Mass Timber Structural Design Considerations

Presented by Matt Timmers, S.E.

Disclaimer: This presentation was developed by a third party and is not funded by WoodWorks or the Softwood Lumber Board.

Who we are... John A. Martin & Associates, Inc. (JAMA)

- Founded in Los Angeles in 1953 and delivering innovative Structural Engineering solutions for over 65 years
- Nationally-recognized, award-winning portfolio including the Walt Disney Concert Hall, Emerson College, Ten50 Tower, Tom Bradley International Terminal at LAX, Staples Center, and LA County Natural History Museum

"The Wood Products Council" is a Registered Provider with The American Institute of Architects Continuing Education Systems (AIA/CES), Provider #G516.

Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request. This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Course Description

With more developers and architects exploring mass timber construction, there is a greater need for members of the design team to understand the unique considerations required to successfully implement these projects. This presentation will give an overview of structural-related aspects of mass timber design, including computer modeling, connections, gravity and lateral systems, moisture and shrinkage, construction tolerances, and erection. Discussion will include building code considerations such as fire resistance and construction type selection, along with lessons learned from the presenter's experience designing mass timber projects.

Learning Objectives

- 1. Review IBC building code requirements for mass timber including fire resistance and construction type.
- 2. Review gravity and lateral design of mass timber buildings and discuss the available options.
- 3. Discuss construction-related aspects of mass timber and provide tips to successful erection.
- 4. Discuss structural design lessons learned from the prospective of a structural engineer.

Sawn Lumber

Glulam

Nail-laminated Timber

Graphic credit: Treehugger.com

Cross-laminated Timber

BUILDING ELEMENT	TYPEI		TYPE II		TYPE III		TYPE IV	TYP	ΈV
BOILDING ELEMENT	A	B	A	8	A	B	HT	A	B
Primary structural frame ¹ (see Section 202)	3 ^{a, b}	2 ^{a, b}	15	0	15	0	HT	15	0
Bearing walls Exterior ^{4,1} Interior	3 3*	2 2'	1	0	2	2 0	2 1/HT	1	0
Nonbearing walls and partitions Exterior	See Table 602								
Nonbearing walls and partitions Interior ⁴	0	0	0	0	0	0	See Section 2304.11.2	0	0
Floor construction and associated secondary members (see Section 202)	2	2	1	0	1	0	HT	1	0
Roof construction and associated secondary members (see Section 202)	$1^{1}\! \mathcal{Y}_{2}^{b}$	1^{bc}	1 ^{be}	0'	1 ^{be}	0	HT	-1 ^{be}	0

A Morniser of the knorrosilance Code Flerit

INTERNATIONAL BUILDING CODE

TABLE 601 FIRE-RESISTANCE RATING REQUIREMENTS FOR BUILDING ELEMENTS (HOURS)													
	TY	PEI	TYP	PEII	ТҮР	EIII	TYPE IV	TYPE V					
BOILDING ELEMENT	4	8	A	B	A	8	HT	A	B				
Primary structural frame ¹ (see Section 202)	- 3ª	2 ^{a,b}	15	0	1.	0	HT	15	0				
Bearing walls Exterior ^{4, 7} Interior	3 3'	2	1	0	2	2 0	2 1/HT	1	0				
Nonbearing walls and partitions Exterior	See Table 602												
Nonbearing walls and partitions Interior ⁴	0			0	0	0	See Section 2304.11.2	0	0				
Floor construction and associated secondary members (see Section 202)	2	2	1	0	1	0	HT	1	0				
Roof construction and associated secondary members (see Section 202)	$I^{i}I_{2}^{*}$	1^{bc}	1^{bc}	0	1^{bc}	0	нт	1^{bc}	0				

A Morney of the Morrey Land Code Carry

INTERNATIONAL BUILDING CODE

2	0	1	8

	TYPE OF CONSTRUCTION										
OCCUPANCY CLASSIFICATION	SEE FOOTNOTES	TYPE I		TYPE II		ТҮР	EIII	TYPE IV	TYP	PE V	
	SEE FOOTNOTES	A	в	A	в	Α	в	нт	A	В	
ADEEMEU	NS ^b	UL	160	65	55	65	55	65	50	40	
A, B, E, F, M, S, U	S	UL	180	85	75	85	75	85	70	60	
U 1 U 2 U 2 U 5	NS ^{c. d}	111	160	65		65	66	65	50	40	
H-1, H-2, H-3, H-3	S	UL		05	35	05	55	0.5	50	40	
11.4	NS ^{c, d}	UL	160	65	55	65	55	65	50	40	
n-+	S	UL	180	85	75	85	75	85	70	60	
I-1 Condition 1, I-3	NS ^{d, e}	UL	160	65	55	65	55	65	50	40	
1-1 Condition 1, 1-5	S	UL	180	85	75	85	75	85	70	60	
LLC-refitien 2.1.2	NS ^{d, c, f}	UL	160	65		65		15	50	40	
I-1 Condition 2, I-2	S	UL	180	85	35	05	33	00	50	40	
14	NS ^{d.g}	UL	160	65	55	65	55	65	50	40	
1-4	S	UL	180	85	75	85	75	85	70	60	
	NS ^d	UL	160	65	55	65	55	65	50	40	
D h	\$13D	60	60	60	60	60	60	60	50	40	
ĸ	S13R	60	60	60	60	60	60	60	60	60	
2	S	UL	180	85	75	85	75	85	70	60	

A Morrison of the knorrosilance Code Farsh

INTERNATIONAL BUILDING CODE

TYPE OF CONSTRUCTION												
OCCUPANCY CLASSIFICATION	SEE FOOTNOTES	TY	PEI	TY	PE II	TYP	PE III	TYPE IV	TYP	PE V		
	SEE FOOTNOTES	A	В	A	в	A	в	нт	A	в		
ADEEMEU	NS ^b	UL	160	65	55	65	33	65	50	-40		
А, В, Е, Г, М, 5, U	S	UL	180	85	75	35	75	85	70	60		
	NS ^{c. d}		160	15 55	1006		45	50				
п-1, п-2, п-3, п-3	S			35	.905-	- 207 /	0,5	200.1				
	NS ^{c, d}	UL	160	65	55	- 65	55	65	- 50	-40		
n-+	S	UL	180	85	75	85	75	85	20	60.		
L1 Condition 1.1.2	NS ^{d, e}	UL	160	65	55	65	55	65	.50	-40		
I-1 Condition 1, I-5	S	UL	180	85	75	15 -	75	85	20	60		
LLC-relition 2.1.2	NS ^{d, c, f}	UL	160	65		10.41	2.6	28	40			
I-I Condition 2, I-2	S	UL	180	85	35		30 /		24.7			
	NS ^{d.g}	UL	160	65	55	65	- 55	65	- 50	-40		
1-4	S	UL	180	85	75	85.	75	3.5	20	- 60		
	NS ^d	UL	160	65	55	65	-55	65	- 50	-40		
ah	S13D	60	60	60	60	-60	(0)	-00	50	-40		
K.	S13R	60	60	60	60	60	60	60	60	60		
	S	UL	180	85	75	15.	7.5	85	70	60		

INTERNATIONAL BUILDING CODE

	and the owner where	Statement Street or other		2.61
	states in the	and the local division of the local division		-
THE R. LANSING MICH.				-
		and the local data		-
THE OWNER WATER OF	No. of Concession, Name			-
The second secon	THE OWNER WATER		Sides Inter Inter-	
1 11 11		THE TOTAL	THE PARTY OF	
I TI THE		TTT BE	TIC	-
			TILL	1
		1111	SE IL IL I	
I II III	HOUSE IN		IL I II	
1 11 1 m	STREET, STR			1
I II ARE	Succession in which	THE OWNER.		
A state of the local division in the local d	TAXABLE INC.		and beneficial.	
A DESCRIPTION OF		-		1
and some	-			
and the local division in which the	-			
And in case of the local division of the loc				
A DESCRIPTION OF				
And in case of the local division of the loc				
	-	and the second se		

18 STORIES	
BUILDING HEIGHT	270'
ALLOWABLE BUILDING AREA	972,000 SF
AVERAGE AREA PER STORY	54,000SF

12 STORIES BUILDING HEIGHT 180 FT ALLOWABLE BUILDING AREA AVERAGE AREA PER STORY 54,000SF

9 STORIES	
BUILDING HEIGHT	85'
ALLOWABLE BUILDING AREA	405,000 SF
AVERAGE AREA PER STORY	45.000 SF

TYPE IV-A	TYPE IV-B	TYPE IV-C
	IBC 2021	

Graphic credit: atelierjones, LLC

Timber											
		ASD only ASD and LRFD						LRFD only			
		Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Column Stability Factor	Bearing Area Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor	
$F_b(S_{eff})' = F_b(S_{eff})$	х	C_D	C_{M}	C_t	C_L	-	-	2.54	0.85	λ	
$F_t(A_{parallel})' = F_t(A_{parallel})$	х	C_D	C_{M}	C_t	-		-	2.70	0.80	λ	
$F_v(t_v)' = F_v(t_v)$	х	C_D	$C_{M} \\$	C_t	-	-	-	2.88	0.75	λ	
$F_s(Ib/Q)_{eff}' = F_s(Ib/Q)_{eff}$	х	-	C_{M}	C_t	-	-	-	2.00	0.75	-	
$F_c(A_{parallel})' = F_c(A_{parallel})$	х	C_D	$C_{M} \\$	C_t	-	C_{P}	-	2.40	0.90	λ	
$F_{c\perp}(A)' = F_{c\perp}(A)$	х	-	C_{M}	\mathbf{C}_{t}	-	-	C_b	1.67	0.90	-	
$(EI)_{app}' = (EI)_{app}$	x	-	$C_{M} \\$	\mathbf{C}_{t}	-	-	-	-	-	-	
$(EI)_{app-min}' = (EI)_{app-min}$	х	-	$C_{M} \\$	\mathbf{C}_{t}	-	-	-	1.76	0.85	-	

Applicability of Adjustment Factors for Cross-Laminated

Table 10.3.1

STREAM PRO TRA-LOTT

ASD REFERENCE DESIGN VALUES*** FOR CLT (FOR USE IN THE U.S.)

			Lamina	tion This	kness (n.) in Cl	TLoyup	ć.	100.00	Major Stren	gth Direction			Minor Stren	gth Direction	
CLT Layup	CLT I, (in.)		10		1	1(#1	L		(F _b Sl _{atto} (Ibf-ft/ft of width)	(EI) _{utta} (10° lbf- in. ¹ /ft of width)	(GA) _{witts} (10* lb//fi of width)	V _{1.8} (Ibf/f) of width)	(F ₆ Slatter (Ibd-ft/ft of width)	(EI) _{uh.Les} (10* lbf- in.²/ft of width)	(GALaton (10* lbf/fi of width)	V _{1,50} (Ibd/t) of width)
	4 1/8	1 3/8	1 3/8	1.3/8	Antonio -	August			4,525	115	0.46	1,430	160	3.1	0.61	495
E1	67/8	13/8	1.2/8	1 3/8	1 3/8	13/8			10,400	440	0.92	1,970	1,370	83	1.2	1,430
	9 5/8	1 3/8	1 3/8	1.3/8	1 3/8	1.3/8	1 3/8	1.3/8	18,375	1,089	1.4	2,490	3,125	309	1.8	1,960
	41/8	1.3/8	1.3/8	1.3/8					3,825	102	0.53	1,910	165	3.6	0.56	660
62	67/8	13/8	1.3/8	13/8	1 3/8	1 3/8			8,825	389	1.1	2,675	1,430	95	1.1	1,910
	9 5/8	1 3/8	1.3/8.	13/8	13/8	1 3/8	1 2/8	1.3/8	15,600	963	1.6	3,325	3,275	360	1.7	2.625
	4 1/8	1 3/8	13/8	1 3/8					2,800	81	0.35	1,110	110	2.3	0.44	385
83	67/B	1.3/8	1.3/8	1.3/8	1.3/8	1.3/8			6,400	311	0.69	1,530	955	61	0.87	1,110
	95/8	1 3/8	13/8	13/8	1.3/8	1 3/8	1 3/8	1.3/8	11,325	769	1.0	1,940	2,180	232	1.3	1.520
	41/8	13/8	1.3/8	1.3/8					4,525	115	0.50	1,750	140	3.4	0.62	605
E4	67/8	13/8	13/8	13/8	1 3/8	13/8			10,400	440	1.0	2,410	1,230	88	1.2	1,750
	9.5/8	1.3/8	1.3/8	13/8	1.3/8	1.3/8	13/8	1.2/8	18,400	1,089	1.5	3,050	2,800	335	1.9	2,400
	4.1/8	1 3/8	1.2/8	1 3/8					2,090	108	0.53	1,910	165	3.6	0.59	660
VI.	67/8	13/8	1 3/8	13/8	13/8	1 3/8			4,800	415	1.1	2,625	1,430	95	1.2	1,910
	9.5/8	1.3/8	13/8	1.3/8	1 3/8	1 3/8	1 3/8	1 3/8	8,500	1,027	1.6	3,325	3,275	360	1.8	2,625
	41/8	13/8	1 3/8	13/8					2,030	95	0.46	1,430	160	3.1	0.52	495
V2	67/8	1.3/8	1 3/8	1 3/8	1 3/8	1 3/8	1		4,675	363	0.91	1,970	1,370	81	1.0	1,430
	9.5/8	13/8	13/8	1.3/8	1.3/8	1 3/8	13/8	13/8	8,275	898	1.4	2,490	3,125	309	1.6	1,960
	4 1/8	1 3/8	1 3/8	1.3/8	Provide State	a station	and the second	- 10 CA	1,740	95	0.49	1,750	140	3.4	0.52	605
V3	67/8	13/8	13/6	1 3/8	1 3/8	1 3/8			4,000	363	0.98	2,420	1,230	88	1.0	1,750
	9.5/8	13/8	1.3/8	1.3/8	13/8	13/8	13/8	1.3/8	7,100	899	1.5	3.050	2,800	335	1.6	2,400

For SI: 1 in. = 25.4 mm; 1 ft = 304.8 mm; 1 lbf = 4.448 N

a. See Section 4 for symbols.

TABLE A2

b. This table represents one of many possibilities that the CLT could be manufactured by varying lomination grades, thicknesses, arientations, and layer programments in the loyop-

c. Custam CUT layups that are not listed in this table shall be permitted in accordance with 7.2.1.

Performance-Rated

ATTENAL STREAM

Timber-Concrete Composite

Graphic credit: Structurecraft

Types of Shear Connectors

Graphic credit: Peggi Clouston

Computer Modelling Composite CLT Floor

$$EI_{eff} = \sum_{i=1}^{n} E_i b_i \frac{E_i^3}{12} + \sum_{i=1}^{n} E_i A_i z_i^2$$
$$GA_{eff} = \frac{a^2}{\left[\left(\frac{h_1}{2G_1 b}\right) + \left(\sum_{i=2}^{n-1} \frac{h_i}{G_i b}\right) + \left(\frac{h_1}{2G_1 b}\right)\right]}$$

Layer	h (in)	Orientation to Span	Material	E (psi)	z (in)	Ebh ³ /12 (lb-in ²)	EAz ² (Ib-in ²)	Ebh ³ /12+EAz ² (lb-in ²)	G (psi)	h/(Gb) (in ² /lb)
1	1.375	Parallel	Wood	1,500,000	2.75	3,899,414	187,171,875	191,071,289	93,750	0.00000122
2	1.375	Perpendicular	Wood	46,667	1.375	121,315	1,455,781	1,577,096	8,750	0.00001310
3	1.375	Parallel	Wood	1,500,000	0	3,899,414	0	3,899,414	93,750	0.00000122
4	1.375	Perpendicular	Wood	46,667	1.375	121,315	1,455,781	1,577,096	8,750	0.00001310
5	1.375	Parallel	Wood	1,500,000	2.75	3,899,414	187,171,875	191,071,289	93,750	0.00000122
t _{total} =	6.875				Effec	tive Bending	Stiffness El _{eff} =	389,196,185 lb-in ²		
					Eff	ective Shear S	tiffness GA _{eff} =	1,056,402 l b		

Calculated Effective Stiffness Properties for five-ply CLT Panel

Layer	h (in)	Orientation to Span	Material	E (psi)	z (in)	Ebh ³ /12 (lb-in ²)	EAz ² (lb-in ²)	Sum of Layer	G (psi)	h/(Gb) (in ² /lb)
1	2.500	Parallel	Concrete	3,155,924	3.4375	49,311,316	1,118,750,491	1,168,061,808	1,314,968	0.0000016
2	1.375	Parallel	Wood	1,500,000	1.5	3,899,414	55,687,500	59,586,914	93,750	0.00000122
3	1.375	Perpendicular	Wood	46,667	0.125	121,315	12,031	133,346	8,750	0.00001310
4	1.375	Parallel	Wood	1,500,000	1.25	3,899,414	38,671,875	42,571,289	93,750	0.00000122
5	1.375	Perpendicular	Wood	46,667	2.625	121,315	5,305,781	5,427,096	8,750	0.00001310
6	1.375	Parallel	Wood	1,500,000	4	3,899,414	396,000,000	399,899,414	93,750	0.00000122
t _{total} =	9.375				Effe	ctive Bending	Stiffness El _{eff} =	1,675,679,867 lb-in²		
					Effe	ective Shear S	Stiffness GA _{eff} =	1,886,307 lb		

Calculated Effective Stiffness Properties for five-ply CLT Panel with 2.5" Concrete

Layer	h (in)	Orientation to Span	Material	E (psi)	z (in)	Ebh ³ /12 (lb-in ²)	EAz ² (lb-in ²)	Ebh ³ /12+EAz ² (lb-in ²)	G (psi)	h/(Gb) (in²/lb)
1	1.375	Parallel	Wood	1,500,000	2.75	3,899,414	187,171,875	191,071,289	93,750	0.00000122
2	1.375	Perpendicular	Wood	46,667	1.375	121,315	1,455,781	1,577,096	8,750	0.00001310
3	1.375	Parallel	Wood	1,500,000	0	3,899,414	0	3,899,414	93,750	0.00000122
4	1.375	Perpendicular	Wood	46,667	1.375	121,315	1,455,781	1,577,096	8,750	0.00001310
5	1.375	Parallel	Wood	1,500,000	2.75	3,899,414	187,171,875	191,071,289	93,750	0.00000122
t _{total} =	6.875				Effec	tive Bending	Stiffness El _{eff} =	389,196,185 lb-)n ¹		
					Eff	ective Shear S	tiffness GA _{eff} =	1,056,402 lb		

Calculated Effective Stiffness Properties for five-ply CLT Panel

Layer	h (in)	Orientation to Span	Material	E (psi)	z (in)	Ebh ³ /12 (lb-in ²)	EAz ² (Ib-in ²)	Sum of Layer	G (psi)	h/(Gb) (in ² /lb)	
1	2.500	Parallel	Concrete	3,155,924	3.4375	49,311,316	1,118,750,491	1,168,061,808	1,314,968	0.0000016	
2	1.375	Parallel	Wood	1,500,000	1.5	3,899,414	55,687,500	59,586,914	93,750	0.00000122	
3	1.375	Perpendicular	Wood	46,667	0.125	121,315	12,031	133,346	8,750	0.00001310	
4	1.375	Parallel	Wood	1,500,000	1.25	3,899,414	38,671,875	42,571,289	93,750	0.00000122	
5	1.375	Perpendicular	Wood	46,667	2.625	121,315	5,305,781	5,427,096	8,750	0.00001310	
6	1.375	Parallel	Wood	1,500,000	4	3,899,414	396,000,000	399,899,414	93,750	0.00000122	
t _{total} =	9.375				Effe	ctive Bending	Stiffness El _{eff} =	1,675,679,867 lb-in*			= 4.3 TIMES!
					Effe	ective Shear S	Stiffness GA _{eff} =	1,886,307 lb			

Calculated Effective Stiffness Properties for five-ply CLT Panel with 2.5" Concrete

Computer Modelling Composite CLT Floor

Vibration of Composite CLT Floor

Flexural Strength of CLT Floor

2018

IBC Section 722

"The calculated fire resistance of exposed wood members and wood decking shall be permitted in accordance with Chapter 16 of ANSI/AWC National Design Specification for Wood Construction (NDS)."

> INTERNATIONAL BUILDING CODE

Table 16.2.1A	Char Depth and Effective Char Depth (for $\beta_n = 1.5$ in./hr.)					
Required Fire Resistance (hr.)	Char Depth, a _{char} (in.)	Effective Char Depth, a _{eff} (in.)				
1-Hour	1.5	1.8				
1 ¹ / ₂ -Hour	2.1	2.5				
2-Hour	2.6	3.2				

Table 16.2.1B Effective Char Depths (for CLT

with $\beta_n = 1.5 in./hr.$)

Required Fire Resistance		Effective Char Depths, a _{eff} (in.) lamination thicknesses, h _{lam} (in.)										
(hr.)	5/8	3/4	7/8	1	1-1/4	1-3/8	1-1/2	1-3/4	2			
1-Hour	2.2	2.2	2.1	2.0	2.0	1.9	1.8	1.8	1.8			
1½-Hour	3.4	3.2	3.1	3.0	2.9	2.8	2.8	2.8	2.6			
2-Hour	4.4	4.3	4.1	4.0	3.9	3.8	3.6	3.6	3.6			

Table 16.2.2 Adjustment Factors for Fire Design¹

			ASD							
			Design Stress to Member Strength Factor	Size Factor ²	Volume Factor ²	Flat Use Factor ²	Beam Stability Factor ³	Column Stability Factor 3		
Bending Strength	$\mathbf{F}_{\mathbf{b}}$	х	2.85	$C_{\rm F}$	C_{V}	C_{fu}	CL	-		
Beam Buckling Strength	F_{bE}	х	2.03	-	-	-	-	-		
Tensile Strength	\mathbf{F}_{t}	х	2.85	$C_{\rm F}$	5	1.71	5			
Compressive Strength	Fc	х	2.58	$C_{\rm F}$	-	-	-	C_P		
Column Buckling Strength	FcE	х	2.03	-	-	-	-	-		

See 4.3, 5.3, 8.3, and 10.3 for applicability of adjustment factors for specific products.
Factor shall be based on initial cross-section dimensions.

3. Factor shall be based on reduced cross-section dimensions.

Table 16.2.2 Adjustment Factors for Fire Design¹

					A	SD 🤇		
e			Design Stress to Member Strength Factor	Size Factor ²	Volume Factor ²	Flat Use Factor ²	Beam Stability Factor ³	Column Stability Factor ³
Bending Strength	$\mathbf{F}_{\mathbf{b}}$	х	2.85	$C_{\rm F}$	C_V	C_{fu}	CL	-
Beam Buckling Strength	F_{bE}	х	2.03	-	-	-	-	-
Tensile Strength	\mathbf{F}_{t}	х	2.85	$C_{\rm F}$	2	1.71	5	
Compressive Strength	Fc	х	2.58	$C_{\rm F}$	-	-	-	C_P
Column Buckling Strength	F _{cE}	x	2.03	-	2	-	-	-

See 4.3, 5.3, 8.3, and 10.3 for applicability of adjustment factors for specific products.
Factor shall be based on initial cross-section dimensions.

3. Factor shall be based on reduced cross-section dimensions.

NDS Section 16.3

"Wood connections, including connectors, fasteners, and portions of wood members included in the connection design, shall be protected from fire exposure for the required fire resistance time."

NDS Section 16.3

"Protection shall be provided by wood, fire-rated gypsum board, other approved materials, or a combination thereof."

NDS Section C16.2

"The mechanics-based design procedures in the Specification for exposed wood members are based on research described in AWC's Technical Report 10: Calculating the Fire Resistance of Exposed and Protected Wood Members."

TR10 Section 4.4

"Where protective materials are used to increase the fire resistance of structural wood members and connections, the added contribution from the protective material shall be determined either by testing or engineering based on assigned design values."

Vire Resistance of Wood Members and Assemblies

NDS

Figure 4-1 Typical Unbalanced Beam Layup

TR10 Section 4.5

"Char contraction at unbonded wood member ends and edges results in ignition of wood surfaces in the gaps at these locations. The penetration of ignition Calculating the into these gaps is assumed to be twice the char depth, 2a_{char}."

Fire Resistance of Wood Members and Assemblies

TR10 Section 1.5.1 Char Contraction

TR10 Section 1.5.1 Char Contraction

Figure 1-4 Char contraction at abutting wood members that are unbonded

Za_{char}

NDS

Figure 9-3. Char pattern due to char contraction

Figure 9-4. Char pattern with wood strip added

Za_{char}

Figure 9-3. Char pattern due to char contraction

Za_{char} a_{char}

NDS

Figure 9-4. Char pattern with wood strip added

CLT Shear Walls – ASCE 7 Change Proposal (PRELIMINARY!)

Modifications to CHAPTER 12, SEISMIC DESIGN REQUIREMENTS FOR BUILDING STRUCTURES

Add line items to Table 12.2-1 on Bearing Wall Systems featuring CLT shear walls as follows:

	ASCE 7 Section Where Detailing	R	Ωo	Cd	Structural System Limitations Including Structural Height, hn (ft) Limits ^d					
Seismic Force-Resisting System	Requirements Are					Seismic	Design	Categor	ry	
	Specified	,		c	В	С	D	Е	F	
	A. BEARING W	ALL S	YSTEM	IS					s	
19. Cross laminated timber shear walls	14.5	3	3	3	65	65	<u>65</u>	65	65	
20. Cross laminated timber shear walls with shear resistance provided by high aspect ratio panels only	<u>14.5</u>	4	<u>3</u>	4	<u>65</u>	<u>65</u>	<u>65</u>	<u>65</u>	<u>65</u>	

Graphic credit: Proposal PL-1-Rev.1-2019-10-20, van de Lindt, Amini, and

CLT Shear Walls – Oregon

Table 12.2-1 Desi	ASCE 7 Section	s and Factor	rs for Seism	ic Force-Res	isting	Syste Stru Limita Structur	etural S ations In ral Heig Limits	ystem cluding ht, h _n (fl	
Saiemia Earca Desisting System	Detailing Requirements	Modification Coefficient,	Overstrength	Deflection Amplification	B	Seismic	Design	Categor	y F
Seismic Porce-Resisting System	Are specified	ĸ	Pactor, \$40"	Pactor, Ca	в	0	D	E	r
A. BEARING WALL SYSTEMS									
19. Cross-laminated timber shear walls	14.1 and 14.5	2	2 1/2	2	NL	NL	NL	NL	NL

RICON S VS	MEGANT	GIGANT
Pre-engineered Post to Beam Connector	Pre-engineered Connection System	Pre-engineered Connection System
VIEW DETAILS -+	VIEW DETAILS ->	VIEW DETAILS -+

Graphic credit: MyTiCon

Graphic credit: MyTiCon

Table 1: Summary of test results	of test results
----------------------------------	-----------------

Test	Test connector type	Max Gap* [in]	Max Rotation** + [*]	Max Total Shear [kip]	Max Moment*** [kip-in]	Max Static Design Shear Resistance**** [kip]
Small-1	200x60-1	0.37	2.5	10.8	123.5	
Small-2	200x60-2	0.43	2.5	10.5	124.4	9.6
Small-3	200x60-3	0.40	2.6	10.5	119.9	
	Average 200x60	0.40	2.5	10.6	122.6	
	COV 200x60 [%]	7%	1%	2%	2%	
Large-1	200x80-1	0.43	2.5	15.7	169.8	
Large-2	200x80-2	0.49	2.6	13.7	168.9	13.7
Large-3	200x80-3	0.42	2.5	14.8	162.4	
	Average 200x80	0.44	2.5	14.7	167.0	
	COV 200x80 [%]	9%	1%	7%	2%	

Graphic credit: MyTiCon

QUESTIONS?

This concludes The American Institute of Architects Continuing Education Systems Course

Matt Timmers, S.E.

John A. Martin & Associates, Inc.

mtimmers@johnmartin.com