

Mid-Rise and Multi-Family Design

 Optimizing Size, Maximizing ValueINTRODUCTION TO HEIGHTS AND AREAS
FOR MID-RISE WOOD FRAME BUILDINGS
Jason Bahr, PE
Regional Director - KS, MO, OK and AR
Jason.bahr@woodworks.org
913-732-0075
"The Wood Products Council" is a Registered Provider with The American Institute of Architects Continuing Education Systems (AIA/CES), Provider \#G516.

Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request.

This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Course Description

As cities seek increased density to address urban population growth, many building designers and developers are looking to mid-rise wood construction as a cost-effective, code-compliant and sustainable solution. This presentation will cover some of the design considerations associated with mid-rise wood-frame buildings, including how to maximize height and area through the use of sprinklers, open frontage, sloping sites, podiums and mezzanines. Construction types will be reviewed, with an emphasis on opportunities for wood use in types III and V.

Learning Objectives

1. In the context of a shift toward increased urban density, learn how mid-rise, wood-frame construction meets housing needs while contributing to vibrant and sustainable communities.
2. Discuss allowable construction types, occupancies, and building heights and areas for wood-frame mid-rise construction per the 2018 International Building Code.
3. Identify potential modifications to the IBC's base tabular heights and areas based on code provisions for building frontage, sprinklers, sloping sites, podiums and mezzanines.
4. Highlight constructed buildings that were designed using these code provisions to maximize density.

Outline

» Context for Mid-Rise Construction
» Mid-rise Building Types/Configurations
» Maximizing Height \& Area

Landing Apartments, Russell Scott Steedle \& Capione Architects, photo Gregory Folkins

Outline

D Context for Mid-Rise Construction
» Mid-rise Building Types/Configurations
» Maximizing Height \& Area

1430 Q, The HR Group Architects, Buehler Engineering, Greg Folkins Photography

Global Population Boom

Global Population
7.3 billion now
9.7 billion by 2050
33% increase

Urban Population
6.4 billion by 2050

62\% increase

Sustainable Multi-Family \& Mixed-Use Structures

These 2 items don't need to be in opposition-Wood-framing helps them work together!

Sustainable Multi-Family \& Mixed-Use Structures

Mid-rise wood-frame construction provides a common ground for both

How?

Mid-Rise Construction

Where wood is a viable option, it's likely the most appropriate choice.
" Senior Living
" Apartments/Condos
" Mixed Use
» Student Housing
" Affordable Housing
» Hotels

The Gibson, Hummel Architects, KPFF Consulting Engineers, photo Leo A. Geis

Why Wood?

Wood Costs Less

Wood is Versatile

Wood Meets Code

Wood is Durable

Wood is Renewable
Using wood helps reduce environmental impact Wood products play significant role in modern economy

Wood Costs Less
Wood is Versatile
Wood Meets Code
Wood is Durable
Wood is Renewable

The Gibson, Hummel Architects, KPFF Consulting Engineers, photo Leo A. Geis

Urban Infill Development

Case Study Wood Buildings Aim High

Architect: Withee Malcolm Architects
Engineer: VanDorpe Chou Associates
Developer/Contractor: AvalonBay Communities
Photo credit: Arden Photography

AvalonBay Stadium

Location: Anaheim, CA
251 Apts., 13K sf retail/restaurant
Type III modified
50% of their projects are podium
Semi-balloon framed with 16 " Open web trusses at exterior walls

Carbon Case Study \mid High Density

Climate Change Advantage

Volume of wood used:

5,200 cubic meters / 183,600 cubic feet of lumber and sheathing

U.S. and Canadian forests grow this much wood in:
15 minutes

Carbon stored in the wood:
3,970 metric tons of CO_{2}

Avoided greenhouse gas emissions: 8,440 metric tons of CO_{2}

TOTAL POTENTIAL CARBON BENEFIT: 12,410 metric tons of CO_{2}

EQUIVALENT TO:

2,370 cars off the road for a year

Energy to operate a home for 1,050 years

Outline

» Context for Mid-Rise Construction
\ Mid-rise Building Types/Configurations
» Maximizing Height \& Area

1430 Q, The HR Group Architects, Buehler Engineering, Greg Folkins Photography

Wood Mid-Rise Construction

How many stories can be wood framed in the IBC?

Wood Mid-Rise Construction

6 stories for Offices, 5 stories for Residential

+ Mezranine
+ Multi-Story Podium

Mid-Rise vs. High-Rise Definition - IBC 202

FIGURE 6-6 Determination of high-rise building

Walk-up / Tuck Under

First floor walk up units with private garage
Benefits:
» Eliminates need for S-2 parking garage
» Can be all wood
" Least expensive overall but lowest densification rates (20-30 unites/acre)

Wrap-Around

Walk up units surround parking structure Benefits:
» Enhanced security

" Centralized access to parking
" Visual appeal from street
» More expensive than walk/up tuck-under
" 5 story yields 60-80 units/acre

Podium

Multiple stories of wood over an elevated concrete deck

Benefits:
» Increased number of stories
» Accommodates Mixed-use occupancies
» Most expensive but can allow increased density

Podium

4 stories of residential over podium (parking or retail)
» 60-80 units/acre

Podium

5 stories over retail

» 100-120 units/acre
AvalonBay Stadium, Anaheim, CA VanDorpe Chou Associates

Podium

5 stories over residential podium

» 120-140 units/acre

Mezzanine \& Podium

5 stories with mezzanine + residential podium
» 125-145 units/acre

Outline

» Context for Mid-Rise Construction
» Mid-rise Building Types/Configurations
\ Maximizing Height \& Area

1. Construction Types
2. Tabulate Areas \& Stories
3. Allowable increases
4. Mezzanine \& Special Design Provisions

1430 Q, The HR Group Architects, Buehler Engineering, Greg Folkins Photography

Typical Mid-rise Occupancy

Mid-Rise Construction Types

Type III

» Exterior walls non-combustible (may be FRTW)
» Interior elements any allowed by code

Type V

» All building elements are any allowed by code
Types III and V can be subdivided to A (protected) or B (unprotected)

Type IV (Heavy Timber)

» Exterior walls non-combustible (may be FRTW)
» Interior elements qualify as Heavy Timber

Type III Construction

» Exterior walls are of noncombustible materials and interior building elements are of any material. Fire Retardant Treated (FRT) wood is permitted in exterior walls of 2 hr fire rating or less.

Non-combustible
» Exterior walls

Fire Retardant Treated allowed
» Exterior walls if fire rating is 2 hr or less

Heavy Timber

» HT used in place of 1 hr rating or less
Untreated Lumber
» All interior elements

Increased Height \& Story Area

Type IIA

Type IIIA

Occupancy	IIA $\left(\mathrm{ft}^{2}\right)^{*}$	IIIA (ft$)^{*}$
R-1	$72,000+18,000$ (max frontage)	$72,000+18,000$ (max frontage)
R-2	$72,000+18,000$ (max frontage)	$72,000+18,000$ (max frontage)

* Areas reflect PER STORY max. Total building max may limit area further.
** ASCE7 12.2-1 limits wood shear wall seismic systems to 65' in height in SDC D,E,F

Opportunity for Office Occupancy (B)

Type VA

Occupancy	VA $\left(\mathrm{ft}^{2}\right)^{*}$	VB $\left(\mathrm{ft}^{2}\right)$
R-1	$36,000+9,000$ (max frontage)	$21,000+5,250$ (max frontage)
R-2	$36,000+9,000$ (max frontage)	$21,000+5,250$ (max frontage)

* Areas reflect PER STORY max. Total building max may limit area further.
** ASCE7 12.2-1 limits wood shear wall seismic systems to 65' in height in SDC D,E,F

Opportunity for Residential Occupancy (R)

Type IIIA

Type IV

Occupancy	IIIA $\left(\mathrm{ft}^{2}\right)^{*}$	IV $\left(\mathrm{ft}^{2}\right)^{*}$
B	$85,500+21,375($ max frontage $)$	$108,000+27,000$ (max frontage)

* Areas reflect PER STORY max. Total building max may limit area further.
** ASCE7 12.2-1 limits wood shear wall seismic systems to 65 ' in height in SDC D,E,F

Height - 2018 IBC Table 504.3

» IBC 2018: Table 504.3 provides base \& increased heights
TABLE 504.3 ${ }^{\text {a }}$
ALLOWABLE BUILDING HEIGHT IN FEET ABOVE GRADE PLANE

OCCUPANCY CLASSIFICATION	TYPE OF CONSTRUCTION									
	SEE FOOTNOTES	TYPE I		TYPE II		TYPE III		TYPE IV HT	TYPE V	
		A	B	A	B	A	B		A	B
A, B, E, F, M, S, U	$N S^{\text {b }}$	UL	160	65	55	65	55	65	50	40
	S	UL	180	85	75	85	75	85	70	60
R	$\mathrm{NS}^{\mathrm{d}, \mathrm{h}}$	UL	160	65	55	65	55	65	50	40
	S13R	60	60	60	60	60	60	60	60	60
	S	UL	180	85	75	85	75	85	70	60

NS = Buildings not equipped throughout with an automatic sprinkler system
$\mathbf{S}=$ Buildings equipped throughout with an automatic sprinkler system installed in accordance with Section 903.3.1.1 (NFPA 13)

S13R = Buildings equipped throughout with an automatic sprinkler system installed in accordance with Section 903.3.1.2 (NFPA 13R)
S13D (not shown) = Buildings equipped throughout with an automatic sprinkler system installed in accordance with Section 903.3.1.3 (NFPA 13D)

Stories - 2018 IBC Table 504.4

OCCUPANCY CLASSIFICATION	TYPE OF CONSTRUCTION									
	SEE FOOTNOTES	TYPEI		TYPE II		TYPE III		$\begin{gathered} \text { TYPE IV } \\ \hline \text { HT } \end{gathered}$	TYPE V	
		A	B	A	B	A	B		A	B
A-2	NS	UL	11	3	2	3	2	3	2	1
	S	UL	12	4	3	4	3	4	3	2
A-3	NS	UL	11	3	2	3	2	3	2	1
	S	UL	12	4	3	4	3	4	3	2
B	NS	UL	11	5	3	5	3	5	3	2
	S	UL	12	6	4	6	4	6	4	3
R-1	NS ${ }^{\text {d, h }}$	UL	11	4	4	4	4	4	3	2
	S13R	4	4						4	3
	S	UL	12	5	5	5	5	5	4	3
R-2	NS ${ }^{\text {d, }} \mathrm{h}$	UL	11	4	4	4	4	4	3	2
	S13R	4	4	4					4	3
	S	UL	12	5	5	5	5	5	4	3
S-1	NS	UL	11	4	2	3	2	4	3	1
	S	UL	12	5	3	4	3	5	4	2

Sloped Sites

Fashion Valley, CA

Sloped Sites - Chapter 2 Definitions

HEIGHT, BUILDING. The vertical distance from grade plane to the average height of the highest roof surface.

GRADE PLANE. A reference plane representing the average of finished ground level adjoining the building at exterior walls. Where the finished ground level slopes away from the exterior walls, the reference plane shall be established by the lowest points within the area between the building and the lot line or, where the lot line is more than 6 feet (1829 mm) from the building, between the building and a point 6 feet (1829 mm) from the building.

626 Dekalb Avenue, Atlanta, GA

Basements - 2018 IBC 506.1.3

A basement is not included in the total allowable building area if it doesn't exceed the area permitted for a building with no more than one story above grade plane.
"Basement" is defined as "not a story above grade plane" and has a finished floor surface:

- Less than 6 feet above grade plane; or
- Less than 12 feet above the finished ground level at any point

Fashion Valley, CA
AvalonBay Communities

Summary of Building Heights

Building Heights and Stories by Building Type With NFPA 13 Sprinklers				
	IIIA	IIIB	VA	VB
Occupancy	85 ft	75 ft	70 ft	60 ft
R-1/R-2/R-4	5	5	4	3
A-2/A-3	4	3	3	2
B	6	4	4	3
M	5	3	4	2
S-2	5	4	5	3
S-1	4	3	4	2

Area Increases - IBC 2018

TABLE 506.2 ${ }^{\text {a, }}$ b
ALLOWABLE AREA FACTOR ($A_{t}=N S, S 1, S 13 R$, or SM, as applicable) IN SQUARE FEET

OCCUPANCY CLASSIFICATION	SEE FOOTNOTES	TYPE OF CONSTRUCTION								
		TYPE I		TYPE II		TYPE III		TYPE IV	TYPE V	
		A	B	A	B	A	B	HT	A	B
R-1	$\mathrm{NS}{ }^{\text {d, b }}$	UL	UL	24,000	16,000	24,000	16,000	20,500	12,000	7,000
	S13R									
	S1	UL	UL	96,000	64,000	96,000	64,000	82,000	48,000	28,000
	SM	UL	UL	72,000	48,000	72,000	48,000	61,500	36,000	21,000

**Can still increase these areas by the Frontage Factor of Section 506.3

NS = Buildings not equipped throughout with an automatic sprinkler system
S1 = Buildings a maximum of one story above grade plane equipped throughout with an automatic sprinkler system installed in accordance with Section 903.3.1.1 (NFPA 13)

SM = Buildings two or more stories above grade plane equipped throughout with an automatic sprinkler system installed in accordance with Section 903.3.1.1 (NFPA 13)
S13R = Buildings equipped throughout with an automatic sprinkler system installed in accordance with Section 903.3.1.2 (NFPA 13R)

Sprinkler Systems: 2018 IBC 903.2

In some cases, sprinklers are required by code depending on occupancy
» Most new Group R fire areas
» Group A, E, M, S-1, I fire areas exceeding 1-12k sf

Commercial Sprinkler Systems - IBC 903.3.1

» NFPA 13
Standard for Commercial Construction 903.3.1.1
» NFPA 13R
Residential Occupancies (Oneand Two-Family or Low-Rise Multi-Family and Commercial) 903.3.1.2
» NFPA 13D
Standard for One- and TwoFamily Residences (but allowed in a few commercial occupancies) 903.3.1.3

NFPA 13 vs. NFPA 13R

NFPA 13

Goal: Provide life safety and property protection	Goal: Provide life safety only
Fully sprinklered system throughout entire building even in unoccupied spaces (closets, attics)	Partially sprinklered system; unoccupied spaces often don't require sprinklers
Can cost more	Lower levels of water discharge, shorter water supply time pumps
Permitted for many occupancies, buildings of many sizes, allows greater building size increases	Limited applications, mainly for multi-family up to 4 stories, 60 feet

Single Occupancy, 1 Story - 506.2.3

$$
A_{a}=\underset{(\text { Equation } 5-1)}{A_{t}+\left[N S \times I_{f}\right]}
$$

$A_{a}=$ Allowable area per story (sq. ft.)
$\mathrm{A}_{\mathrm{t}}=$ Tabular allowable area per story per Table 506.2 for NS, S1 or S13R (sq. ft.)
NS = Tabular allowable area per story per Table 506.2 for non-sprinklered building (sprinklered or not)
$I_{f}=$ Area increase factor due to frontage per 506.3 $I_{f, \max }=0.75$

Area Modification - Frontage IBC 506.3

The allowable area of a building is permitted to be increased when it has a certain amount of frontage on streets (public ways) or open spaces, since this provides access to the structure by fire service personnel, a temporary refuge area for occupants as they leave the building in a fire emergency and a reduced exposure to and from adjacent structures.

Frontage Increases - IBC 506.3.3

$$
I_{f}=[F / P-0.25] W / 30
$$

(IBC Equation 5-5)

WHERE:

" $I_{f}=$ Area increase due to frontage
" $\mathrm{F}=$ Building perimeter that fronts on a public way or open space having 20 feet open minimum width
» $P=$ Perimeter of entire building
» W = Width of public way or open space (feet) in accordance with section 506.3.2

Area Modification - Frontage IBC 506.3

MINIMUM QUALIFICATIONS

25% min of building perimeter is on a public way or open space 20 min distance from building face to:
» Closest interior lot line
» Entire width of public way
" Exterior face of adjacent building

EXCEPTIONS

Where building meets Unlimited requirements of IBC 507
And W > 30'

$$
W_{\max }=60^{\prime}
$$

Frontage Increases - IBC 506.3.2

"W" for area increases is NOT always the same as Fire Separation Distance for purposes of fire resistance ratings of walls and openings

Frontage Increases - IBC 506.3.2

For two buildings on DIFFERENT lots

Frontage Increases - IBC 506.3.2

For two buildings on DIFFERENT lots

Frontage Increases - IBC 506.3.2

Buildings near public right of ways:

Frontage Increases - IBC 506.3.3

$$
W=\left[\left(L_{1} \times W_{1}\right)+\left(L_{2} \times W_{2}\right)+\left(L_{3} \times W_{3}\right) \ldots\right] / F
$$

WHERE:

W = Calculated Width (weighted average) of public way or open space (feet)
$\mathbf{L}_{\mathrm{n}}=$ Length of a portion of the exterior perimeter wall
$\mathbf{w}_{\mathrm{n}}=$ Width ($\geq 20 \mathrm{ft}$) of public way or open space associated with that portion of the exterior perimeter wall

F = Building perimeter that fronts on a public way or open space having 20 feet open minimum width

Total Building Area - 2018 IBC 506.2.3

$$
\left.A_{a}=\underset{(\text { Equation 5-2) }}{\left[A_{f}\right.}+\left(N S \times I_{f}\right)\right] \times S_{a}
$$

$\mathbf{A}_{\mathrm{a}}=$ Allowable area per story (sq. ft.)
$\mathrm{A}_{\mathrm{t}}=$ Tabular allowable area per story per Table 506.2 for NS, S1 or S13R (sq. ft.)
NS = Tabular allowable area per story per Table 506.2 for non-sprinklered building (sprinklered or not)
$\mathbf{I}_{\mathrm{f}}=$ Area increase factor due to frontage per 506.3
$I_{f}, \max =0.75$
$\mathrm{S}_{\mathrm{a}}=$ Actual number of building stories above grade
$S_{a, \text { max }}=3$ for non-sprinklered buildings and those w/ NFPA13
$S_{a, \text { max }}=4$ for buildings w/ NFPA 13R

Total Building Area - 2018 IBC 506.2.3

1 story building
" Total Area is $1 \times \mathrm{A}_{\mathrm{a}}$

$$
\mathrm{R}-2
$$

R-2

S13R

Total Building Area - 2018 IBC 506.2.3

2 story building
" Total Area is $2 \times \mathrm{A}_{\mathrm{a}}$
R-2

R-2
S13R SM

Total Building Area - 2018 IBC 506.2.3

3 story building
" Total Area is $3 \times \mathrm{A}_{\mathrm{a}}$
" Frontage Increase is included in A_{a}

Total Building Area - 2018 IBC 506.2.3

4 story IIIA building
» Total Area is $3 x \mathrm{~A}_{\mathrm{a}}$ for NFPA 13
» Total area is $4 \times A_{a}$ for NFPA 13R

Mixed Occupancy, Multi-story

Story Area: $\Sigma\left[A_{t}+\left(N S x I_{f}\right)\right] / A_{a} \leq 1$

(Described in 508.4.2)

Total Building Area: $\Sigma\left[A_{t}+\left(N S x I_{f}\right)\right] / A_{a} \leq S_{a}$

(Described in 506.2.4)

$\mathrm{A}_{\mathrm{a}}=$ Allowable area per story (sq. ft.)
$\mathbf{A}_{\mathbf{t}}=$ Tabular allowable area per story per Table 506.2 for NS, S1 or S13R (sq. ft.)
NS = Tabular allowable area per story per Table 506.2 for non-sprinklered building (sprinklered or not)
$\mathbf{I}_{\mathrm{f}}=$ Area increase factor due to frontage per 506.3
$I_{f}, \max =0.75$
$\mathrm{S}_{\mathrm{a}}=$ Actual number of building stories above grade
$\mathrm{S}_{\mathrm{a}, \max }=3$ for non-sprinklered buildings and those w/ NFPA13
$S_{a, \text { max }}=4$ for buildings w/ NFPA 13R

Mixed Use Occupancy - Design Aid

WoodWorks/AWC Heights \& Areas Calculator App

Based on 2015 IBC Available for FREE at woodworks.org

Frontage Calculation - Design Aid

\square 4 HEIGHTS AND AREAS CALCULATOR	
Frontage Summary:	
(?) Wall 1: Clearance: Length: 0 ft 250 ft	
(?) Wall 2: Clearance: Length: 60 ft 100 ft	
(?) Wall 3: Clearance: Length: 40 ft 250 ft	
(?) Wall 4: Clearance: Length: 0 ft 100 ft	
Frontage Increase Coefficient:	
Frontage Increase Coef., If: \quad Perimeter, P $0.2500 \quad 700 \mathrm{ft}$	
Viable Construction Types:	
VB Construction Type: Floors Limit: E 3$\quad 60 \mathrm{ft}$	
VA Construction Type: Floors Limit: Height Limit: Area/Floor Limit: (2) 4 70 ft $76,500 \mathrm{ft}^{2}$	
IVHT Construction Type: Floors Limit: Height Limit: Area/Floor Limit:	
스 (?) Done	

5:14 PM HEIGHTS AND AREAS CALCULATOR		
Viable Construction Types:		
VB Construc Floors Limit: 3	Type: Height Limit: 60 ft	Area/Floor Limit: $38,250 \mathrm{ft}^{2}$
Floors Limit: 4 Height Limit: Area/Floor Limit: 4 70 ft $76,500 \mathrm{ft}^{2}$		
IVHT Construction Type:		
IIIB Construction Floors Limit: Type: Height Limit: Area/Floor Limit: 4 75 ft $80,750 \mathrm{ft}^{2}$		
IIIA Construction Type:		
IIB Construction Type:		
IIA Construction Type: Floors Limit: Height Limit: Area/Floor Limit: 6 85 ft $159,370 \mathrm{ft}^{2}$		
IB Construction Type:		

Case Study Innovations in Wood

Emory Point Atlanta, GA

» 3 buildings complete - Luxury Apt., retail, restaurants
" (1) 5 story Type III wood frame over slab on grade
» (2) 4 stories of wood over 1 story concrete podium

35\% Structure Savings
» \$14/sf (wood concept)
» $\$ 22 / \mathrm{sf}$ (PT conc. Slab and frame)

Architect: Cooper Carry, The Preston Partnership

Engineer: Ellinwood + Machado,
Pruitt Eberly Stone
Contractor: Fortune-John
Photo credit: Gables Residential

Mezzanines - 2018 IBC 505

Not counted toward building area* or number of stories if:
» Maximum 1/3 floor area of room or space where located
» Special egress provisions apply
» Must be open and unobstructed to room in which it's located (walls $\leq 42^{\prime \prime}$ allowed)
» Several exceptions
» Slightly different for equipment platforms
*Does count toward fire area with regard to fire protection in Chapter 9

Case Study Maximizing View and Value With Wood

Marselle Condominiums

Seattle, WA
» Type IIIA condo complex
» 5 - $1 / 2$ stories of wood over 2 stories of concrete
» Mezzanine added \$250K cost but $\$ 1 \mathrm{M}$ in value
» 30% cost saving over concrete
» Time savings over steel

IBC Podium Provisions

5 story Type III Building

5 story Type III Building
On Top of a Type IA Podium

Special Provisions for Podiums in IBC 510.2 Increases allowable stories... not allowable building height

Horizontal Building Separation - 510.2

Considered separate buildings above and below for purposes of area calculations if:
» Overall height is still limited to min of either building
» 3 hr rated horizontal assembly
" Building below is Type 1A with sprinklers
» Enclosures penetrating horizontal assembly are 2 hr rated
» Occupancy above is A (occupant load <300), B, M, R or S
» Occupancy below is any except H

Case Study Wood Buildings Aim High

Inman Park Condominiums

Atlanta, GA
Architect: Brown Doane Architects
Engineer: Davis \& Church

4 stories of wood over 2 stories of concrete parking
Floor joists selected to maximize headroom and not exceed building height (10 ' ceilings)

Drop ceilings for MEP at perimeter of some rooms

Evolution of IBC Mixed-Use Podium

IBC Provisions for mixed-use podiums have been evolving.
Starting in 2015, IBC allows multiple podium stories above grade.

Parking Beneath Group R - IBC 510.4

Possibility of a Type IV podium where number of stories starts above parking when:
" Occupancy above is R and below is $S-2$
» Lower floor is open Type IV parking with grade entrance
" Horizontal assembly between 1st and 2nd floor shall be:
" Type IV
» Have 1 hr fire resistance rating when sprinklered
» Have 2 hr fire resistance rating when not sprinklered
" Overall height is still limited to occupancy
http://www.woodworks.org/experttip/can-parking-incorporated-mixed-use-wood-frame-buildings-construction-type-perspective/

5 story Type III Building On Top of a Type IV

Horizontal Separation

SEAOC 2012 CONVENTION PROCEEDINGS

All-wood Podiums in Mid-rise Construction

Abstract

Concern for the environment and climate change as well as he economic downturn of the past few years have created demand for sustainable multi-family housing. According 1 on uuilders Multifamily Production Index (MPI), a leadin ndicator for the multi-family market, the apartment and condominium housing market has shown steady improvemen
oro six consecutive quarters. However, today's economic and environmental realities have led the building industry to reevaluate the way we design and build multi-story buildings.

Mid-rise podium construction, consisting of two to for Mid-rise podium construction, consisting of two to four
stories of wood framing above a concrete first story (he podium") and often incorporating additional subterranea
levels of residential units built on top of one or two levels of l
evels of residential units built on top of one or two levels
parking or or other non-residential occupancies below. In this paper, we are defining wood podium as the level (or transfer paper, we are defining wood podium as the level (or transter
level) between the two or more stories of wood-framed residential occupancy and the lower non-residential
occupancy which is traditionally constructed of concrete. I occupancy which is rraditionalily constructed of concrete.
an article titled, "What to Build Now," by Michael Russ, Dan Withee, AIA, LEED AP, and partner with Withee Malcolm Architects LLP in Torrance, CA states. "W
-
The projects described in this paper have parking, retail, and of gypcrete (or light weight concrete) topping over woo of gypcrete (or light weight concrete) topping over wood
structural panels supported by I-joists and glued laminated stulular) beamels. Both desigg teams made a conscientious
(g) effort to not utilize concrete or steel framing

ALL-WOOD PODIUMS

Although a podium structure typically refers to wood-frame construction over concrete, a handful of designers have lowered their costs even further by designing the podium in wood.

When determining the cost of a structure, there are a lot variables, including most notably time, materials and labor," said Karyn Beebe, P.E., of APA. "Using wood instead of concrete lowers the mass of the building, which results in more economical podium shear walls and foundations. Using the same material for the entire structure may also mean lower design costs, and the construction team experiences savings in the form of fewer trades on site, which means less mobilization time, greater efficiency because framing is repeated on all of the levels, easier field modifications, and a faster schedule.
Architect Dan Withee, AIA, LEED AP, of Withee Malcolm Architects designed an 85 -unit wood podium project in San Diego. He estimated that a concrete podium can cost $\$ 15,000$ per parking space compared to $\$ 9,500$ for wood podium. ${ }^{6}$

Horizontal Wood Assemblies are effectively used to transition from Residential units above to Retail/Parking below

Multi-Story Wood Construction A cost-effective and sustainable solution for today's changing housing market ponsored by reThink Wood and WoodWorks

2018 Code Conforming Wood

Table of Contents

1. General Information
2. Type of Construction
3. Allowable Heights and Areas for Type V, IV and III Construction
4. Establishing Fire Resistance
5. Wood Use in "Noncombustible" Construction
6. Wood Features
7. Structural Considerations
8. Precautions during Construction
9. Resources
10. Building Area Tables

Available for Free Download: www.awc.org

5 Minute Break!

Jason Bahr, PE
Regional Director - KS, MO, OK and AR
Jason.bahr@woodworks.org
913-732-0075

Copyright Materials

> This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.
© The Wood Products Council 2021

