Durability, Termites, and Moisture

FLORIDA BUILDING ENCLOSURE DESIGN

WOODWORKS, MAY 2019 COLIN SHANE | PRINCIPAL

RD BUILDING SCIENCE

Copyright Materials

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

RDH Making Buildings Better

 $\ensuremath{\textcircled{C}}$ RDH Building Sciences Inc. 2015

"The Wood Products Council" is a Registered Provider with The American Institute of Architects Continuing Education Systems (AIA/CES), Provider #G516.

Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request. This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Course Description

→ Building enclosures are responsible for controlling heat flow, air flow, vapor flow and a number of other elements. In Florida, they are also essential for termite prevention. This presentation will explore design considerations associated with wood-frame building enclosures and the role of control layers in addressing items such as durability, termite prevention and control, and thermal continuity.

Learning Objectives

- → Review building science fundamentals and building enclosure design considerations for wood-frame buildings in hot and humid regions.
- → Explore the role of control layers in building enclosures for elements such as heat flow, bulk water intrusion and air flow.
- → Identify the types of termites found in Florida and understand their paths of entry into building structures and the damage they may cause.
- → Understand and apply the termite protection requirements of the Florida Building Code for multi-family and commercial projects.

Wood-frame Building Enclosure Design Guides

Building Enclosure Design Guide

WOOD-FRAME MULTI-UNIT RESIDENTIAL BUILDINGS

Guide for Designing Energy-Efficient Building Enclosures

for Wood-Frame Multi-Unit Residential Buildings in Marine to Cold Climate Zones in North America

ANCHITECTURAL INCITIVITY OF BRITTON COLONNELS

Honesener Protestion Office Branch of BC Housing

SP-53 FPINNOVATIONS

Fundamentals

Water, Air, Heat, Vapor... and Bugs

Building Enclosure Design Fundamentals

\rightarrow Support

- \rightarrow Structural loads
- \rightarrow Structural movements
- \rightarrow Control
 - \rightarrow Water penetration
 - \rightarrow Air flow
 - \rightarrow Vapor diffusion / condensation
 - \rightarrow Heat flow
 - \rightarrow Bugs
 - \rightarrow Light and solar radiation
 - \rightarrow Noise, fire, and smoke
- \rightarrow Finish

The Old Way

The New Way – "Light & Tight"

Controlling Water – The Balance

- **RESISTANCE** 2 3 2 3
 - 1. Evaporation of water at surfaces
 - Water vapor transport by diffusion and/or air movement (outward or inward)
 - 3. Drainage
 - 4. Ventilation drying by air exchange

- I. Precipitation (rain or snow)
- 2. Water vapor transported by diffusion and/or air movement (outward or inward)
- 3. Built-in construction moisture
- 4. Groundwater

Climate Zones

Controlling Water – The Balance

- \rightarrow Wetting is ok (and inevitable)
- \rightarrow But not too much or for too long

Water Penetration Control Strategies

Controlling Water - Bulk Rain

- \rightarrow 2 lines of defense:
- → Water resistive barrier (WRB)
- → Water shedding surface (WSS)
- → Material choice and amount of drainage between WRB and WSS affect performance

Figure 3-15 Water penetration control strategy classification (adapted from Straube and Burnett 2005)

Drained / Ventilated Cladding

Drained / Ventilated Cladding - Stucco

Air, Vapor, or Water Barrier?

→ Air is made up of oxygen, nitrogen, and water vapor (water vapor is the smallest molecule)

Tyvek

HDPE

Air, Vapor, Water Barriers

- → WRB / AB need to be continuous: required by code
- → VB doesn't need to be continuous: sometimes required by code
- \rightarrow Membranes can be:
 - 1. Water control
 - 2. Air & water control
 - 3. Air, water & vapor control

Air Leakage vs. Diffusion

Air Penetration Control - Why?

 \rightarrow Code requirement

\rightarrow Moisture

→ Air holds moisture that can be transported and deposited within assemblies.

\rightarrow Energy

→ Unintentional airflow through the building enclosure can account for as much as 50% of the space heat loss/gain in buildings.

Types of Air Barrier Systems

Loose Sheet Applied Membrane – Taped Joints & Strapping

Sealed Gypsum Sheathing – Sealant Filler at Joints

Liquid Applied – Silicone sealants and silicone membrane at Joints

Sealed Plywood Sheathing – Sealant & Membrane at Joints

Sealed Sheathing – Membrane at Joints

Self-Adhered vapor permeable membrane

Plywood sheathing with taped joints (good tape)

Airtightness Does Not Happen By Accident

How to Tell the Membrane is Not the Air Barrier

Definitely Not An Air Barrier... But What Is?

Conductive Heat Loss Control

Conductive Heat Loss Control

- → Insulation between studs is most common heat control strategy
- → Need to consider effective Rvalues
- \rightarrow Wood ± R-1 per inch
- → "Continuous insulation" may be required in some climate zones per IECC

Framing Effect on R-values

Insulation Placement

→ Consider effective thermal resistance, vapor diffusion profile, and relative durability

Exterior Insulation Selection (Vapor Control)

- → Rigid exterior foam insulations (XPS, EPS, Polyiso, closed cell SPF) are vapor impermeable
 - \rightarrow Rules of thumb: Vapor barrier on 'warm' side
- → Fibrous insulations (mineral fiber / glass fiber) are vapor permeable
 - \rightarrow Allows drying to the exterior
 - \rightarrow Often safer in cold and mixed climates
 - → Could be coupled with another vapor control layer if desired

Building Science: Wetting and Drying

- \rightarrow How can we keep the sheathing and other materials dry?
 - \rightarrow Don't let them get as wet
 - \rightarrow Create air space to promote drying
 - \rightarrow Design for vapor diffusion drying

The 'Perfect' Assembly

- → Rain penetration control: drained cladding over water barrier
- \rightarrow Air leakage control: robust air barrier system
- \rightarrow Heat control: continuous insulation layer
- \rightarrow Locate all barriers **exterior** of structure
 - \rightarrow Keep structure warm and dry
- \rightarrow 50+ year old concept!

Wood-Frame Assemblies - 'Perfect' Wall

EXTERIOR

- Cladding
- Airspace (ventilated)
- 1x3 wood strapping, screwed through Insulation
- Rigid, mineral-fibre insulation (thickness to meet R-value requirement)
- Vapour-permeable sheathing membrane
- Sheathing (plywood or OSB)
- 2x4 or 2x6 wood framing with batt insulation
- Polyethylene film (cold climates only)
- Gypsum board and paint INTERIOR

Wood-Frame Assemblies – 'Perfect' Roof

EXTERIOR

- Pavers and pedestal system (roof deck)
- Waterproof roof membrane system
- Protection board
- Rigid insulation layers
- SAM air/vapour barrier
- Roof sheathing
- Roof joists
- Interior gypsum board

INTERIOR

Wall-to-Roof Detail

Details - Continuity of Control Layers

- → In practice, need to evaluate and design assemblies and details that are not 'perfect'
- → Continuity of control layers within and between assemblies is critical
- \rightarrow More on this later

Wall Assembly in Florida

INTERIOR

AC & DRY

Temperature - 70F Dew Point - 50F

EXTERIOR HOT & HUMID Temperature – 90F

Dew Point – 75F

Wall Assembly in Florida

INTERIOR

AC & DRY

Temperature - 70F Dew Point - 50F

EXTERIOR HOT & HUMID Temperature – 90F

Dew Point – 75F

INTERIOR

AC & DRY

Temperature - 70F Dew Point - 50F

EXTERIOR HOT & HUMID Temperature - 90F Dew Point - 75F

INTERIOR

AC & DRY

Temperature – 70F Dew Point – 50F

EXTERIOR

HOT & HUMID

Temperature - 90F Dew Point - 75F

INTERIOR

AC & DRY

Temperature - 70F Dew Point - 50F

INTERIOR

AC & DRY

Temperature - 70F Dew Point - 50F

INTERIOR

AC & DRY

Temperature - 70F Dew Point - 50F

Case Study

Deep Energy Retrofit

- → Moisture damage at walls and windows
- → Concealed barrier stucco cladding
- → Vented low-slope roof assembly
- → Energy efficient rehabilitation of wall, window, and roof assemblies

5-Storey Wood-frame w/ Exterior Insulation

New Exterior Wall Assembly

New Sloped Roof / Overhang Assembly

New Low-Slope Roof Assembly

Completed Building Enclosure

Summary

- \rightarrow Control moisture, air, and heat
- \rightarrow Best practices:
 - \rightarrow Rainscreen cladding
 - → Keep structure warm and dry: control layers on exterior
- \rightarrow 'Less than perfect' practices:
 - → Analyze and understand hygothermal behavior
- → Provide continuity of control layers within and between assemblies and details

This concludes The American Institute of Architects Continuing Education Systems Course

Colin Shane - cshane@rdh.com www.rdh.com

