

The Innovation & Making Hub for the College of Engineering

Mass Timber Enhancing Project Goals

- Building as a teaching tool
- Forward-looking design
- Real-life engineering problems
- A toolbox for all scales of making
- Pedagogy of innovative thinking
- Innovation in construction technology
- High visibility with energy efficiency

A Toolbox for all Scales of Making

Large open column-free build spaces

Flexibility & adaptability of use

Aspirational design elements as a teaching tool

Environment for cornerstone to capstone engineering

Design from concept to industry partnership

Timber Curtain Wall

Thermal Performance & Comfort

Performance Based Embodied Carbon Savings

Wood Palette

History of Making

- Heavy timber industrial mill buildings with large open interior floor plans
- Industrial use of wood flooring for durability

Targeted Embodied Carbon Reduction

Health & Wellness of Occupants

Biophilic Benefits

Beauty

Hybrid Structure

Competitive Bidding Considerations

CLT species, stress grade, panel size & thickness, ANSI/APA PRG 320 certification

Glulam options compatible with timber curtain wall

Responsibly sourced wood availability from different manufacturers

Factory vs. field applied sealant for moisture mitigation depending on manufacturer

Acoustic floor assembly options with equal performance and dimensions

Floor Assembly

Availability of wet vs. dry acoustic assemblies

Concrete vs. gypcrete

Finish floor subfloor requirements

Acoustic performance and dimensional variability in products

Performance-based concrete topping (low embodied carbon)

Adequate depth for floor boxes and conduit

-COVER PLATE

Intersection of CLT & Steel

Bidding the Packages

Cross Laminated Timber:

- 1) Packaging CLT with Structural Steel
- 2) Pre-Qualification Process
- 3) Pre-Bid and Scope Review Meetings
- 4) Education of All Trades

Timber Curtainwall:

- 1) Packaging with all glazing
- 2) Locked into local, small firm

V. PROJECT OVERVIEW / DRAWINGS AND SPECIFICATIONS

- Cross-Laminated Timber Decking
 - No permanent markings on the bottom
 - · Approved hangers only
 - Remove water
 - All penetrations need to be approved by the CLT Engineer
 - Will receive a concrete topping slab
 - THIS IS A FINISHED PRODUCT AND WILL BE EXPOSED FROM BELOW

Pre-Construction Phase

Cross Laminated Timber:

- 1) Immediate vendor buy-in
- 2) Pre-Construction / Pre-Installation Meetings
 - 1) During MEP coordination
 - 2) Prior to manufacturing
 - 3) Factory visit (attempted)
 - 4) Prior to shipping

Pre-Construction Phase

Timber Curtainwall:

- 1) Immediate vendor buy-in
- 2) Pre-Construction / Pre-Installation Meetings
 - l) Prior to steel installation
 - 2) Before material release
 - 3) Factory visit

Installation of CLT

- 1) Moisture Management Plan
 - a) Develop
 - b) Maintain
 - c) Lessons Learned
 - i) Review every condition
 - ii) Adjust to site conditions
- 2) Ease of Installation
 - a) Quick learning curve
- 3) Open Communication
 - a) "Lean" problem solving
- 4) Preservation of CLT Underside

