EFFICIENT STRUCTURAL DESIGNS FOR MASS TIMBER BUILDINGS: THE ENGINEER’S ROLE IN OPTIMIZATION

Presented By:

Ricky McLain, PE, SE
Senior Technical Director
WoodWorks

Greg Kingsley, PhD, PE
President & CEO
KL&A Engineers & Builders

Photo: Michael Green Architecture
What is the Single Most Important Early Design Decision on a Mass Timber Project? Is it:

- Exposed Timber (where & how much)
- Acoustics
- Concealed Spaces
- Connections
- Penetrations
- Grids & Spans
- Construction Type
- Fire-Resistance Ratings
- Member Sizes
- MEP Layout

The Answer is...They All Need to Be Weighed (Plus Others)
KEY EARLY DESIGN DECISIONS

Grids & Spans

- Consider Efficient Layouts
- Repetition & Scale
- Cost and Volume of Timber
- Manufacturer Panel Sizing
KEY EARLY DESIGN DECISIONS

Grids & Spans

- Consider Efficient Layouts
- Repetition & Scale
- Manufacturer Panel Sizing
- Transportation
Key Early Design Decisions

Construction Type

<table>
<thead>
<tr>
<th>Occupancies</th>
<th>Allowable Building Height above Grade Plane, Feet (IBC Table 504.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B, R</td>
<td>270 180 85 85 85 70 60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Occupancies</th>
<th>Allowable Number of Stories above Grade Plane (IBC Table 505.4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-2, A-3, A-4</td>
<td>18 12 6 4 4 3 3 2</td>
</tr>
<tr>
<td>B</td>
<td>18 12 9 6 6 4 4 3</td>
</tr>
<tr>
<td>R-2</td>
<td>18 12 8 5 5 5 4 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Occupancies</th>
<th>Allowable Area Factor (At) for SM, Feet² (IBC Table 506.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-2, A-3, A-4</td>
<td>135,000 90,000 56,250 45,000 42,000 28,500 34,500 18,000</td>
</tr>
<tr>
<td>B</td>
<td>324,000 216,000 135,000 108,000 85,500 57,000 54,000 27,000</td>
</tr>
<tr>
<td>R-2</td>
<td>184,500 123,000 76,875 61,500 72,000 48,000 36,000 21,000</td>
</tr>
</tbody>
</table>
KEY EARLY DESIGN DECISIONS

Fire-Resistance Ratings
- Driven Primarily By Construction Type
- Rated Structure or Not?
- Rating achieved through timber alone or non-com protection required?

TABLE 601

<table>
<thead>
<tr>
<th>BUILDING ELEMENT</th>
<th>TYPE I</th>
<th>TYPE II</th>
<th>TYPE III</th>
<th>TYPE IV</th>
<th>TYPE V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>Primary structural frame (see Section 202)</td>
<td>3<sup>a, b</sup></td>
<td>2<sup>a, b, c</sup></td>
<td>1<sup>b, c</sup></td>
<td>0<sup>c</sup></td>
<td>1<sup>b, c</sup></td>
</tr>
<tr>
<td>Bearing walls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior<sup>a, c</sup></td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Interior</td>
<td>3<sup>a</sup></td>
<td>2<sup>a</sup></td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Nonbearing walls and partitions Exterior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonbearing walls and partitions Interior<sup>a</sup></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Floor construction and associated secondary structural members (see Section 202)</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Roof construction and associated secondary structural members (see Section 202)</td>
<td>1<sup>1/2</sup></td>
<td>1<sup>b,c</sup></td>
<td>1<sup>b,c</sup></td>
<td>0<sup>c</sup></td>
<td>1<sup>b,c</sup></td>
</tr>
</tbody>
</table>

See Table 705.5
KEY EARLY DESIGN DECISIONS

Fire-Resistance Ratings

- Thinner panels (i.e. 3-ply) generally difficult to achieve a FRR
- 5-ply CLT / 2x6 NLT & DLT panels can usually achieve at least a 1-hour FRR
- Construction Type > FRR > Member Size > Grid (or re-arrange that process but follow how one impacts the others)

<table>
<thead>
<tr>
<th>Panel</th>
<th>Example Floor Span Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-ply CLT (4-1/8" thick)</td>
<td>Up to 12 ft</td>
</tr>
<tr>
<td>5-ply CLT (6-7/8" thick)</td>
<td>14 to 17 ft</td>
</tr>
<tr>
<td>7-ply CLT (9-5/8")</td>
<td>17 to 21 ft</td>
</tr>
<tr>
<td>2x4 NLT</td>
<td>Up to 12 ft</td>
</tr>
<tr>
<td>2x6 NLT</td>
<td>10 to 17 ft</td>
</tr>
<tr>
<td>2x8 NLT</td>
<td>14 to 21 ft</td>
</tr>
<tr>
<td>5" MPP</td>
<td>10 to 15 ft</td>
</tr>
</tbody>
</table>
KEY EARLY DESIGN DECISIONS

Member Sizes

- Impact of FRR on Sizing
- Impact of Sizing on Efficient Spans
- Consider connections – can drive member sizing

0 HR FRR: Consider 3-ply Panel

- Efficient Spans of 10-12 ft
- Grids of 20x20 (1 purlin) to 30x30 (2 purlins) may be efficient

Albina Yard, Portland, OR
20x20 Grid, 1 purlin per bay
3-ply CLT
Image: Lever Architecture
KEY EARLY DESIGN DECISIONS

Member Sizes
- Impact of FRR on Sizing
- Impact of Sizing on Efficient Spans
- Consider connections – can drive member sizing

0 HR FRR: Consider 3-ply Panel
- Efficient Spans of 10-12 ft
- Grids of 20x20 (1 purlin) to 30x30 (2 purlins) may be efficient

Platte Fifteen, Denver, CO
30x30 Grid, 2 purlins per bay
3-ply CLT
Image: JC Buck
KEY EARLY DESIGN DECISIONS

Member Sizes

- Impact of FRR on Sizing
- Impact of Sizing on Efficient Spans
- Consider connections – can drive member sizing

1 or 2 HR FRR: Likely 5-ply Panel
- Efficient spans of 14-17 ft
- Grids of 15x30 (no purlins) to 30x30 (1 purlin) may be efficient

First Tech Credit Union, Hillsboro, OR
12x32 Grid, One-Way Beams
5-ply (5.5”) CLT
Image: Swinerton
KEY EARLY DESIGN DECISIONS

Member Sizes
• Impact of FRR on Sizing
• Impact of Sizing on Efficient Spans
• Consider connections – can drive member sizing

1 or 2 HR FRR: Likely 5-ply Panel
• Efficient spans of 14-17 ft
• Grids of 15x30 (no purlins) to 30x30 (1 purlin) may be efficient

Clay Creative, Portland, OR
30x30 Grid, 1 purlin per bay
2x6 NLT
Image: Mackenzie
KEY EARLY DESIGN DECISIONS

MEP Integration: Smaller Bay at Central Core, Branches in Exterior Bays

Credit: Blaine Brownell
Credit: WoodWorks
KEY EARLY DESIGN DECISIONS

MEP Integration: Dropped Below MT Framing

Credit: Alex Schreyer
Credit: WoodWorks
KEY EARLY DESIGN DECISIONS

MEP Integration: Penetrations Through MT Framing
KEY EARLY DESIGN DECISIONS

MEP Integration: Under Slab, Through Chases
KEY EARLY DESIGN DECISIONS

MEP Integration: In RAF Above MT Panels

Credit: BOKA Powell
Efficient Structural Designs for Mass Timber Buildings: The Engineer’s Role in Optimization

By Ricky McLain and Greg Kingsley

Part 2: Grid Cost Studies on Colorado Mass Timber Projects
MASS TIMBER COST DEPENDS ON THE PRICE OF LUMBER
Conceptual cost of CLT is intended to include:

- CLT
- Shop fab
- Sanding
- Delivered
- Screws

but does not include:

- Finishes

CLT COST DEPENDS ON VOLUME AND EFFICIENCY
GLULAM BEAM AND COLUMN COST

Glulam Beam and Column Cost as a function of width

Cost / Cubic Ft

Column

Beam

Beam Width or Column Width (in)
Connection Cost – Different Connection “Classes”
Connection Cost based on “Connection Class”

Cost for each class is based on …

- Connection material
- Screws and bolts
- Beam end fabrication
- Girder fabrication
- Field Installation

Cost increases with …

- Connection “Class”
 - Simple screws
 - Complex hidden custom connector
- Reaction carried
20 ft timber bents, no beams, CLT of varying span
BOULDER LOADING DOCK

- 25 x 30 Grid
- 7-ply 5-layer CLT Floors
Square bay, CLT with 2 equal (varying) spans
PLATTE FIFTEEN

- 30 x 30 Grid
- 3-ply CLT Floors
<table>
<thead>
<tr>
<th></th>
<th>15'</th>
<th>20'</th>
<th>25'</th>
<th>30'</th>
</tr>
</thead>
<tbody>
<tr>
<td>15'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Wood Bay Study: 15x15 up to 30x30
Hybrid Steel and Wood vs Wood

HYBRID E - 3-Ply CLT on Steel Grid

WOOD STUDY E - 3-Ply CLT Timber Grid
Some conclusions

• **Timber is not the same as steel**
 - When establish grid, remember:
 - Timber: Wood volume is key Cost usually goes up with span
 - Steel: Number of pieces is key Cost usually goes down with span

• **Collaboration and coordination is critical**
 - Engage all stakeholders early!
 - Architects, engineers, contractors, fabricators, erectors all have a part to play in optimizing systems

• **After grids are set, don’t forget other factors**
 - Connection cost
 - Constructability
 - Interface with other materials
THANK YOU

Ricky McLain
ricky.mclain@woodworks.org

Greg Kingsley
gkingsley@klaa.com

Photo Credit: JC Buck
Copyright Materials

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

© The Wood Products Council 2021

Disclaimer: The information in this presentation, including, without limitation, references to information contained in other publications or made available by other sources (collectively “information”) should not be used or relied upon for any application without competent professional examination and verification of its accuracy, suitability, code compliance and applicability by a licensed engineer, architect or other professional. Neither the Wood Products Council nor its employees, consultants, nor any other individuals or entities who contributed to the information make any warranty, representative or guarantee, expressed or implied, that the information is suitable for any general or particular use, that it is compliant with applicable law, codes or ordinances, or that it is free from infringement of any patent(s), nor do they assume any legal liability or responsibility for the use, application of and/or reference to the information. Anyone making use of the information in any manner assumes all liability arising from such use.