

Evaluating the Cost, Carbon, and Energy Impacts of Different Structural Systems

November 4, 2021

GREG KINGSLEY President and CEO | gkingsley@klaa.com

WOODWORKS

Disclaimer: This presentation was developed by a third party and is n funded by WoodWorks or the Softwood Lumber Board.

Evaluating the Cost, Carbon, and Energy Impacts of Different Structural Systems

OUTLINE

- 1. Introduction to Platte Fifteen
- 2. Basics of embodied carbon
- 3. Measurement of embodied carbon: Life Cycle Assessment (LCA)
- 4. Comparative LCAs: Platte Fifteen in Timber, Steel, and Concrete
- 5. Comparative costs
- 6. Conclusions

Office / Retail Type III-B over IA Construction 2 floors concrete below grade 1 floor concrete above grade 3 floors + roof in mass timber Concrete cores

30' x 30' grid

PLATTE FIFTEEN

Office / Retail Type III-B Construction 30' x 30' grid

Office / Retail Type III-B Construction 30' x 30' grid

50+ ft panels span five 10 ft bays

a tan tân tân tân tân tan UX

2,000 sf / day with 6-8 laborers

PLATTE 15

4-1

Photo Credit: JC Buck

PLATTE 15

Photo Credit: JC Buck

-

PLATTE 15

PLATTE FIFTEEN

Meanwhile, embodied carbon starts getting attention...

Understanding Carbon

OPERATIONAL VS EMBODIED CARBON

Initial embodied carbon of buildings with respect to operational energy over 50 years varies with building type: Office 50%

Residential 62% Warehouse 66%

CONSTRUCTION INDUSTRY = 39% +

SE 2050 + AIA 2030

Source: SE 2050 Commitment Initiative Brief by the Carbon Leadership Forum and the SEI Sustainability Committee

Current embodied carbon policy in the U.S.

Source: Carbon Leadership Forum

TRACKS ENVIRONMENTAL IMPACTS FROM ALL THE STAGES OF A PRODUCT OR PROCESS,

INCLUDING:

- EXTRACTION
- MANUFACTURING
- CONSTRUCTION
- SERVICE
- END OF LIFE
 - RECYCLE
 - REUSE
 - DISPOSAL

AND EXPRESSES IT AS "GLOBAL WARMING POTENTIAL" OR **GWP**

MEASURING EMBODIED CARBON

- GWP = GLOBAL WARMING POTENTIAL (kgCO₂eq)
- UNDERSTAND AND IDENTIFY HOT SPOTS
- UNDERSTAND THE IMPACT OF OUR MODIFICATIONS AND INNOVATIONS
- VALIDATE DECISIONS AND INVESTMENTS

https://info.thinkwood.com/platte-fifteen-life-cycle-assessment

Platte Fifteen Life Cycle Assessment

Authors KL&A Engineers and Builders Adolfson & Peterson

PLATTE FIFTEEN LCA

MASS TIMBER (AS CONSTRUCTED) STEEL

PT CONCRETE

CRADLE TO GATE

CRADLE TO GRAVE

Life Cycle Stages & Study Scope

Product			Constr- uction		Use							End-of-Life				Module D		
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	CI	C2	C3	C4	D1	D2	D3
Raw material supply	Transport	Manufacturing	Transport	Construction/Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational Energy Use	Operational Water Use	Deconstruction	Transport	Waste Processing	Disposal	Reuse	Recycling	Energy Recovery
1	1	~	1			1	~	1	1				1	~	1	1	1	1

Figure 3. Life Cycle Stages³ as defined by EN 15978. Processes included in Tally modeling scope are shown in bold. Italics indicate optional processes.

BIOGENIC CARBON

BIOGENIC CARBON AT END OF LIFE

PLATTE FIFTEEN LCA STUDY

GWP/M2 (kgCO2eq/m2)

AT B.

POPEALS *

100 mm 10

Total GWP/M² Per Building System

Total GWP/M² Above Podium Slab Per Building System

PLATTE FIFTEEN LCA STUDY

Percent Mass to Percent GWP Per Material Above Podium Slab

ROOF

LVL 4 LVL 3

EVL 2 POD**I**UM

PLATTE FIFTEEN LCA STUDY

LONG LIFE, LOOSE FIT, EASY CARE

ENGINE TO A

ITTER CONDERSET

CONTRACTOR OF THE OWNER

TRACT RECEIPTION OF

TOTAL PROPERTY AND A DECK

主義軍事務局部議員豊富においていたり

TTERTON NUMBER OF STREET

TRANSPORT OF THE OWNER.

ALA AL TRUE P D L ACC ADDRESS

WHAT ABOUT COST?

-1.17月1日、19月1日

A REPORT OF STREET

MATERIAL COST (STRUCTURE AND VERTICAL ENCLOSURE)

Highest

SUPERSTRUCTURE

+ 3.5 months

TOTAL BUILDING COST

Concrete: + 3.5 mos

EMBODIED CARBON COST vs. DOLLAR COST

Mass Timber: Baseline

Steel

"The Gap" in this study is less than 2% of building cost

WHY MASS TIMBER

UNDER CONSTRUCTION, MASS TIMBER...

- IS FAST
- REQUIRES LIMITED LABOR
- IS QUIET
- HAS LITTLE WASTE
- REDUCES CONSTRUCTION TRAFFIC

WHY MASS TIMBER

IN THE FINISHED BUILDING, MASS TIMBER...

- LOOKS GREAT!
- CREATES A HEALTHY ENVIRONMENT (BIOPHILIA)
- GENERATES HIGH LEASE RATES AND HIGH LEASING VELOCITY

WHY MASS TIMBER

MASS TIMBER IS SUSTAINABLE

- RENEWABLE
- REUSABLE, EASE OF
 DECONSTRUCTION
- SUPPORTS FOREST HEALTH
- SUPPORTS RURAL ECONOMIES
- SEQUESTERS CARBON / LOW EMBODIED CARBON (50% CARBON BY DRY WEIGHT)

Greg Kingsley

KL&A Engineers and Builders

gkingsley@klaa.com

