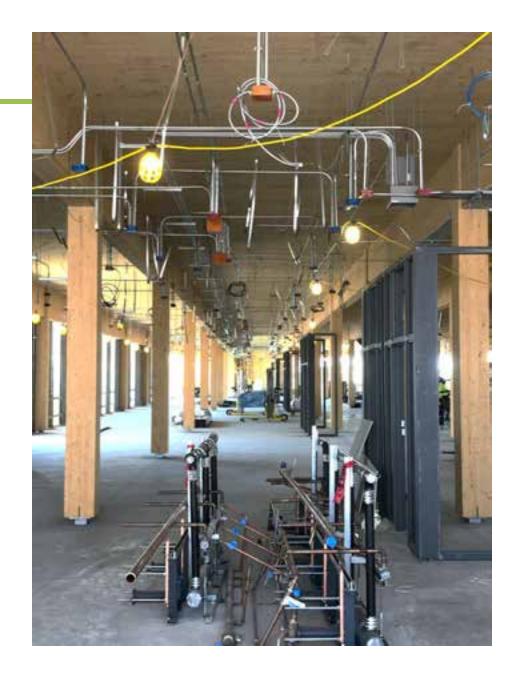




Beam penetrations:

- If FRR = 0-hr, analyze structural impact of hole diameter only
- If FRR > 0-hr, account for charred hole diameter or firestop penetration






#### Hole diameter after 1-hr char



# Code options for firestopping through penetrations

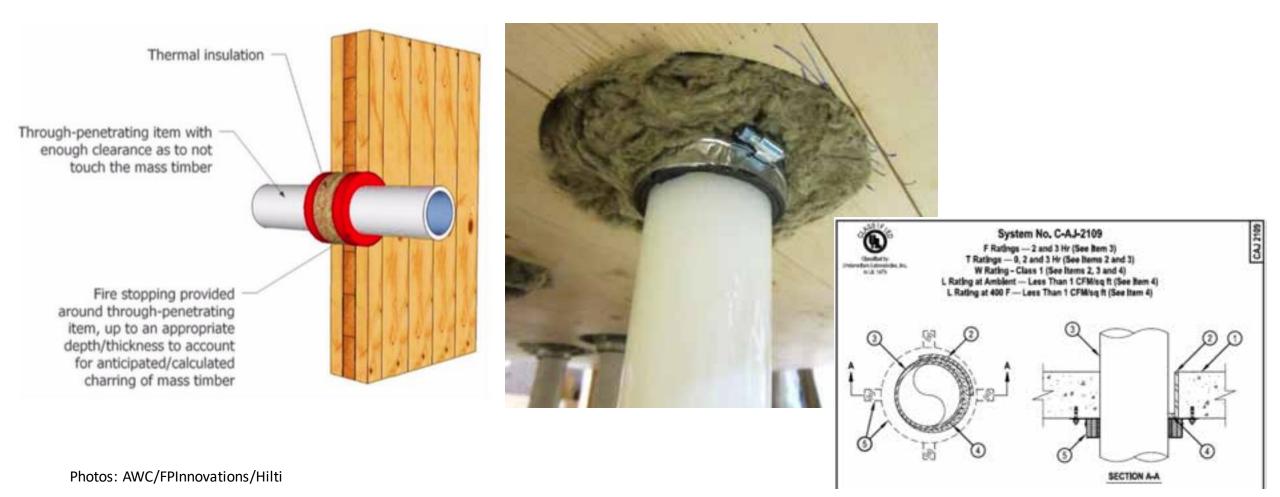
**714.4.1.1 Fire-resistance-rated assemblies.** *Through penetrations* shall be protected using systems installed as tested in the *approved* fire-resistance-rated assembly.

**714.4.1.2 Through-penetration firestop system.** *Through penetrations* shall be protected by an *approved penetration firestop* system installed as tested in accordance with ASTM E814 or UL 1479, with a minimum positive pressure differential of 0.01 inch (2.49 Pa) of water and shall have an *F rating* of not less than the required *fire-resistance rating* of the wall penetrated.

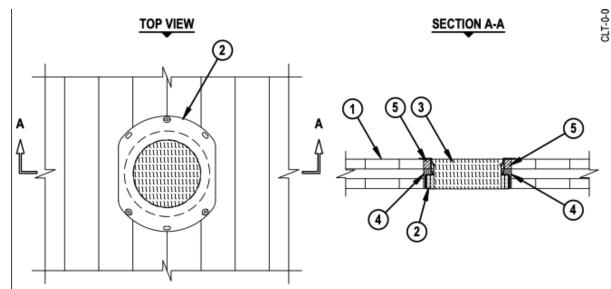


#### Option 1: MT penetration firestopping via tested products




#### Inventory of Fire Tested Penetrations in MT Assemblies

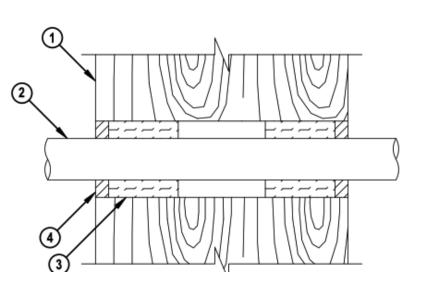
#### Table 3: North American Fire Tests of Penetrations and Fire Stops in CLT Assemblies




| CLT Panel                   | Exposed Side<br>Protection | Pen etrating<br>Item                                  | Penetrant Centered<br>or Offset in Hole | Firestopping System Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F Rating | T Rating  | Stated Test<br>Protocal | Source | Testing Lab                       |
|-----------------------------|----------------------------|-------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|-------------------------|--------|-----------------------------------|
| 3-ply<br>(78mm3.07*)        | None                       | 1.5* diameter<br>data cable bunch                     | Centered                                | 3.5 in diameter hole. Mineral wool was installed in the 1in. annular space around the data cables to a total depth of approximately 2 - 5/64 in. The remaining 1in. annular space from the top of the mineral wool to the top of the floor assembly was filled with Hilti FS-One Max caulking.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 hour   | 0.5 hour  | CANULC S115             | 26     | Intertek<br>March 30, 2016        |
| 3-ply<br>(78mm 3.07*)       | None                       | 2" copper pipe                                        | Centered                                | 4.375 in diameter hole. Pipe wrap was installed around the copper pipe to a total depth of approximately 2 – 5/64in. The remaining lin. annular space starting at the top of the mineral wool to the top of the floor as sembly was filled with Hilti FS-One Max caulking.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 hour   | NA.       | CANULC SI15             | 26     | Intertek<br>March 30, 2016        |
| 3-ply<br>(78mm3.07*)        | None                       | 2.5" sch od. 40<br>pip e                              | Centered                                | 4.92 in diameter hole. Pipe wrap was installed around the schedule 40 pipe to a total depth of approximately 2 - 5/64in. The remaining 1in. annular space starting at the top of the pipe wrap to the top of the floor assembly was filled with Hilti FS-One Max caulking.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 hour   | NA.       | CANULC \$115            | 26     | In tert ek<br>March 30, 2016      |
| 3-ply<br>(78mm 3.07*)       | None                       | 6* cast iron pipe                                     | Centered                                | 8.35 in diameter hole. Mineral wool was installed in the lin. annular space around the cast iron pipe to a total depth of approximately 2 – 5/64 in. The remaining lin. annular space starting at the top of the pipe wrap to the top of the floor assembly was filled with Hilti FS-One Max caulking.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 hour   | NA.       | CANULC S115             | 26     | Intertek<br>March 30, 2016        |
| 3-ply<br>(78mm3.07*)        | None                       | Hilti 6 in drop in<br>device, System<br>No.: F-B-2049 | Centered                                | 9.01" diameter hole. Mineral wool was installed in the 1 - 1/4in. annular space around the drop-in device to a total depth of approximately 1 - 7/64in<br>and the remaining 1 in. annular space from the top of the mineral wool to the top edge of the 9 - 1/64in. hole in the CLT was filled with Hilti FS-One<br>Max caulking.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 hour   | 0.75 hour | CANULC S115             | 26     | Intertek<br>March 30, 2016        |
| 5-ply CLT<br>(131 mm 5.16*) | None                       | 1.5* diameter<br>data cable bunch                     | Centered                                | 3.5° diameter hole. Mineral wool was installed in the 1 in. annular space around the data cables to a total depth of approximately 4 – 5/32 in. The remaining 1 in . annular space from the top of the mineral wool to the top of the floor assembly was filled with Hilti FS-One Max caulking.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 hours  | 1.5 hours | CANULC S115             | 2.6    | In terf ek<br>March 30, 2016      |
| 5-ply CLT<br>(131 mm 5.16*) | None                       | 2" copper pipe                                        | Centered                                | 4.375 in diameter hole. Pipe wrap was installed around the copper pipe to a total depth of approximately 4 – 5/32 in. The remaining 1 in. annular space starting at the top of the mineral wool to the top of the floor as sembly was filled with Hilti FS-One Max caulking.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 hours  | N.A.      | CANULC \$115            | 26     | Intertek<br>March 30, 2016        |
| 5-ply CLT<br>(131 mm 5.16*) | None                       | 2.5" sched.40<br>pipe                                 | Centered                                | 4.92 in diameter hole. Pipe wrap was installed around the schedule 40 pipe to a total depth of approximately 4 – 5/32 in. The remaining 1 in. annular space starting at the top of the pipe wrap to the top of the floor assembly was filled with Hilti FS-One Max caulking.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 hours  | 0.5 hour  | CANULC S115             | 26     | In tert ek<br>March 30, 2016      |
| 5-ply CLT<br>(131 mm 5.16*) | None                       | 6° cast iron p ipe                                    | Centered                                | 8.35 in diameter hole. Mineral wool was installed in the lin. annular space around the cast iron pipe to a total depth of approximately 4 – 5/32 in. The remaining lin. annular space starting at the top of the pipe wrap to the top of the floor assembly was filled with Hilti FS-One Max caulking.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 hours  | N.A.      | CANULC \$115            | 26     | Intertek<br>March 30, 2016        |
| 5-ply CLT<br>(131 mm 5.16*) | None                       | Hilti 6 in drop in<br>device. System<br>No.: F-B-2049 | Centered                                | 9.01" diameter hole. Mineral wool was installed in the 1 – 1/4in. annular space around the drop-in device to a total depth of approximately 1 – 7/64in<br>and the remaining 1 in. annular space from the top of the mineral wool to the top edge of the 9 – 1/64in. hole in the CLT was filled with Hilti FS-One<br>Max caulking.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 hours  | 1.5 hours | CANULC S115             | 26     | Intertek<br>March 30, 2016        |
| 5-ply<br>175mm6.875*)       | None                       | l ° nominal PVC<br>pipe                               | Centered                                | 4.21 in diameter with a 3/4 in plywood reducer flush with the top of the slab reducing the opening to 2.28 in. Two wraps of Hilti CP 648-E W45/1-3/4"<br>Firestop wrap strip at two locations with a 30 gauge steel sleeve which extended from the top of the slab to 1 in below the slab. The first lo cation was<br>with the bottom of the wrap strip flush with the bottom of the steel sleeve and the second was with the bottom of the wrap strip 3 in. from the bottom<br>of the slab. The void between the steel sleeve and the CLT and between the steel sleeve and pipe at the top was filled with Roxal Safe mineral wool<br>leaving a 3/4 in deep void at the top of the assembly. Hilti FS-One Max Inturescent Firestop Scalant was applied to a depth of 3/4 in on the top of the<br>assembly between the plywood and steel sleeve and in a the steel sleeve and pipe. | 2 hours  | 2 hours   | ASTM E814               | 24     | QAI Laboratories<br>March 3, 2017 |

Most firestopping systems include combination of fire safing (eg. noncombustible materials such as mineral wool insulation) plus fire caulk




Option 2: MT penetration firestopping of penetrations via engineering judgement details (contact firestop manufacturer)



- 3-PLY CROSS LAMINATED TIMBER FLOOR ASSEMBLY (MINIMUM 3" THICK) (1-HR. FIRE-RATING).
  HILTI CFS-DID FIRESTOP DROP-IN DEVICE INSERTED INTO OPENING (SEE TABLE BELOW) AND SECURED TO TOP SURFACE OF CROSS LAMINATED TIMBER FLOOR ASSEMBLY WITH THREE 1/4" x 1" LONG STEEL
- WOOD SCREWS WITH WASHERS.
- 3. MINIMUM 3" THICKNESS MINERAL WOOL (MIN. 4 PCF DENSITY) TIGHTLY PACKED, AND FLUSH WITH TOP AND BOTTOM SURFACE OF CFS-DID FIRESTOP DROP-IN DEVICE.
- 4. MINERAL WOOL (MIN. 4 PCF DENSITY) TIGHTLY PACKED, RECESSED TO ACCOMMODATE SEALANT, AND COMPLETELY FILLING SPACE BETWEEN CFS-DID FIRESTOP DROP-IN DEVICE AND PERIPHERY OF OPENING.
- 5. MINIMUM 1" DEPTH HILTI FS-ONE MAX INTUMESCENT FIRESTOP SEALANT BETWEEN CFS-DID FIRESTOP DROP IN DEVICE AND PERIPHERY OF OPENING.

F-RATING = 1-HR. OR 2-HR. (SEE NOTE NO. 3 BELOW)

CROSS-SECTIONAL VIEW



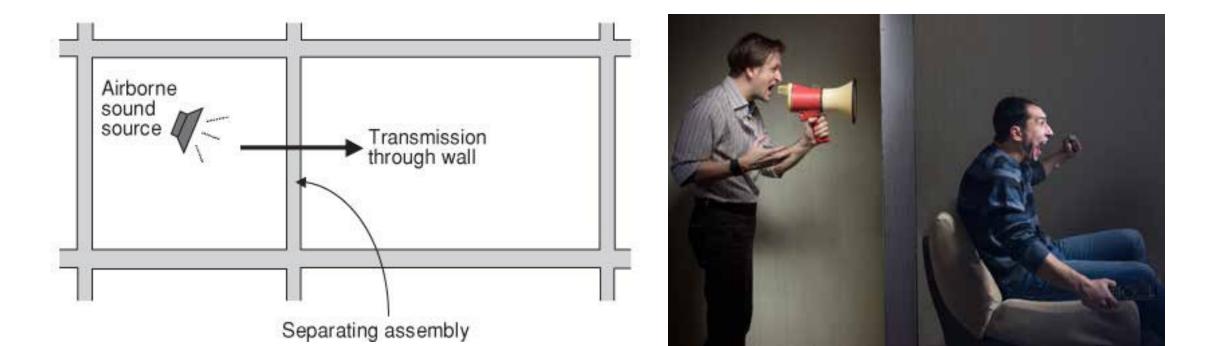
- 1. MASS TIMBER WALL ASSEMBLY (MINIMUM 12" THICK) (1-HR. OR 2-HR. FIRE-RATING).
- 2. MAXIMUM 2" NOMINAL DIAMETER PVC PLASTIC PIPE (SCH 40).
- 3. MINIMUM 4" THICKNESS MINERAL WOOL (MIN. 4 PCF DENSITY) TIGHTLY PACKED AND RECESSED TO ACCOMMODATE SEALANT.
- 4. MINIMUM 3/4" DEPTH HILTI FS-ONE MAX INTUMESCENT FIRESTOP SEALANT.

# **Acoustics & Sound Control**

#### **Acoustics & Sound Control**

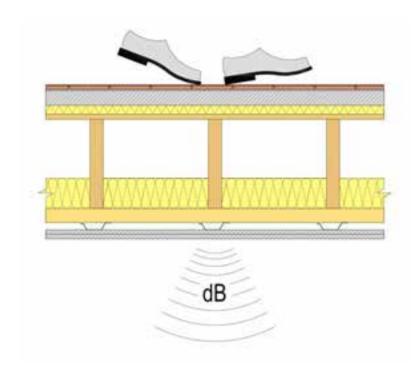
Consider Impacts of:

- Timber & Topping Thickness
- Panel Layout
- Gapped Panels
- Connections & Penetrations
- MEP Layout & Type




#### **Acoustics & Sound Control**

#### Air-Borne Sound:


#### Sound Transmission Class (STC)

- Measures how effectively an assembly isolates air-borne sound and reduces the level that passes from one side to the other
- Applies to walls and floor/ceiling assemblies



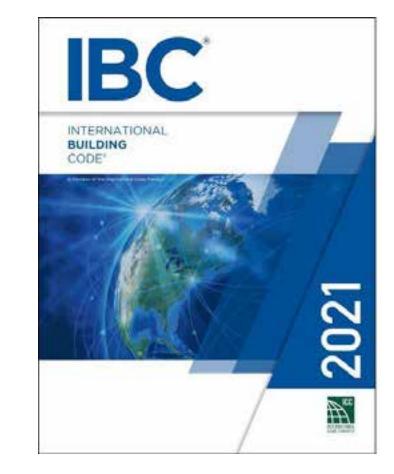
#### **Structure-borne sound:** Impact Insulation Class (IIC)

- Evaluates how effectively an assembly blocks impact sound from passing through it
- Only applies to floor/ceiling assemblies





Code requirements only address residential occupancies:


For unit to unit or unit to public or service areas:

#### Min. STC of 50 (45 if field tested):

• Walls, Partitions, and Floor/Ceiling Assemblies

#### Min. IIC of 50 (45 if field tested) for:

• Floor/Ceiling Assemblies



#### TABLE 1:

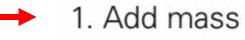
#### **Examples of Acoustically-Tested Mass Timber Panels**

| Mass Timber Panel                       | Thickness                                   | STC Rating                          | IIC Rating |
|-----------------------------------------|---------------------------------------------|-------------------------------------|------------|
| 3-ply CLT wall <sup>4</sup>             | 3.07"                                       | 33                                  | N/A        |
| 5-ply CLT wall⁴                         | 6.875"                                      | 38                                  | N/A        |
| 5-ply CLT floor <sup>5</sup>            | 5.1875*                                     | 39                                  | 22         |
| 5-ply CLT floor <sup>4</sup>            | 6.875*                                      | 41                                  | 25         |
| 7-ply CLT floor⁴                        | 9.65"                                       | 44                                  | 30         |
| 2x4 NLT wall <sup>6</sup>               | 3-1/2" bare NLT<br>4-1/4" with 3/4" plywood | 24 bare NLT<br>29 with 3/4* plywood | N/A        |
| 2x6 NLT wall <sup>6</sup>               | 5-1/2" bare NLT<br>6-1/4" with 3/4" plywood | 22 bare NLT<br>31 with 3/4" plywood | N/A        |
| 6 NLT floor + 1/2* plywood <sup>2</sup> | 6" with 1/2" plywood                        | 34                                  | 33         |

Source: Inventory of Acoustically-Tested Mass Timber Assemblies, WoodWorks7

Regardless of the structural materials used in a wall or floor ceiling assembly, there are 3 effective methods of improving acoustical performance:

- 1. Add mass
- 2. Add noise barriers
- 3. Add decouplers










There are three main ways to improve an assembly's acoustical performance:



- 2. Add noise barriers
- Add decouplers

| Finish Floor if Applicable —        |       | <br>    | <br> |   |    | <br> |
|-------------------------------------|-------|---------|------|---|----|------|
| Concrete/Gypsum Topping             | -     |         |      |   |    |      |
| Acoustical Mat Product              | - III | 11 11 1 |      |   |    |      |
|                                     |       | <br>, j |      | 1 |    |      |
|                                     |       | <br>    |      | 1 | 12 | <br> |
|                                     | 2     |         |      |   |    |      |
| CLT Panel —                         |       | <br>    |      |   |    | <br> |
| 21                                  |       |         |      |   |    |      |
| No direct applied or hung ceiling — |       |         |      |   |    |      |

#### **Inventory of Tested Assemblies**



#### Acoustically-Tested Mass Timber Assemblies

Following is a list of mass timber assemblies that have been acoustically tested as of January 23, 2019. Sources are noted at the end of this document. For free technical assistance on any questions related to the acoustical design of mass timber assemblies, or free technical assistance related to any aspect of the design, engineering or construction of a commercial or multi-family wood building in the U.S., email help@woodworks.org or contact the WoodWorks Regional Director nearest you: http://www.woodworks.org/project-assistance

#### Contents:

| Table 1: CLT Floor Assemblies with Concrete/Gypsum Topping, Ceiling Side Exposed                        | 2 |
|---------------------------------------------------------------------------------------------------------|---|
| Table 2: CLT Floor Assemblies without Concrete/Gypsum Topping, Ceiling Side Exposed                     |   |
| Table 3: CLT Floor Assemblies without Concrete/Gypsum Topping, with Wood Sleepers, Ceiling Side Exposed |   |
| Table 4: NLT, GLT & T&G Decking Floor Assemblies, Ceiling Side Exposed                                  |   |
| Table 5: Mass Timber Floor Assemblies with Ceiling Side Concealed                                       |   |
| Table 6: Single CLT Wall                                                                                |   |
| Table 7: Single NLT Wall                                                                                |   |
| Table 8: Double CLT Wall                                                                                |   |
| Sources                                                                                                 |   |
| Disclaimer                                                                                              |   |
|                                                                                                         |   |

#### http://bit.ly/mass-timber-assemblies

#### **Inventory of Tested Assemblies**

Table 1: CLT Floor Assemblies with Concrete/Gypsum Topping, Ceiling Side Exposed

|                       | Concrete/G<br>Acoustical I<br>CLT Panel –     | pplied or hung ceiling                         |                                                                                          |                      |                                                                            |        |
|-----------------------|-----------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------|--------|
| CLT Panel             | Concrete/Gypsum<br>Topping                    | Acoustical Mat Product Between CLT and Topping | Finish Floor                                                                             | STC1                 | IIC1                                                                       | Source |
| CLT 3-ply<br>(3.5")   | 3" concrete                                   | Maxxon Acousti-Mat <sup>®</sup> 3/4            | None                                                                                     | 53 <sup>2</sup> ASTC | 45 <sup>2</sup> FIIC                                                       | 72     |
|                       |                                               |                                                | None                                                                                     | 54                   | 44                                                                         | 89     |
|                       | 2" concrete                                   | Pliteq GenieMat <sup>™</sup> FF25              | LVT on GenieMat RST05<br>Eng Wood on GenieMat<br>RST05                                   | 53                   | 48                                                                         | 90     |
|                       |                                               |                                                | Carpet Tile                                                                              | 52                   | 45 <sup>2</sup> FIIC<br>44<br>48<br>46<br>50<br>45<br>58<br>58<br>55<br>59 | 92     |
|                       |                                               |                                                | None                                                                                     | 57                   | 45                                                                         | 103    |
|                       |                                               |                                                | LVT                                                                                      | -                    | 46      91        50      92        45      103                            |        |
|                       | Kinetics® RIM-33L-2-24 System with ¾" Plywood |                                                | 2 layers of ¼" USG<br>Fiberock® on Kinetics®<br>Soundmatt                                | 55                   | 55                                                                         | 105    |
| CLT 3-ply<br>(4.125") |                                               |                                                | LVT on 2 layers of ¼"<br>USG Fiberock <sup>®</sup> on<br>Kinetics <sup>®</sup> Soundmatt | -                    | 59                                                                         | 106    |
|                       | 3" concrete                                   |                                                | None                                                                                     | 57                   | 46                                                                         | 107    |
|                       |                                               |                                                |                                                                                          |                      |                                                                            | -      |

Mass Timber in Multi-Family

## **Early Design Decision Example**

#### 7-story, 84 ft tall multi-family building

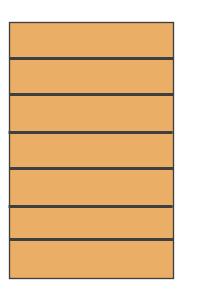
- Parking & Retail on 1<sup>st</sup> floor, residential units on floors 2-7
- NFPA 13 sprinklers throughout
- Floor plate = 18,000 SF
- Total Building Area = 126,000 SF

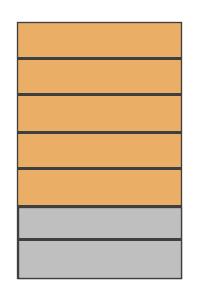




### **Early Design Decision Example**

7-story, multi-family building, typ. floor plan:




## **Early Design Decision Example**

#### **MT Construction Type Options:**

- 7 stories of IV-C
- 5 stories of IIIA over 2 stories of IA podium
- 5 stories of IV-HT over 2 stories of IA podium





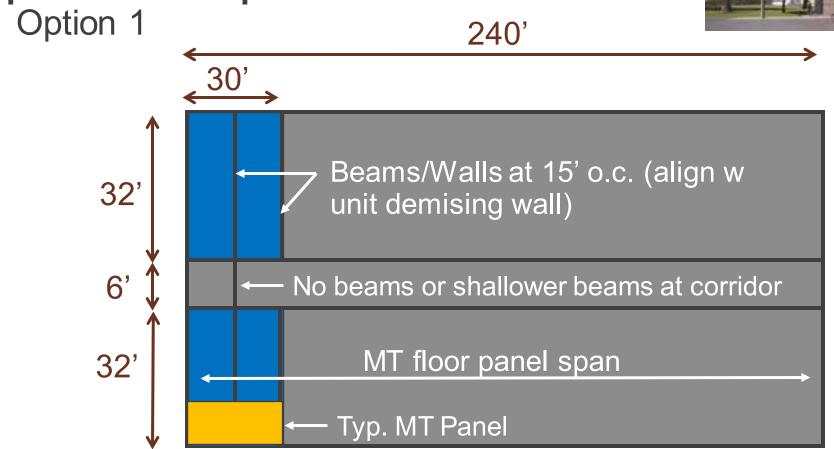


## **Early Design Decision Example**

#### **MT Construction Type Options:**

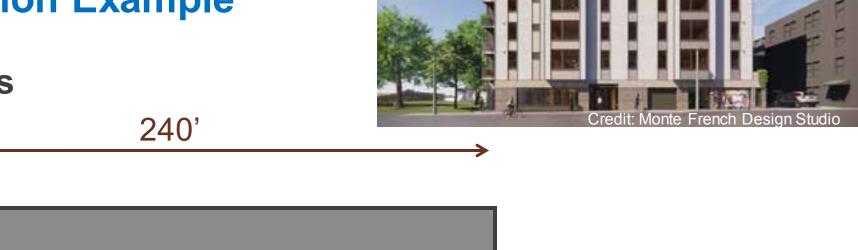
- <u>7 stories of IV-C</u>
- 5 stories of IIIA over 2 stories of IA podium
- 5 stories of IV-HT over 2 stories of IA podium

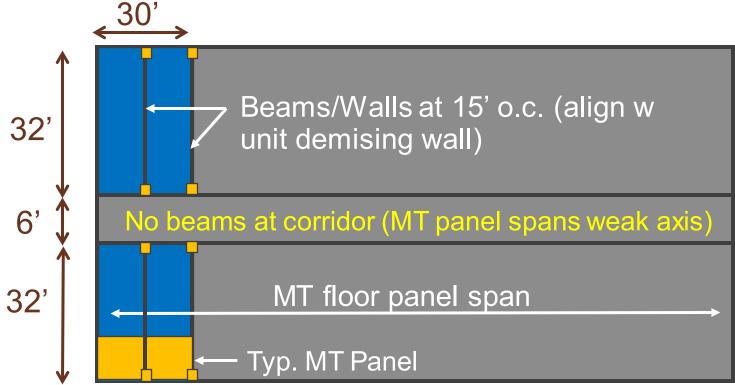
#### Implications of Type IV-C:


- 2 hr FRR, all exposed floor panels, beams, columns
- Likely will need at least 5-ply CLT / 2x6 NLT/DLT
- Efficient spans in the 14-17 ft range
- Efficient grids of that or multiples of that (i.e. 30x25, etc)
- No podium required
- CLT exterior walls permitted



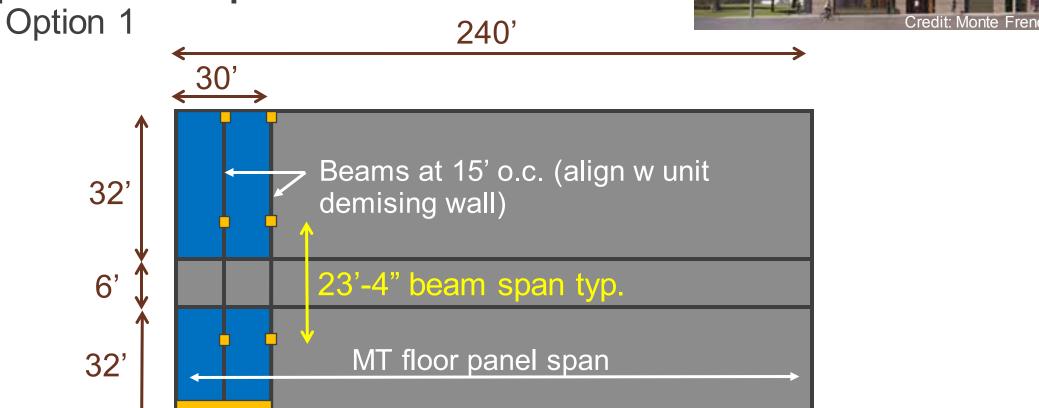
## **Early Design Decision Example**


#### **Type IV-C Grid Options**





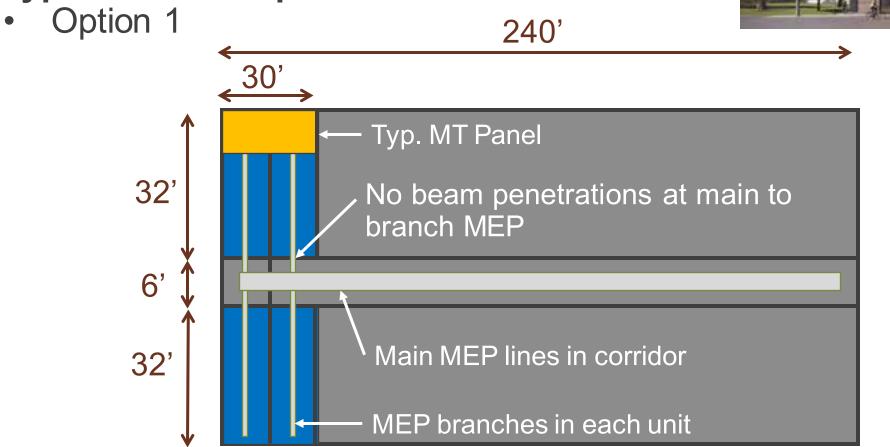

## **Early Design Decision Example**


#### **Type IV-C Grid Options Option 1**





## **Early Design Decision Example**

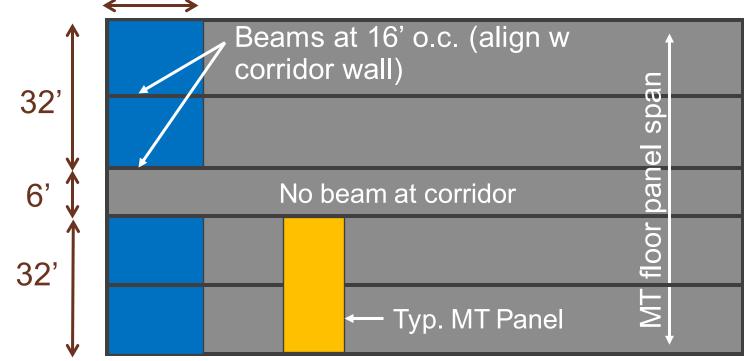

#### **Type IV-C Grid Options**



Typ. MT Panel

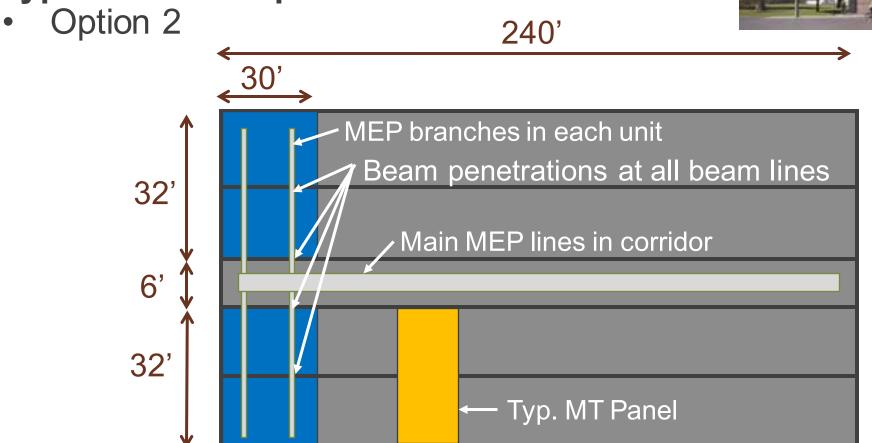
## **Early Design Decision Example**

#### **Type IV-C Grid Options**






## **Early Design Decision Example**

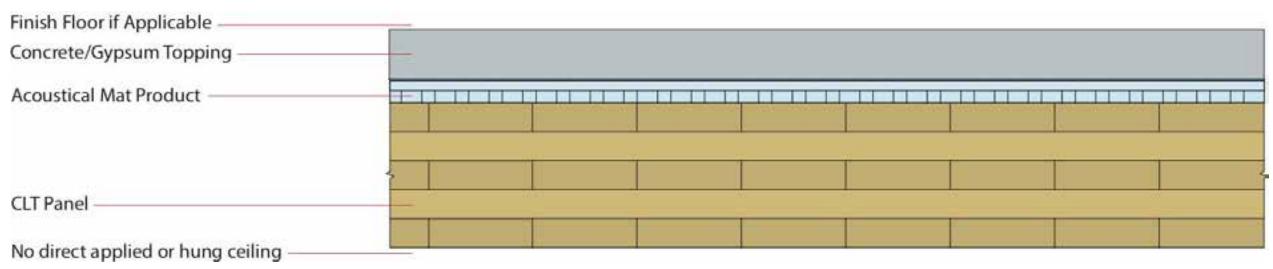

#### **Type IV-C Grid Options** Option 2





## **Early Design Decision Example**

#### **Type IV-C Grid Options**






# Key Early Design Decisions Early Design Decision Example

#### **Type IV-C Floor Assembly Options**





- 2-hr FRR: 5-ply CLT (tested assembly) or 7-ply CLT (char calculations)
- STC & IIC 50 min: 2" topping (5-ply CLT) or 1.5" topping (7-ply CLT) Note: many other acoustic mat and topping options exist, one example shown here Note: 5-ply is most efficient for the 15-16 ft panel spans shown

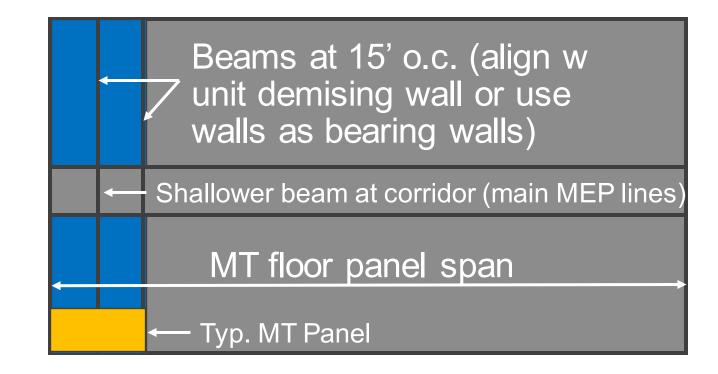
## **Early Design Decision Example**

#### **MT Construction Type Options:**

- 7 stories of IV-C
- 5 stories of IIIA over 2 stories of IA podium
- 5 stories of IV-HT over 2 stories of IA podium

#### Implications of Type IIIA:

- 1 hr FRR
- Potential to use 3-ply or thin 5-ply CLT
- Efficient spans vary with panel thickness
- Efficient grids of that or multiples of that (i.e. 20x25, etc)
- 1 story Type IA podium required
- CLT exterior walls not permitted

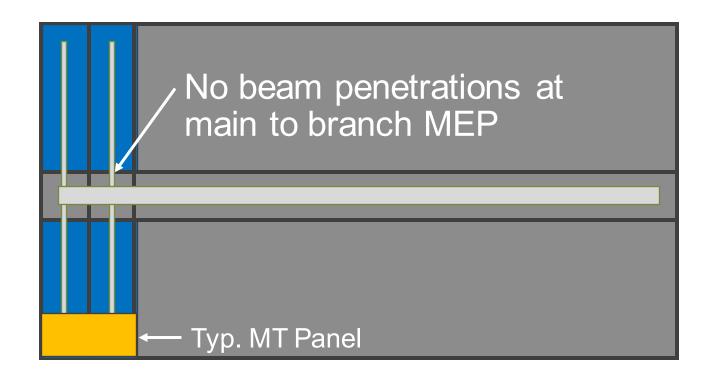



## **Early Design Decision Example**

#### **Type IIIA Grid Options**

Option 1






## **Early Design Decision Example**

#### **Type IIIA Grid Options**

• Option 1



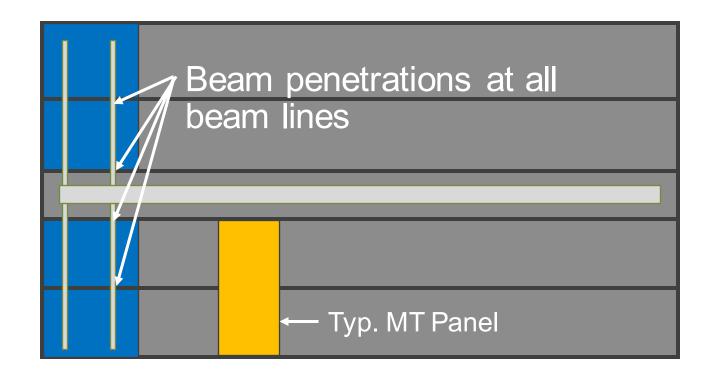


## **Early Design Decision Example**

#### **Type IIIA Grid Options**

• Option 2




| Beams at 16' o.c. (align w corridor wall) |                     |  |                 |       |  |
|-------------------------------------------|---------------------|--|-----------------|-------|--|
|                                           |                     |  |                 | nel s |  |
|                                           | No beam at corridor |  |                 |       |  |
|                                           |                     |  |                 | floor |  |
|                                           |                     |  | ← Typ. MT Panel | MT    |  |

## **Early Design Decision Example**

#### **Type IIIA Grid Options**

• Option 2





## **Early Design Decision Example**

#### **MT Construction Type Options:**

- 7 stories of IV-C
- 5 stories of IIIA over 2 stories of IA podium
- <u>5 stories of IV-HT over 2 stories of IA podium</u>

#### Type IV-HT in Group R Occupancy:

- Separation walls (fire partitions) and horizontal separation (horizontal assemblies) between dwelling units require a 1-hour rating.
- Floor panels require a 1-hour rating in addition to minimum sizes
- Essentially the same panel and grid options as IIIA

Ref. IBC 420.2, 420.3, 708.3, 711.2.4.3



### **Reduce Risk** Optimize Costs

- For the entire project team, not just builders
- Lots of reference documents

#### Mass Timber Cost and Design Optimization Checklists

WoodWorks has developed the following checklists to assist in the design and cost optimization of mass timber projects. The design optimization checklists are intended for building designers (architects and engineers), but many of the topics should also be discussed with the fabricators and builders. The cost optimization checklists will help guide coordination between designers and builders (general contractors, construction managers, estimators, fabricators, installers, etc.) as they are estimating and making cost-related decisions on a mass timber project.

Most resources listed in this paper can be found on the WoodWorks website. Please see the end notes for URLs. First Fach-Fachest Credit Union -Union CO anterest(1) Hallar Xearen(20) Konne General B. Astropant, Experience B. Astropant, Experience Demolting Contraction Searching



#### Download Checklists at

#### www.woodworks.org

www.woodworks.org/wp-content/uploads/wood\_solution\_paper-Mass-Timber-Design-Cost-Optimization-Checklists.pdf

**Keys to Mass Timber Success: Know Your WHY** Design it as Mass Timber From the Start Leverage Manufacturer Capabilities **Understand Supply Chain Optimize** Grid Take Advantage of Prefabrication & Coordination **Expose the Timber Discuss Early with AHJ** Work with Experienced People Let WoodWorks Help for Free **Create Your Market Distinction** 

The challenge is not in learning how to accept change, but in how to orchestrate the most efficient change



Carbon12, Portland, OR Credit: Kaiser + Path

# **Questions?** Ask us anything.



#### John O'Donald II, PE

**Regional Director | VA, DC, DE, MD, WV** (814) 880-5636 john.odonald@woodworks.org

901 East Sixth, Thoughtbarn-Delineate Studio, Leap!Structures, photo Casey Dunn



## **Copyright Materials**

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

#### © The Wood Products Council 2022

**Disclaimer:** The information in this presentation, including, without limitation, references to information contained in other publications or made available by other sources (collectively "information") should not be used or relied upon for any application without competent professional examination and verification of its accuracy, suitability, code compliance and applicability by a licensed engineer, architect or other professional. Neither the Wood Products Council nor its employees, consultants, nor any other individuals or entities who contributed to the information make any warranty, representative or guarantee, expressed or implied, that the information is suitable for any general or particular use, that it is compliant with applicable law, codes or ordinances, or that it is free from infringement of any patent(s), nor do they assume any legal liability or responsibility for the use, application of and/or reference to the information. Anyone making use of the information in any manner assumes all liability arising from such use.