

Presented by Bevan Jones, Parisa Nassiri 11/04/2021

Disclaimer: This presentation was developed by a third party and is not funded by Woodworks or the or the Softwood Lumber Board.

Agenda

- What is mass timber?
- Construction types
- Mass timber design
- Noncombustible protection
- Testing opportunities
- Typical details
- Performance-based design
- Case studies

What is Mass Timber?

Mass Timber Evolution in North America

What is Mass Timber?

Building Construction Types

Height and Story Limitations

Occupancy Group R-2

Construction Type	Stories	Max Height	Mass Timber	Sprinklers	Primary Frame Fire Rating	Stair Tower	Concealed Spaces
V-B	4	60'		Yes	0 HR	Mass Timber	Yes
V-A	4				1 HR		
III-B		4-5 75'- 85' 7-8	Exposed		0 HR		
III-A	4-5				1 HR		
IV-HT					2 HR		No
IV-C	7-8						Yes
IV-B	11-12	180'	Partially Exposed				
IV-A	17-18	270'	Fully Protected		3 HR	Noncombustible	

Construction Type V (0-1 hr rated)

Type V construction is that type of construction in which the structural elements, exterior walls and interior walls are of any materials permitted by the Code.

BUILDING ELEMENT		TYPE V	
BOILDING ELEMENT	Α	в	
Primary structural frame ^r (see Section 202)	1 ^b	0	
Bearing walls Exterior ^{c, r} Interior	1 1	0 0	
Nonbearing walls and partitions Interior ^d	0	0	
Floor construction and associated secondary members (see Section 202)	1	0	
Roof construction and associated secondary members (see Section 202)	$1^{b,c}$	0	

Construction Type III (0-1 hr rated)

Type III construction is that type of construction in which the exterior walls are of noncombustible materials and the interior building elements are of any material permitted by the Code.

- TYPE III-A: Protected Combustible
- TYPE III-B: Unprotected Combustible

		TYPE III		
BUILDING ELEMENT	Α	В		
Primary structural frame ^r (see Section 202)	1 ^b	0		
Bearing walls Exterior ^{e, f} Interior	2 1	2 0		
Nonbearing walls and partitions Interior ^d	0	0		
Floor construction and associated secondary members (see Section 202)	1	0		
Roof construction and associated secondary members (see Section 202)	$1^{b,c}$	0		

Construction Type IV (2-3 hr rated)

Type IV construction is that type of construction in which the building elements are mass timber or noncombustible materials

- Type IV-A: Fully protected mass timber
- Type IV-B: Partially exposed mass timber
 - 20% of the ceiling exposed; OR
 - 40% of the walls exposed
- Type IV-C: Fully exposed mass timber
- Type IV-HT: Exposed heavy timber, non combustible exterior walls

Building Element	Type IV				
Building Element	Α	В	С	HT	
Primary Structural Frame:	3-hour	2-hour	2-hour	HT	
Exterior Bearing Walls:	3-hour	2-hour	2-hour	2-hour	
Interior Bearing Walls:	3-hour	2-hour	2-hour	HT	
Exterior Non-Bearing Walls:	TBD	TBD	TBD	TBD	
Interior Non-Bearing Walls:	0-hour	0-hour	0-hour	Per CBC 2304.11.2	
Floor:	2-hour	2-hour	2-hour	HT	
Roof:	1-1/2 hour	1-hour	1-hour	HT	

Building Construction Type, Number of Stories and Height

Mass Timber Design

Fire Resistance

• Building's ability to withstand exposure to fire in resistance of:

No collapse or excessive deflection

No gaps

No excessive heat transfer

When mass timber needs a fire rating

- Generally, no FRR required for Type IV-HT, III-B and V-B construction
- 1-HR FRR:
 - Type III-A and V-A construction (Table 601)
 - Fire barriers (and supporting construction), e.g.: occupancy separations, shaft enclosures, exit passageways, atrium separation, incidental uses, fire areas, etc (Section 707)
- 2-HR FRR:
 - Fire barriers, and supporting construction (Section 707)
 - 2-HR exterior wall using FRTW lumber, or CLT (Section 602)
- Other instances exist in the code, or possibly could be in support of an equivalency to Type I construction to achieve larger and/or higher mass timber higher buildings
- New IBC 2021 provisions will generally require HT elements to achieve 2-HR, or 3-HR fire-ratings (when exceeding 6 stories)

Determination of Fire-Resistance Rating

For Mass Timber Construction

Achieving Fire-Resistance for Timber

- Non-combustible protection (gypsum board)
- Sacrificial char layer (calculated)
- Alternative methods

Noncombustible protection	Protection Contribution
¹ / ₂ -inch Type X Gypsum Board	25 min
5/8-inch Type X Gypsum Board	40 min

Protected Mass Timber Design

Columns

Exposed Mass Timber Design

Columns

Noncombustible Protection

Mass Timber Construction Types, Fire Ratings (Code)

Exposed Mass Timber

- Partially exposed:
 - Ceiling: 20% of floor area of dwelling unit, or fire area (integral beams included)
 - Wall: 40% of floor area of dwelling unit, or fire area (integral columns included)
 - Wall + Ceiling: ratio < 1.0
 - Unprotected areas separated > 15'
- Rib-decks and similar system have increased surface area → reduced exposed ceiling area
- Directly attached to mass timber (furred construction?)
- AMM for increased exposed mass timber:
 - Testing of Gen. 2.0 panels (PRG320-2018)
 - Fire modelling
 - Improved fire protection (passive + active)

Massing x Construction Types- Visuals by SHoP Type IV-C Construction

Massing x Construction Types - Visuals by SHoP

Type IV-B Construction - Max Exposed Ceilings per Code Allowance

Massing x Construction Types - Visuals by SHoP

Type IV-B Construction - 50% Exposed Ceilings - Requires AHJ Approval

Massing x Construction Types - Visuals by SHoP

Type IV-B Construction - 50% Exposed Ceilings - Requires AHJ Approval

Mass Timber Protection During Construction

During construction of a Type IV-A or IV-B building, when exceeding 6 stories, must provide the following protections during construction:

- Standpipes are provided during construction (installed prior to building reaching 40 feet in height and extend to within one floor of the highest floor with secured decking in place).
- A water supply approved by the fire code official shall be provided to the site (hydrants, standpipe, etc.)
- At least one layer of required non-combustible protection applied to building elements four stories below active floor of construction.
 Cannot build additional levels until non-comb layer is installed. (shafts not included) – Proposed code updates.
- Exterior wall non-combustible rating, if required, also must be installed four stories below active floor of construction before building an additional level. (shafts not included)

Possible Alternate Means of protection may be discussed with AHJ including providing Fire Watch, site hot work and waste management protocols to reduce likelihood of fire.

Testing Opportunities

Create Break Burn Solve

Furnace Testing

Approval Path

Typical Detailing

Floor Penetrations

3M ENGINEERING JUDGEMENT NO. 615658 MODIFIED SYSTEM NO. C-AJ-6041 DEPICTED REQUESTED RATING - 1 HR / F OBTAINABLE RATING: SEE BELOW*

 CONCRETE FLOOR/CROSS-LAMINATED TIMBER.
 PENETRATING ITEM PER APPROPRIATE VERSION OF CORRESPONDING EJ.
 3M FIRE BARRIER PILLOWS/3M FIRE BARRIER SELF LOCKING PILLOWS.
 MP+ MOLDABLE PUTTY 3M ENGINEERING JUDGEMENT NO. 607991 REV 3 MODIFIED SYSTEM NO. C-AJ-1427, F-A-1057 REQUESTED RATING - 1 HR / F AND T OBTAINABLE RATING (*SEE BELOW)

 CONCRETE AND CROSS LAMINATED TIMBER FLOOR.
 PENETRATING ITEM PER APPROPRIATE VERSION OF CORRESPONDING EJ.
 STEEL SLEEVE. (WITH OPTIONAL SQUARE BASE)
 4 PCF MINERAL WOOL INSTALLED INTO ANNULAR SPACE AS OUTLINED IN APPROPRIATE VERSION OF CORRESPONDING EJ.
 FIRESTOP SEALANT AS OUTLINED IN APPROPRIATE VERSION OF CORRESPONDING EJ.

6. 3M DUCT WRAP 615+

Penetrations

Edge of Slab Detailing

Edge of Slab Detailing

Head of the Walls

Beam-Column Joint

Figure A-3. Column Prepped.

Figure A-4. Column and Beam Connection.

Performance Based Design

Alternative Means and Methods

IBC 602.4

Type IV Construction (New Tall Wood Building Provisions)

•The time assigned to the noncombustible protection shall be determined in accordance with Section 703.8 and comply with 722.7.

IBC 703.8 Determination of Noncombustible Protection Time Contribution (New Tall Wood Building Provisions •The noncombustible protection time contribution shall be established through a comparison of assemblies tested using procedures set forth in ASTM E 119 or UL 263. Test Assembly 1 without protection

•Test Assembly 2 includes the noncombustible protection.*

IBC 722.7

Fire Resistance Rating of Mass Timber (New Tall Wood Building Provisions)

•The required fire resistance of mass timber elements in section 602.4 shall be determined in accordance with Section 703.2 or Section 703.3.

IBC 703.2 Fire-Resistance Rating

•Test procedures set forth in ASTM E119 or UL 263 or in accordance with Section 703.3.

IBC 703.3

Methods of Determining Fire-Resistance Rating

• Item 4, Engineering analysis based on comparison of building element, component or assemblies designs having FRR as determined by the test procedures set forth in ASTM E119 or UL 263

OR

•Item 5 Alternative protection methods as allowed by Section 104.11.

IBC 104.11

Alternative materials, design and methods of construction and equipment (AMM)

•AMM, shall be approved where the building official finds that the proposed design is satisfactory and complies with the intent of the provisions of this code, and that the material is, for the purpose intended, not less than the equivalent of that prescribed in this code in 1)Quality, 2)Strength 3)Effectiveness 4)Fire resistance 5)Durability and

*Noncombustible protection time contribution is determined by subtracting the fire resistance time of Test Assembly 1 from the fire resistance time of Test Assembly 2.

Woodworks Symposium

6)Safety

Performance Based Analysis

- Thermal-finite element assessment of assemblies
- Support engineering judgement of untested systems/assemblies
- Protection details for connections, exposure of mass timber
- Furnace and realistic building fires

Case Studies

Case Study 1

Corporate Campus, Mountain View

Architect: WRNS Studio

Contractor: Rudolph & Sletten

Location: Mountain View, CA

Project Description: Corporate campus predominately office use with assembly uses accessible green roof over all new building structure

Gross SF: 645,000 SF office + 505,000 SF structured parking

Construction Type: III-B-Sprinklered

Structural System – Gravity: Composite CLT + conc. topping floor, steel beams w/glulam columns

Structural System – Lateral: Concrete shear wall

Largest (by S.F.) mass timber building in North America

Connections

Fire Design

Assembly Selected for Fire Analysis

Square Column to Slab Connection

Residential Building, San Jose

Architect: SERA

Owner: First Community Housing

Location: San Jose, CA

Project Description: 12-story residential buildings located on a shared podium

Gross SF: 260,000 SF

Construction Type: IV-B, Sprinklered

Structural System – Gravity: CLT + conc. topping floor, glulam columns

Mass Timber Construction Types, Fire Ratings (Code)

50% Exposed Mass Timber

Gypsum protection at column lines and weak axis of CLT span.

A THE AL

THE RED REGION CAN BE FUELY EXPOSED TO A 2NR

Upcoming Code Changes (G147-21)

Excerpt from G147-21:

602.4.2.2.2 Protected area. Interior faces of mass timber elements, including the inside face of exterior mass timber walls and mass timber roofs, shall be protected in accordance with Section 602.4.2.2.1.

Exceptions: Unprotected portions of mass timber ceilings and walls complying with Section 602.4.2.2.4 and the following:

- 1. Unprotected portions of mass timber ceilings and walls complying with one of the following:
 - 1.1. Unprotected portions of mass timber ceilings, including attached beams, shall be permitted and shall be limited to an area less than or equal to 20-100 percent of the floor area in any dwelling unit or fire area.
 - 1.2. Unprotected portions of mass timber walls, including attached columns, shall be permitted and shall be limited to an area less than or equal to 40 percent of the floor area in any dwelling unit or fire area.
 - 1.3. Unprotected portions of both walls and ceilings of mass timber, including attached columns and beams, in any dwelling unit or fire area shall be permitted in accordance with Section 602.4.2.2.3.
- 2. Mass timber columns and beams that are not an integral portion of walls or ceilings, respectively, shall be permitted to be unprotected without restriction of either aggregate area or separation from one another.

Connection Fire-Resistance Rating

FRR for connections in Type IV-A IV-B, or IV-C construction shall be determined by one of the following:

- **1. Testing** in accordance with Section 703.2 where the connection is part of the fire resistance test.
- 2. Engineering analysis that demonstrates that the temperature rise at any portion of the connection is limited to an <u>average temperature rise of 250°F (139°C)</u> and a <u>maximum temperature rise of 325°F (181°C)</u> for a time corresponding to the required fire resistance rating of the structural element being connected. For the purposes of this analysis the connection includes connectors fasteners and portions of wood members included in the structural design of the connection.

Concealed / exposed connections

- New IBC criteria can be applied in simple calculations for concealed connections (similar to char calculations)
- Engineering analysis of exposed connections are challenging –
 Finite Element Analysis / Alternative Means and Methods may be needed

Concealed connection

Connection with exposed steel

Connection Protection

Appling new connection criteria of IBC

Finite Element Assessment

• Thermal-finite element assessment to ASTM E119 temperature curve for 2-hour duration.

 Indicated additional protection was required to bottom bearing plate to mitigate accelerated charring at bottom of column.

TOP and BOTTOM sections of column-floor-column joint (thermal analysis)

Case Study 3

Commercial Building, San Jose

Architect: Studio Gang

Owner: West Bank

Location: San Jose, CA

Project Description: 14-story Commercial building predominately office use with assembly uses.

Gross SF: 240,000 SF

Construction Type: IV-A, Sprinklered

Structural System – Gravity: Composite CLT + conc. topping floor, glulam beams w/glulam columns

Mass Timber Construction Types, Fire Ratings (Code)

255 W Julian – Project Vision

22"x22" Perimeter Columns - 3hr FRR 30"x30" Interior Columns - 3hr FRR

Height / Area Comparisons

Project Vision

Typical Floor (Level 2 shown)

Item	Code Allowance	Proposed Approach
Exposed Mass timber- Columns	None	14% to 16% of fire area (i.e., floor area)
Exposed Mass timber- Beams*	None	70% to 100% of fire area (i.e., floor area)
Exposed Mass timber- CLT Ceiling	None	40% to 100% of fire area (i.e., floor area)

* Area of the exposed mass timber within the beam accounts for all exposed surfaces of the beam within the fire area.

Why Exposed Mass Timber?

Proposed Mitigation Measures

- 1. Sprinkler upgrade from LH to OH1
 - Increased sprinkler density (from 225 SF to 130 SF coverage area)
 - Increased water flow per sprinkler design area (150 gpm to > 300 gpm)
 - Reduced fire size at time of sprinkler activation (from 1.4 MW to 1.1 MW)

- 2. Smoke detection throughout the building
 - Quicker occupant notification
 - Quicker fire department response
 - Accurate addressability of the fire location

Previous Test Series

- Series of full-scale compartment tests
- Multi-story compartment used for the test series, consisted CLT walls and floors
- Complete burnout of the fuel load without contribution of the mass timber elements
- No automatic fire sprinklers

Mass Timber Material Testing Developments

ICC Tall Wood Building provisions based on testing to PRG-320 (2015)

- Adhesives not thermally resistant
- Resulted in CLT delamination

Current panels manufactured to PRG-320 (2018)

- Thermally resistant PUR (Polyurethane Reactive) adhesives
- No delamination expected
- Additional testing (AWC) just completed

Self-extinguishment is expected to improve within Commercial spaces (compared to residential configuration):

- Reduced re-radiation effects
- Increased ventilation (reduced fire severity)
- Glulam Columns tested > 3hr FRR

High rise commercial projects approved within Canada and US with increased exposed mass timber: INTRO Market Square residential building, ASCENT residential project

ANSI/APA PRG 320-2018

FPL Test Results

- Series of 4 compartment tests (residential compartment and fuel load).
- In all tests with exposed mass timber, the peak room temperatures were similar to fully encapsulated test. The fully developed fire stages were longer than the baseline as the exposed timber added more fuel load to the rooms.
- Glulam columns sized to 3-HR FRR per NDS 16, achieved > 4-hrs FRR.

https://www.iccsafe.org/wp-content/uploads/Fire-Tests-of-Encapsulated-MT-Rooms-with-Exposed-Wood.pdf

RISE Test Results

- Five compartment fire experiments were performed for this study.
- One of the tests were undertaken with six larger openings, resulting in an opening factor of 0.25 m1/2 (0.453 ft1/2), which is approximately equal to the midrange of opening factors for office compartments.
- ANSI/APA PRG 320, 2018 compliant panels.
- Only back wall protected (2xType X GWB).

Egress Time Calculation

Egress traveling time includes the following:

- Time for the first occupant to reach the interior exit stair door; and
- Time for the occupants to wait at the stair before entering; and
- Time for the last person to enter the stair door; and
- Time for the last person to reach safety from the controlling component (i.e., relocation to 4 stories below)

Fire Load Energy Density Assessment (FLED)

Exposed Mass Timber (Analysis and Justification)								
	ation sures	Recent Testing		Performance Based Engineering				
Full smoke detection	Sprinkler upgrade	FPL test results	RISE test results	Detection Time	Egress Time	FLED Assessment		
Detection time decreased by more than 2 minutes	Smaller fire (from 1.4 MW to 1.1 MW)	Performance of the columns under fire conditions	Fully exposed mass timber proposed in office layout	Detection time decreased by more than 2 minutes	Detection time decreased by more than 2 minutes compared to a code compliant option	Short hot fire is expected. The peak temperature to be achieved within the first hour		

Bevan Jones

Bevan.Jones@holmes.us

Parisa Nassiri

Parisa.Nassiri@holmes.us

