DESIGN ENGAGEMENT

Building the Team and Managing the Design

Randall Walter

Bensonwood

BRAD NILE, AIA

Andersen Construction

Disclaimer: This Presentation was developed by a third party and is not funded by WoodWorks or the Softwood Lumber Board

ANDERSEN CONSTRUCTION

PORTLAND, OR • SEATTLE, WA • BOISE, ID

BENSONWOOD

KEENE, NH

Big breakthroughs happen when what is suddenly possible meets what is desperately necessary.

Thomas Friedman

Construction productivity 1950-2012

Real productivity (GDP value-add per employee) by industry in the US Indexed; 1950 = 1.0

INDUSTRY CHALLENGES

What solutions can we adopt from other industries?

- What are the challenges?
- What are the solutions?

A Challenged History:

Built-in Inefficiency

- Weather-based delays and shutdowns
- Linear Process
- Raw materials to finished product under difficult conditions

Skill Degradation

- Extreme personnel turnover rates (20%-60%)
- Majority of workers have minimal education
- Lack of education, skills
 & attitude for new demands
- Minimal or zero requirements

Poor Quality

- Buildings are the most defective products consumers purchase.
- 15% 80% serious defect rate
- Decades-long industry culture of accepted compromise

CHALLENGES:

Field Labor

- Availability
- Skill
- Cost
- Productivity

Construction Materials

- Cost
- Availability
- Sustainability

- 2014, Portland, OR
- Fully digitized concrete structure
- 100% prefab facade without the possibility of field verification

SOLUTIONS:

Fully "Digitized" Structure

- Model based survey & layout
- Subtrade Coordination
- Machine Files
- Off-site fabrication

Collaborative Delivery

- Design team buy-in
- Contractor buy-in
- Early trade partners
- All elements modeled
- Early and continuous planning

Other Industries Get It

Cruise ship bathroom pod

Subassemblies built in a controlled environment

Learn From Everywhere

DIGITAL

DESIGN | BUILD

SCANDINAVIA

Optimization Most Off-Site

Construction Appropriate
Technology Best Energy

Standard Building

Science

Montage Design

GERMANY | AUSTRIA | SWITZERLAND

CNC Tools
Software Lead

Technology Adaptation

Modern Manufacturing

Advanced Education for Trades

Durable Building Standard

HOLLAND

Open Building

Lives Must Prevail

Rational Design &

Building

Time based organization

Sustainability through

Adaptability

Dimensional Coordination

NEW ENGLAND

TF Legacy Building Off-site Benefits and

Skills

3D Modeling Value Discipline of Connections

Site Efficiency

Tools & Logistics

Discipline & Skills

JAPAN

Lean Manufacturing
Kaizen
Precision
Power of Modularity
Tradition of Perfection

FRANCE

Pride in Craft/Training
Craft Knowledge
Personal Discipline
Humility
Historical Perspective

Intersection of Strategies

Design | Build | Deliver | Digital Fabrication | Offsite

Site Process

- 1. Layout from plans
- 2. Cut
- 3. Attach
- 4. Measure
- 5. Order
- 6. Wait
- 7. Install
- 8. Measure
- 9. Cut
- 10. Fit
- 11. Repeat...

Everything Modeled *Plan, Deliver, and LEAD*

THE POWER OF BIM

- Design = simulated building
- Automated PM information costs, supply chain, shipping, etc.
- Automated cutting and shaping machine code

North Adams, MA
Bensonwood, Randall Walter, Architect

Models now drive woodworking tools and off-site fabrication - from cheese boards, to shear walls, to facade panels.

BIM to CNC

Our Tireless Workers

Bensonwood • Keene, NH

Bensonwood • Keene, NH

THE MODEL BECOMES THE BUILDING

- The shared work space for all contributors & team members
- First built in the model, and then assembled in the field
- Machine files are as close as we can get to 3D printing

If part of the building, it MUST be included in the model.

- What is the source of the model?
- Interface surfaces
- Un-modeled elements lead to issues
- Components of light weight
- Appropriately timed coordination is the key
- Figure out the MEP strategy along with the structural frame

Engagement of Team for System Decisions

- Project Goals
- Code Constraints
 - Building Type
 - 1 or 2 hour frame?
 - Allowable Height
- Energy performance
- Carbon Sequestration
- Third party certifications

- Lateral system selection
 - Braced frames
 - Concrete cores
 - CLT shear walls
- All timber structure
- Composite structure
- Bay layout & beam orientation
- Preferred details
- Schedule

Case Studies & Examples

MEP routing designed WITH the framing layout design.

Utility gap and beam-free colonnade.

District Office, HACKER - Portland, OR

Case Studies & Examples

Rocking Shearwalls – Shop installation

Boundary Anchorage and Energy Dissipation System

Case Studies & Examples

Design/Build Mass Plywood Stair
Portland, OR

- 1. BIG IDEA
- 2. Sketch
- 3. Model
- 4. Review
- 5. Correct
- 6. Final Review
- 7. Final Check
- 8. Prepare Machine Files
- 9. Fabricate
- 10. Install

All components factory cut...

Prototype Development

- First-time Components
- Engineering Verification
- Machine and material limitations

Prototype Development

Detailed mock from the final model

Objectives:

- 1. Validate connector fire protection.
- 2. Further the team understanding.
- 3. Fit and finish confirmation.

Bathroom Pods Montage

Bensonwood Walpole, NH

Cartridge assembly

On-Site

Cartridge Installation

An integrated design phase = EFFICENT CONSTRUCTION

- Productivity
- Reduced site impact
- Less waste

Early digital collaboration mean better decisions...

EXPOSED STRUCTURE STRATEGY
MECHANICAL SYSTEM SELECTION
SYSTEMS DISTRIBUTION STRATEGY

- Vertical risers
- Horizontal Distribution

CONSTRUCTABILITY

- Timber connection details
- Moisture Mitigation Planning

ASSIGNED SYSTEM PATHWAYS

- Sprinklers
- Vertical Electrical
- Horizontal Electrical
- Plumbing
- Fire alarm and electrical

Important Differences

ON-SITE

- Schedule allows for field changes
- Each step adjusts to previous dimension and (in)accuracy

OFF-SITE

- Less design flexibility
- Accuracy is paramount site portion affect install fit
- Cost may or may not be higher, however time=\$
- Anticipate need to protect installed finish materials
- Design the schedule and share extensively

How to Get Started

NEED SITE SPACE

- Deliveries
- Boom truck or crane
- Evaluate Access

PARTNERS

- Build a team
- Decide where info will live

DECISION MAKING & COMMITMENT

- Get everything in model early
- Work the model
- Rely on model

Elsewhere: European Mass Timber

Models are an extension of their design and carpentry expertise.

Swatch Omega - Shigeru Ban Architect
Blumer Lehmann - mass timber design, fabrication and installation

Concluding Thoughts:

What is each mass timber project?

- A unique prototype...
- With design and execution as isolated activities...
- Where hard lessons are learned...
- And, poor choices cannot be corrected?
- OR -

An opportunity to deliver inspired design...

In a context of collaboration...

Where decisions are reviewed and optimized early, and often.

With the right combination of design and execution expertise.

Thank you for your participation.

Randall Walter
Bensonwood

randall@bensonwood.com

BRAD NILE, AIA

Andersen Construction

bnile@andersen-const.com