

Mass Timber Structural Design: Engineering Modern Timber Structures

Marc Rivard, PE, SEScott Breneman, PhD, PE, SERegional DirectorSenior Technical Director

marc.rivard@woodworks.org
(617) 997-3890
(530) 723-6230

Bullitt Center

Seattle, WA

2x4 NLT roof deck 2x6 NLT floor deck Floor assembly top to bottom: 3" concrete topping, acoustical mat, WSP, 2x6 NLT

Photo Credit: John Stamets

Glulam Design Values

		Bending About X-X Axis (Loaded Perpendicular to Wide Faces							
2		Bending		of Lamination Compression Perpendicular to Grain		Shear Parallel to Grain	Modulus of Elasticity		
		Bottom of Beam Stressed in Tension (Positive Bending)	Top of Beam Stressed in Tension (Negative Bending)	Tension Face	Compression Face		For Deflection Calculations	For Stability Calculations	
Combination	Species	F _{bx} ⁺	Fbx	F _{c⊥x}		F _{vx} ⁽²⁾	E _x	Exmin	
Symbol	Outer/ Core	(psi)	(psi)		(psi)	(psi)	(10 ⁶ psi)	(10 ⁶ psi)	
24F-	1.8E	2400	1450		650	265	1.8	0.95	
24F-V4	DF/DF	2400	1850	650	650	265	1.8	0.95	
24F-V8	DF/DF	2400	2400	650	650	265	1.8	0.95	
24F-E4	DF/DF	2400	1450	650	650	265	1.8	0.95	
24F-E13	DF/DF	2400	2400	650	650	265	1.8	0.95	
24F-E18	DF/DF	2400	2400	650	650	265	1.8	0.95	
24F-V3	SP/SP	2400	2000	740	740	300	1.8	0.95	
24F-V8	SP/SP	2400	2400	740	740	300	1.8	0.95	
24F-E1	SP/SP	2400	1450	805	650	300	1.8	0.95	
24F-E4	SP/SP	2400	2400	805	805	300	1.9	1.00	

Source: NDS supplement Table 5A

Mass timber design

Unrated **Outer Compression** Inner Compression Core Core Core Core Core Core Inner Tension Inner Tension **Outer Tension** (a)

Fire resistance

Glulam beam fire design: For unbalanced beams, • Substitute 1 core lam for 1 tension lam for 1 hour rating, 2 core lams for 2 tension lams for 1.5 & 2 hour rating For balanced beams, match on compression

side

Figure 3-1 Typical glulam unbalanced beam layups

NLT Structural Design

NLT shrinkage/expansion design: Rule of thumb: leave gap between ½" and one ply wide per 8'-10' wide panel

NLT Structural Design

NLT Design Guide includes:

- Architecture
- Fire
- Structure
- Enclosure
- Supply and Fabrication
- Construction and Installation
- Erection engineering

Free download from www.thinkwood.com

Cross Laminated Timber

Considerations:

- Large light-weight panels
- Dimensionally stable
- Precise CNC machining available
- Recognized by IBC
- Dual Directional span capabilities
- Often architecturally exposed
- Fast on-site construction

Building Code Acceptance of CLT

Common CLT Layups

PRG 320 Defined Layups

3rd Party Product Qualification of CLT

FLATWISE Panel Loading

Span in MAJOR Strength Direction "Parallel" Direction Use subscript '0' in Notation Span in MINOR Strength Direction "Perpendicular" Direction Use subscript '90' in Notation

Reference & Source: ANSI/APA PRG 320

EDGEWISE Panel Loading

Span in MAJOR Strength Direction

Span in MINOR Strength Direction

Reference & Source: ANSI/APA PRG 320

Flatwise Flexural Strength

Flexural Capacity Check (ASD)

Flatwise Shear Strength

Design Properties based on Extreme Fiber Model:

 $V_a \leq (1.0) V_s$

Note: Duration of Load Effects (Cd and λ) NOT applicable to Flatwise Shear Strength in the NDS

Reference: NDS & Product Reports

Flatwise Deflection Example

Uniform loading on one way slab: Beam Analysis using Flexural Stiffness: $El_{eff,0}$ Shear Stiffness: $GA_{eff,0}$ Maximum Deflection @ Mid-Span

$$\Delta_{max} = \frac{5}{384} * \frac{wL^4}{EI_{eff}} + \frac{1}{8} * \frac{wL^2}{5/6 \ GA_{eff}}$$

16 foot span

Note: 5/6 is shear deformation form factor for rectangular section from mechanics of materials. See NDS C10.4.1, FPL "Wood Handbook", etc.

Mass timber design

Fire resistance

CLT fire design:

- Lam thickness affects char depth
- Partially charred cross
 layers are typically
 neglected for structural
 checks

Grids & Spans

- Consider Efficient
 Layouts
- Repetition & Scale
- Manufacturer Panel Sizing
- Transportation

Member Sizes

- Impact of FRR on Sizing
- Impact of Sizing on Efficient Spans
- Consider connections can drive member sizing

0 HR FRR: Consider 3-ply Panel

- Efficient Spans of 10-12 ft
- Grids of 20x20 (1 purlin) to 30x30 (2 purlins) may be efficient

Albina Yard, Portland, OR 20x20 Grid, 1 purlin per bay 3-ply CLT Image: Lever Architecture

Member Sizes

- Impact of FRR on Sizing
- Impact of Sizing on Efficient Spans
- Consider connections can drive member sizing

0 HR FRR: Consider 3-ply Panel

- Efficient Spans of 10-12 ft
- Grids of 20x20 (1 purlin) to 30x30 (2 purlins) may be efficient

Platte Fifteen, Denver, CO 30x30 Grid, 2 purlins per bay 3-ply CLT Image: JC Buck

Member Sizes

- Impact of FRR on Sizing
- Impact of Sizing on Efficient Spans
- Consider connections can drive member sizing

1 or 2 HR FRR: Likely 5-ply Panel

- Efficient spans of 14-17 ft
- Grids of 15x30 (no purlins) to 30x30 (1 purlin) may be efficient

First Tech Credit Union, Hillsboro, OR 12x32 Grid, One-Way Beams 5-ply (5.5") CLT Image: Swinerton

Member Sizes

- Impact of FRR on Sizing
- Impact of Sizing on Efficient Spans
- Consider connections can drive member sizing

1 or 2 HR FRR: Likely 5-ply Panel

- Efficient spans of 14-17 ft
- Grids of 15x30 (no purlins) to 30x30 (1 purlin) may be efficient

Clay Creative, Portland, OR 30x30 Grid, 1 purlin per bay 2x6 NLT Image: Mackenzie

Typical MT Package Costs

Source: Swinerton

Panel volume usually 65-80% of MT package volume

Source: Fast + Epp, Timber Bay Design Tool

Type IIIA option 1 1-hr FRR Purlin: 5.5"x28.5" Girder: 8.75"x33" Column: 10.5"x10.75" Floor panel: 5-ply

Glulam volume = 118 CF (22% of MT) CLT volume = 430 CF (78% of MT) Total volume = 0.73 CF / SF

Panel volume usually 65-80% of MT package volume

Source: Fast + Epp, Timber Bay Design Tool

Type IIIA option 2 1-hr FRR Purlin: 5.5"x24" Girder: 8.75"x33" Column: 10.5"x10.75" Floor panel: 5-ply

Glulam volume = 123 CF (22% of MT) CLT volume = 430 CF (78% of MT) Total volume = 0.74 CF / SF

Cost considerations: One additional beam (one additional erection pick), 2 more connections

Panel volume usually 65-80% of MT package volume

Source: Fast + Epp, Timber Bay Design Tool

Type IV-HT 0-hr FRR (min sizes per IBC) Purlin: 5.5"x24" (IBC min = 5"x10.5") Girder: 8.75"x33" (IBC min = 5"x10.5") Column: 10.5"x10.75" (IBC min = 6.75"x8.25") Floor panel: 3-ply (IBC min = 4" CLT)

Glulam volume = 120 CF (32% of MT) CLT volume = 258 CF (68% of MT) Total volume = 0.51 CF / SF

Connections

Credit: Structurlam

anne an

11111

ARRESPONDED A

Many ways to demonstrate connection fire protection: calculations, prescriptive NC, test results, others as approved by AHJ

Steel hangers/hardware fully concealed within a timber-to-timber connection is a common method of fire protection

Connection FRR and beam reactions could impact required beam/column sizes

STORE OF STORE

Photos: Simpson Strong-Tie

2017 Glulam Beam to Column Connection Fire Tests under standard ASTM E119 timetemperature exposure

Softwood Lumber Board	Southwest Research Institute				
Softwood Lumber Board	6220 CULEBRA RCAD 78236-5166 + PO DRAWER 28510 78228 0510 + SAN ANTONIO, TEXAS, USA + (210) 884-8111 + WWW 3WRI DRB				
Glulam Connection Fire Test	CHEMISTRY AND CHEMICAL ENGINEERING DIVISION	FUNE TECHNOLOGY DEPARTMENT WWW.FINE.SWRLOHD FAX (210) 132-3377			
Summary Report		(Sectors.)			
Issue June 5, 2017	FIRE PERFORMANCE EVALUATION OF A LOAD BEA GLULAM BEAM TO COLUMN CONNECTION, INCLUDE CLT PANEL, TESTED IN GENERAL ACCORDANCE	NG A VITH			
	ASTM E119-16a, STANDARD TEST METHODS FOR FIRE T OF BUILDING CONSTRUCTION AND MATERIALS FINAL REPORT Consisting of 32 Pages	12515			

Full Report Available at:

https://www.thinkwood.com/wp-content/uploads/2018/01/reThink-Wood-Arup-

SLB-Connection-Fire-Testing-Summary-web.pdf

Member to member bearing also commonly used, can avoid some/all steel hardware at connection

Member to member bearing also commonly used, can avoid some/all steel hardware at connection

Style of connection also impacts and is impacted by grid layout and MEP integration

Key Early Design Decisions

ARCHITECTURE URBAN DESIGN INTERIOR DESIGN

WoodWorks Index of Mass Timber Connections

MASS TIMBER CONNECTIONS INDEX

A library of commonly used mass timber connections with designer notes and information on fire resistance, relative cost and load-

acity.

Connections

Other connection design considerations:

- Structural capacity
- Shrinkage
- Constructability
- Aesthetics
- Cost

> Floor Vibration Design

"One might almost say that strength is essential and otherwise unimportant"

- Hardy Cross

US Building Code Requirements for Vibration

Barely discussed in IBC, NDS, etc. ASCE 7 Commentary Appendix C has some discussion, no requirements

Systems View of Vibration

Vibrations vs Acoustics

	Structural Vibrations			Acoustic Vibrations		
1 Hz – 100 Hz		2	0 Hz – 15,000 F	lz		
Transmitted through structure or through ground			Transmitted through air, walls, floors, windows			
Physical effects				Audible effects		
ķ					A	

Floor Vibration Dynamics

Natural Frequency

Undamped Free Response

Period T = $1 / f_n$ Frequency

Walking Frequency f_w

Ż

Walking Speed	Walking Frequency	Steps Per Minute		
Very Slow	1.25 Hz	75 SPM		
Slow	1.6 Hz	95 SPM		
Moderate	1.85 Hz	110 SPM		
Fast	2.1 Hz	126 SPM		
Running	Up to 4.0 Hz 240 SPM			
Practical Tip - walk to a metronome too understand the range				

The range of walking frequencies considered is an important consideration of vibration analysis

Resonant vs Impulsive Response

Excitation Frequency not >> Natural Frequency Excitation Creates Resonant Build-up of Vibration

Resonant Response

Resonance occurs when walking frequency = natural frequency $f_w = f_p$

<u>Also</u> occurs when a harmonic of the walking frequency ~= natural frequency $n f_w = f_n$ For 'n' up to around 4

Walking at $f_w = 2$ Hz creates resonance in floor with natural frequency, f_n , at

2HZ, 4HZ, 6Hz, and 8Hz

Resonant vs Impulsive Response

Excitation creates <u>Resonant</u> build-up of vibration

Response decays out between load impulses

Resonant Response

Impulsive/Transient Response

For walking excitations

f_n ~< 8-10 Hz

f_n ~> 8-10 Hz

Limits of Human Perception of Vertical Acceleration

Most sensitive to Acceleration around 4-8 Hz

Human Body Dynamics

<u>Ľ</u>

Illustration: "Sven Jr." by Sven-Olof Emanuelsson

Natural Frequency of Uniform Beam

Uniform simple span beam

- Span, L
- Flexural stiffness, El
- Mass per length, m, or w/g

$$f_n = \frac{\pi}{2L^2} \sqrt{\frac{gEI}{w}}$$

In floors, practical frequencies range from 5 Hz to 15+ Hz. Generally, the higher the frequency the better

 $\frac{EI}{m}$ $=\frac{\pi}{2L^2}$ f_n

Important Concepts

- No Code Requirements (good).
 No Precise Design Standard to Stand Behind (bad)
- Mass Effects Increased mass decreases magnitude of response (good!) but decreases frequency of vibration (bad!)
- Resources: CLT Handbook, Mass Timber Floor Vibration, Mass Timber Design Manual, Nail-Laminated Timber Design Guide (all free download)

Less:

Design Effort Modelling and Analysis Judgement Flexibility Room for Innovation More: Design Effort Modelling and Analysis Judgement Flexibility Room for Innovation

1234567896

 $\Delta \leq L/360$ for floor live load

IBC code limit on floor deflection

123456789

7.8.5 0

Wood Frame

Floor Joists:

 $\Delta \leq L/360$ for L < 15 ft

 $\Delta < 0.5''$ for L \geq 15 ft

Floor Trusses:

 $\Delta \leq L/480$ with strong-backs

Woeste and Dolan Beyond Code: Preventing Floor Vibration. 1998, Journal of Light Construction

Wood Frame

 $f_n \ge 14$ Hz for occupied (e.g. furnished) floors $f_n \ge 15$ Hz for unoccupied floors

Dolan, Murray, et al.

123456789

Preventing Annoying Wood Floor Vibration 1999, Journal of Structural Engineering

Proprietary rating systems from Joist Manufacturers

1234567890

CLT Handbook Method

Recommended CLT Floor Span Limit (base value)

Where, for 12 in wide strip:

$$L_{lim} \le \frac{1}{12.05} \frac{\left(EI_{eff}\right)^{0.293}}{(\overline{\rho}A)^{0.122}}$$
 [ft]

 EI_{eff} = effective flexural stiffness (lbf-in²)

 $\overline{\rho}$ = in-service specific gravity of the CLT, unitless e.g. weight normalized by weight of water

 $A = \text{the cross-section area (in}^2) = \text{thickness} * 12 \text{ in}$

Reference: US & Canadian CLT Handbooks, Chapter 7

Experimentally Derived Relationship

Research by Lin Hu, et al. at FPInnovations

Recommended CLT Floor Span Limit (base value)

$$L_{lim} \leq \frac{1}{12.05} \frac{\left(EI_{eff}\right)^{0.293}}{(\overline{\rho}A)^{0.122}}$$

2013 US CLT Handbook uses El_{app} 2019 Canadian CLT Handbook uses El_{eff}

Recommend using *El_{eff}*

Easier to implement. Less conservative.

Reference: Canadian CLT Handbook, Chapter 7

CLT Handbook Method

Normal Walking

Normal Human Sensitivities

Method NOT applicable to other Excitations or Sensitivities

CLT Handbook Base Span Limit

For PRG 320-2019 Basic CLT Grades and Layups from Solid Sawn Lumber

Grade	Layup	Thickness	Base Span Limit
	3ply	4 1/8"	13.1
E1	5ply	6 7/8"	18.2
	7ply	9 5/8"	22.7
	3ply	4 1/8"	12.4
E2	5ply	6 7/8"	17.2
	7ply	9 5/8"	21.6
	3ply	4 1/8"	12.0
E3	5ply	6 7/8"	16.7
	7ply	9 5/8"	20.9
	3ply	4 1/8"	12.7
E4	5ply	6 7/8"	17.6
	7ply	9 5/8"	22.1
	3ply	4 1/8"	12.6
E5	5ply	6 7/8"	17.5
	7ply	9 5/8"	21.9

Grade	Layup	Thickness	FPI Span Limit
	3ply	4 1/8"	12.6
V1	5ply	6 7/8"	17.6
	7ply	9 5/8"	22.0
	3ply	4 1/8"	12.6
V1(N)	5ply	6 7/8"	17.6
	7ply	9 5/8"	22.0
	3ply	4 1/8"	12.4
V2	5ply	6 7/8"	17.2
	7ply	9 5/8"	21.5
	3ply	4 1/8"	12.0
V3	5ply	6 7/8"	16.7
	7ply	9 5/8"	20.9
	3ply	4 1/8"	11.7
V4	5ply	6 7/8"	16.3
	7ply	9 5/8"	20.4
	3ply	4 1/8"	12.1
V5	5ply	6 7/8"	16.8
	7ply	9 5/8"	21.0

Reference: US Mass Timber Floor Vibration Design Guide, assuming 12% M.C.

CLT Handbook Base Span Limit

For PRG 320-2019 Basic CLT Grades and Layups from Solid Sawn Lumber

Grade	Layup	Thickness	Base Span Limit
			13.1
			18.2
	7ply	9 5/8"	22.7
			12.4
		U 5/8" -	n Limits:
4 ¹ /	<mark>'</mark> 8 3-ply	: 4 ~12 t e	o 13 ft 2.0
	[°] 5-ply	: ~16 t e	5 18 ft ^{6.7}
9 ⁵ /	<mark>8″7-ply</mark>	: 4 ~20 t e	22 ft 2.7
	5ply		17.6
			22.1
			12.6
			17.5
	7ply	9 5/8"	21.9

Grade			FPI Span Limit
			12.6
			17.6
			22.0
	3ply	4 1/8"	12.6
mitation	s 5ply		17.6

- Does not account for strength or deflections
- Does not account for beam flexibility

- Does not account for project specifics

	6 7/8"	
	9 5/8"	
3ply	4 1/8"	11.7
	6 7/8"	
	9 5/8"	
	4 1/8"	
	6 7/8"	
	9 5/8"	

Reference: US Mass Timber Floor Vibration Design Guide, assuming 12% M.C.

CLT Handbook Method

Base Recommended Span Limit assumes:

- Single simply span CLT panel
- No heavy topping layer
- Rigid, pin supports (bearing walls)

CLT Handbook Method

Multi-Span Conditions?

- Check the longest span
- Recommend a <u>20% increase</u> in the Basic Span Limit when non-structural elements are present which provide enhanced stiffening effect*
 *Partition walls, finishes, ceilings

US Mass Timber Vibration Design Guide

Guide available for free download from WoodWorks.org

Project Team: WoodWorks, KPFF, Aspect, StructureCraft, & Fast+Epp

U.S. Mass Timber Floor Vibration Design Guide

Vibration Design Examples

Residential Bearing Wall Building with CLT

Open Office with NLT on Glulam Frame

High Performance Lab Space with CLT on Glulam Frame

Available for free from www.woodworks.org

1234567890

Modal Superposition Method

Walking Frequency f_w

Ň

Walking Speed	Walking Frequency	Steps Per Minute		
Very Slow	1.25 Hz	75 SPM		
Slow	1.6 Hz	95 SPM		
Moderate	1.85 Hz	110 SPM		
Fast	2.1 Hz	126 SPM		
Running	Up to 4.0 Hz 240 SPM			
Practical Tip - walk to a metronome too understand the range				

The range of walking frequencies considered is an important aspect of vibration analysis

Stiffness

Beneficial to have a vibration specific structural analysis model. When considering low amplitude deflection to walking excitation, following AISC Design Guide 11 et al:

- Perimeter non-load bearing walls provide vertical restraint or stiffness
 - "Gravity" connections often behave as rigid connections
 - Use dynamic stiffness values where different that static stiffness value (Concrete)
- "Non-composite" components can have some composite behavior

Composite Behavior

Even if NOT designed as a composite for code required strength and stiffness, real systems can show *partial composite action* for vibrations

Incidental Composite Behavior

	Consider Composite for:			
Composite Behavior	Strength	Deflection	Vibration	
Explicit	Yes	Yes	Yes	
Incidental	No	No	Yes	

$$EI_{eff} > EI_1 + EI_2$$

 $GA_{eff} > GA_1 + GA_2$

Reference: US Mass Timber Floor Vibration Design Guide

"What **R Value** Can I use?"

Mass Timber Design

Lateral framing systems

Light-frame wood shearwalls

Photo Credit: woodworks

Mass Timber Design

Lateral framing systems

Central Core – concrete shearwalls

Photo Credit: structurecraft

Lateral framing systems

Exterior steel moment frame

Photo Credit: woodworks

Mass Timber Design

Lateral framing systems

interior steel moment frame

Photo Credit: woodworks

Mass Timber Design

Lateral framing systems

Steel Braced Frame

Photo Credit: john stamets

Mass Timber Design

Lateral framing systems

Mass Timber Shearwalls

Photo Credit: alex schreyer

CLT in Lateral Force Resisting Systems

CLT Panels have a significant in-plane shear strength.

TABLE 3-REFERENCE DESIGN VALUES FOR IN-PLANE SHEAR OF THE STRUCTURLAM CROSSLAM® CLT PANELS1

CLT	CLT PANEL THICKNESS DESIGNATION	FACE LAMINATION ORIENTATION ² (psi)		FACE LAMINATION ORIENTATION ³ (lbf/ft of width)			
LAYUP ⁹		п4	⊥4	п4	ļ	⊥4	
V2M1	99 V	175 ⁸	235 ⁸	8,200 ⁸		11,000 ⁸	
	169 V	175 ⁸	235 ⁸	14,00 ⁸		18,800 ⁸	
	239 V	175 ⁸	235 ⁸	19,800 ⁸		26,600 ⁸	
	309 V	175 ⁸	235 ⁸	25,600 ⁸		34,300"	
	105V	195	290	9,700		14,400	
V2M1.1	175V	270	290 ⁶	22,400		24,000 ⁶	
	245V	2705	290 ⁶	31,300%		33,600 ⁶	
	315V	2705	290 ⁶	40,2005		43,200	
						140-4s	5 1/
15 to 2	90 PSI Alle	owable Ed	gewise She	ear	E1	140-4s 143-5s 175-5s 197-7s	5 5/ 6 7/
				ear	E1	143-5s 175-5s	5 1/ 5 5/ 6 7/ 7 3/ 8 3/
		owable Ed .5 kips/ft (ear	E1	143-5s 175-5s 197-7s	5 5/ 6 7/ 7 3/ 8 3/
	= 1.7 to 3	.5 kips/ft ((ASD)	ear	E1	143-5s 175-5s 197-7s 213-7l	5 5/ 6 7/ 7 3/
	= 1.7 to 3		(ASD)	ear	E1	143-5s 175-5s 197-7s 213-7l 220-7s	5 5/ 6 7/ 7 3/ 8 3/ 8 5/ 9 5/
	= 1.7 to 3	.5 kips/ft ((ASD)	ear	E1	143-5s 175-5s 197-7s 213-7l 220-7s 244-7s	5 5/ 6 7/ 7 3/ 8 3/ 8 5/

Reference Design Values for Nordic X-Lam Listed in Table 1 (For Use in

18,800 ⁸ 26,600 ⁸		Major Strength Direction		Minor Strength Direction	
34,300 ⁸ 14,400		F _{v,e,0} ^(a) (psi)	G _{e,0} t _p ^(d) (10 ⁶ lbf/ft)	F _{v,e,90} ^(a) (psi)	G _{e.90} t _p ^(d) (10 ⁶ lbf/ft)
24,0006		155 ^(b)	1.36	190 ^(b)	1.36
33,600 ⁶		155	1.52	190 ^(b)	1.52
43,200		155	1.79	190	1.79
131-5s	5 1/8	185 ^(c)	2.23	215 ^(c)	2.23
140-4s	5 1/2	145	2.39	190 ^(b)	2.39
143-5s	5 5/8	185 ^(c)	2.44	215 ^(c)	2.44
175-5s	6 7/8	185	2.99	215	2.99
197-7s	7 3/4	155 ^(b)	3.37	215 ^(c)	3.37
213-71	8 3/8	185 ^(c)	3.64	215 ^(c)	3.64
220-7s	8 5/8	185 ^(c)	3.75	215 ^(c)	3.75
244-7s	9 5/8	185 ^(c)	4.18	215 ^(c)	4.18
244-71	9 5/8	185 ^(c)	4.18	215 ^(c)	4.18
267-91	10 1/2	155 ^(b)	4.56	215 ^(c)	4.56
314-91	12 3/8	185 ^(c)	5.38	215 ^(c)	5.38

Source: APA Product Report PR-L306

Multiply by **Cd = 1.6** for short term loading

CLT in the U.S. Building Code – IBC 2021 (Lateral)

New Requirements for CLT Lateral Systems in SDPWS 2021! Referenced from IBC 2021

2021 Special Design Provisions for Wind and Seismic

Top Changes Relevant to CLT Lateral Systems:

- New unified nominal shear capacity
- New CLT Shear Wall requirements (Appendix B)
- New CLT Diaphragm requirements

Available from awc.org

PowerPoint IS NOT the CODE!

applied load v_u **CLT Floor** Floor or Roof Above Wall **CLT Wall** Floor or Foundation **Below Wall CLT Floor**

Platform Framed CLT Construction

Elevation View

Platform Frame CLT Construction

applied load v_u **CLT Floor** Floor or Roof Above Wall **CLT Wall** Floor or Foundation **Below Wall CLT Floor**

Platform Frame CLT Construction

Elevation View

applied load v_u **CLT Floor** Floor or Roof Above Wall **CLT Wall** Floor or Foundation **Below Wall CLT Floor**

Platform Frame CLT Construction

Section View

Elevation View

Platform Frame CLT Construction

Elevation View

Platform Frame CLT Construction

Section View

Elevation View

Panel to Panel Connection

Panel to Platform Connection

0.105" ASTM A653 Grade 33 Steel(8) 16d box nails to each wall panel3.5" long x 0.135"Ø shank with 0.344"Ø head

Same steel plate and nails plus 5/8" Ø bolts or lag screws to roof, floor or foundation

Panel to Platform Connection

Nominal shear capacity

 \mathcal{V}_{n} = 2605 C_G [lbs] per angle connector

 C_G adjusts for specific gravity, G of CLT

$C_{G} = 1.0$	for G ≥ 0.42
= 0.86	for G = 0.35
= 1.0 – 2 (0.42-G)	for 0.42 > G > 0.35

Nominal unit shear capacity: $\mathcal{V}_{n} = n (2605 / b_{s}) C_{G} [lbs/ft]$

(other) CLT Shear Walls

not meeting Appendix B

CLT Shear Walls meeting SDPWS 2021 Appendix B

Seismic Design Category A or SDC B and ≤ 65' tall in SDPWS 4.6.3 Exception

Panel aspect ratios $2 \le h/b_s \le 4$

with shear resistance provided by high aspect ratio panels only (SDPWS B.3.7)

Panel aspect ratios $h/b_s = 4$

R Values for CLT Shear Walls in SDPWS 2021

(other) CLT Shear Walls

not meeting Appendix B

CLT Shear Walls meeting SDPWS 2021 Appendix B

CLT in the U.S. Building Code – Lateral in IBC 2021

SDPWS 2015

New Requirements for CLT Lateral Systems! (but R values for CLT Shear Walls not in ASCE 7-16)

CLT in the U.S. Building Code – Lateral in the IBC 2024?

Future Full Recognition of CLT Lateral Systems

2021 Special Design Provisions for Wind and Seismic

Top Changes Relevant to CLT Lateral Systems:

- New unified nominal shear capacity
- New CLT Shear Wall requirements
- New CLT Diaphragm requirements

Available from awc.org

PowerPoint IS NOT the CODE!

Innovative Systems under continued research

Mass Timber Post-Tensioned Rocking Shear Walls CLT Balloon Framed Shear Walls

CLT Diaphragms

More information

- Detailing for performance and constructability
- Determination of diaphragm flexibility
- Calculation of diaphragm deflections
- Precalculated connection capacities
- Combination SDPWS γ_D and ACSE 7 Ω_o and ρ

Available from woodworks.org

CLT Diaphragm Design for Wind and Seismic Resistance

NOODWORKS

Using SDPWS 2021 and ASCE 7-22

Cross-terninated timber (CLT) has become increasingly prominent in building construction and can be seen in buildings throughout the world. Specifically, the use of CLT floor and roof panets as a primery gravity forceresisting component has become reliatively commonplace. Now, with availability of the 2021 Special Design Provisions for Wind and Selenic (SDPWS 2021) from the American Wood Council (AWC). U.S. designers have a standardized path to utilize CLT foor and roof panels es a structural diaphrapm. Prior to publication of this document, projects typically had to receive approvel to use CLT as a structural diaphragem on a case-by-case basis from the local Authority Having Jurisdiction (AHJ).

This paper highlights important provisions of SDPWS 2021 for CLT disphragm design and recommendations developed by the authors in the more extensive CLT Disphrogm Design Guide, based on SDPWS 2021, published by Wood/Works - Wood Products Cremol.

AWC SDPWS 2021

SDPWS 2021 is the first edition to provide direct provisions for CLT to be used as an element in a disphragm or shear well. To differentiate between CLT and light-frame lateral force-resulting systems, it adopts the terminology shrothed wood home for light frame disphragms (SDPWS \$4.2) and shear waits (SDPWS \$4.3), and includes new societiens for CLT disphragms (SDPWS \$4.1) and shear wells (SDPWS \$4.4), SDPWS 2021 is referenced in the 2021 International Building Code (IBC).

Shear Capacity

SDPWS 2021 has a single normal shear capacity for each set of construction details, v_b, defined in \$4.1.4 for use with both wind and seismic design. From this nominal shear capacity, the Altowable Stress Design (ASD) and Load and Resistance Factor Design (LRFD) wind and seismic design capacities are determined by

elividing by the ASD reduction factor, Dp. or multiplying by a resistance factor, dp. for LRFD design as summarized in Table 1, For sheathed woodframe dispiragms, the SDPWS

AUTHORS

Scott Bienaman PhD. PE, Sill WoodWorks - Wood Products Council

Bric McDonnell, PE Bitl Tiernayne, PE, SE Donoven Lienes, PE Jonat Province, PE, SE Menotes dur, PE, SE

WoodWorks CLT Diaphragm Design Guide

NLT Diaphragm Design

Pre-fabricated panels often pre-sheathed

Once installed, add splice strips, tape joint if applicable

Typical Diaphragm

High Load Diaphragm

NLT Diaphragm Design

Figure 4.7: Prefabricated Pre-sheathed Panels

Key

- 1. Field-intalled Plywood/OSB
- 2. Plywood/OSB splice location with typical diaphragm nailing
- 3. Plywood/OSB splice location for high load daiphragm nailing
- 4. Shop-installed plywood/OSB diaphragm sheathing
- 5. Prefabricated NLT panel A
- 6. Prefabricated NLT panel B
- 7. NLT expansion gap location fire stopped as required
- 8. Self-tapping screw pairs crossing plywood/ OSB splice location

Source: NLT Design & Construction Guide

This concludes The American Institute of Architects Continuing Education Systems Course

WoodWorks – Wood Products Council

Marc Rivard, PE, SE

Regional Director MA, NH, ME, VT, CT, RI

marc.rivard@woodworks.org

(303) 570-8293

Scott Breneman, PhD, PE, SE Senior Technical Director

scott.breneman@woodworks.org

(530) 723-6230