#### MASS TIMBER: CONSTRUCTION CONSIDERATIONS

Disclaimer: This presentation was developed by a third party and is not funded by WoodWorks or the Softwood Lumber Board



### Agenda

- Procurement
- Design Coordination
- Construction Considerations
- Cost Analysis



#### Procurement



# **Supply Chain**



### **Manufacturer Selection**

- Domestic vs. International Sourcing
- Varying Panel Fabrication Size Limits
- Engineering Support to Optimize Column Grid
- Panel Width Shipping Constraints Land vs. Sea
- Proximity to Jobsite / Shipping Costs
- Supplier Only vs. Turn-Key
- Sustainability FSC vs. SFI Certification
- Aesthetic Considerations
- Wood Species & Stains



# **CLT Layup Combinations**

#### CLT

# X-LAM

#### NORDIC X-LAM CROSS-LAMINATED TIMBER

Nordic X-Lam cross-laminated timber is made of at least three orthogonal layers of graded sawn lumber that are laminated by gluing with structural adhesives.

#### BLABS AND PANELS

Layup combinations 89-31, 105-31, 143-55.175-55. 197-78, 213-71, 244-78, 244-71 and 287-81

Maximum sizes 2.44 × 19.5 m (8 × 64.71)

Stress grade #1 (L 1950Fb and T No. 3/Stud)



#### NENDIC X-LAM LAYOF COMBINATIONS.

3 LAYERS

#### -

|  | - |  |   |
|--|---|--|---|
|  |   |  | = |

# 213-71

7 LAYERS

197.7=

244-71

| 9 LAYERS | 1.44.1 | 1.2 | (a) |      | -        |
|----------|--------|-----|-----|------|----------|
|          | - 91   | _A. | YI. | - 71 | <u> </u> |
|          |        |     |     |      |          |
|          |        |     |     |      |          |

| -     | -           |   |   |   |
|-------|-------------|---|---|---|
|       | · · · · · · |   |   |   |
| -     | -           |   | - | _ |
| -     | -           |   | - | - |
|       |             |   |   |   |
| <br>_ | -           |   |   | _ |
|       |             | - |   | _ |

#### SILAYERS.

| 143 | 96 U |   |       |       |
|-----|------|---|-------|-------|
|     |      |   |       |       |
|     | 1    | - | 1.010 |       |
| -   |      |   |       | 1.1.1 |

#### 175.5.

| 100 | 100   |   |   |   |      |   |
|-----|-------|---|---|---|------|---|
|     | -     | 1 | - | - |      | - |
|     |       |   |   | - |      |   |
|     | 1.2.2 |   |   |   | 1.00 |   |

| 100  |   | _ | _ | - |     |
|------|---|---|---|---|-----|
| 1000 |   |   |   |   | 1.1 |
|      | _ | _ | _ | _ | -   |
|      |   | _ | _ |   |     |





#### **Procurement Best Practices**



- Early Go/No-Go Decision on Mass Timber
- CM/GC design-assist
- Early Supplier Selection vs. Competitive Bid
- Layout column grid with supplier input
- Maximize time for design coordination
  - Shop drawing release
  - Connection details
  - MEP coordination
- Transfer of Revit model to contractor



#### **Procurement Best Practices**

#### Mass Timber is not a Commodity Material!



#### **Design Coordination**



# **MEP Coordination**

- MEP systems are primarily exposed
- Heightened focus on MEP routing
- Prefabrication coordination
- Coordinated ceiling/soffit locations







#### **MEP Coordination**





#### **MEP Coordination**



# **MEP Coordination Best Practices**

- Identify aesthetic MEP routing goals early
- Determine extent of future flexibility required
- Optimize REVIT model criteria & timing of handoff
- Prioritize MEP penetration coordination
- Consolidate MEP systems in soffits/dropped ceilings
- Maximize shop penetrations made with CNC machine
- Minimize field penetrations



#### **Acoustic Assemblies**



#### **Construction Considerations**



# **Faster Construction Schedule**

Up to 40% Faster than Concrete

- Concurrent CLT core wall erection
- Eliminate re-shores
- Accelerated start of MEP rough-in
- No field welding
- Reduced manpower & crew size
- Prefabrication / precision-fit
- Minimal weather protection
- No temp heat required

| Line | Namo                                    | OD   | ALTS Describer                          | anary Parate March                             |
|------|-----------------------------------------|------|-----------------------------------------|------------------------------------------------|
| t.   | Mass Timber                             | 274  |                                         |                                                |
| ż.   | Stair 2 Core                            | 14   | Date 2 Care                             |                                                |
| 8    | Stair 1 Core, Elevator, And Shear water | 50   | Star 1                                  | Corn, Desator, And Durar sails                 |
| 4    | Level 1 Columns                         | \$d  | E Lovel                                 | 1 Coharters                                    |
| 5    | Level 1 Beams                           | 44   |                                         | Land L Baars                                   |
| 6    | Level 2 Dock                            | 2.0  | 000000000000000000000000000000000000000 | Erevel 2 Decis                                 |
| ŕ    | MEP/Exterior/Interior Start Level 1     | 00   |                                         | · HEF/Emerge/Interior Start Level 1            |
| ñ    | Level 2 Columns                         | 1d   | 9////////////////////////////////////// | Lanet 2 Columns                                |
| 8    | Level 2 Deams                           | 44   | 11111111111111                          | Lovel 2 Deserve                                |
| 10   | Level 3 Deck                            | 20   |                                         | Lovel Libert                                   |
| 11   | Level 3 Columna                         | 3.0  | 777777777777777777777777777777777777777 | E havet 3 Columns                              |
| 1Z   | Level 3 Beams                           | 4d   |                                         | Lavel 3 Degra                                  |
| 1.2  | Level 4 Deck                            | 20   | 01010000000000                          | E tout + Date                                  |
| 14   | Concrete                                | 44d  |                                         | *******                                        |
| 15   | Shair 2 Core                            | 200  |                                         | Inav 3 Dee                                     |
| 16   | Stair 1 Core, Elevator, And Shear walls | 304  |                                         | Star 5 Core, Elevativ, And Shoai walls         |
| 17   | Level 1 Columna                         | 30   | Lavel à Ca                              | -mm \$5500.500 \$555(600.000                   |
|      | Level 2 Dock                            | fid  |                                         | Lanet 2 Deck                                   |
| 19   | Level 2 Columns                         | 34   |                                         | Level 2 Externa                                |
| 20   | Level 3 Deck                            | 60   | 2000000000000                           | Laver 3 Deck                                   |
| 15   | Level 3 Columns                         | 1-3d |                                         | // 🛄 Levell 3 Exheren ////////                 |
| 22   | MEP Start (Lavel 1 Only)                | . 0d | 910000000000000                         | (1) O HEP Start Based & Orig) (1)              |
| 23   | Level 4 Deck                            | 60   |                                         | STATE and A Deck COLORS                        |
| 24   | Steel                                   | 45d  |                                         | 9/35207/2 50/0//0//0//                         |
| 25   | Blair 2 Core                            | 264  |                                         | Sine ¿ Core                                    |
| 261  | Stair 1 Core, Elevator, And Shear wate  | 300  |                                         | Star 1 Core, Elevator, And Sheer water         |
| 27   | Level 1 Columns                         | \$d  |                                         | Lavel 1 Column                                 |
| 28   | Level 1 Beams                           | #d   |                                         | Lorest 1 Bearry                                |
| 29   | Level 2 Deck                            | 50   |                                         | Linest 3 Dank                                  |
| 30   | MEP - Start Level 1                     | 00   |                                         | • HEP - Start Layed &                          |
| 11   | Level 2 Columns                         | 1d   |                                         | E Lavel & Columbus                             |
| 32   | Level 2 Bearts                          | -4d  |                                         | Louis 2 Bours                                  |
| 83   | Level 3 Deck                            | 50   |                                         | Example Level 3 Deck                           |
| 34   | Level 3 Columns                         | 10   | 000000000000000000000000000000000000000 | Lavel 2 Concerns                               |
| 35   | Level 3 Beams                           | 44   | 20000000000000                          | 2/// End Level 2 Bearry ////////               |
| 36   | Level 4 Deck                            | 5d   |                                         | Savel 4 Deck (1777)                            |
| 0.00 | 6 MOCH 00 99 SS                         | -    |                                         | SINCOLO 60010000000000000000000000000000000000 |
|      |                                         |      |                                         |                                                |
|      |                                         |      |                                         |                                                |



### **Reduced Construction Waste**

- Prefabricated components
- Precision-fit
- No scrap material or field cuts
- Less deliveries / construction traffic
- Smaller onsite workforce
- Less impact on water quality



#### **Construction Tolerances**



Dissimilar structural material tolerances

- Allowable tolerances ACI, AISC
- Steel: +/- 1/2"
- Concrete: 1/4" in 10 ft., up to 1'
- Mass Timber: 1/16"

#### **Quality Control**

- Build tolerance into the interface detail
- Base plate layout & verification
- Overlay field scan with 3D model



#### **Hybrid Structures**



# **Erection Sequence**

- Shear wall bracing plan
- Early establishment of diaphragm lock the building in
- Coordination w/ Just-in-Time material delivery
- Ensure erection sequence aligns with details





#### **Site Logistics**



- Alignment with supplier fabrication sequence
- Optimize lay down area & crane placement
- Onsite vs. Offsite Marshalling Yard
- Goals:
  - Pick CLT panels directly off the trailer
  - Eliminate double-handling
  - Eliminate onsite storage of material



# **Protection of Finishes**

- Working around finished material earlier than typical
- Communicate expectations with craft workers
- Padded rigging & dunnage
- Protection in high traffic areas
- Column protection
- Manage UV light exposure





### **Moisture Management**

- Stain mitigation rust bleed, water, oil, grease
- Prime all steel connections
- Eliminate standing water
- Eliminate trapped moisture
- Seal joints in CLT panels
- Temp roofing membrane





#### **Cost Analysis**



# **Pavilion at Laurel Village**

**Construction Type** 2-stories, 11,500 SF Type V-B – unprotected wood frame

Hybrid Structure Floor Panels – 5-ply CLT Roof Panels – 7-ply CLT Frame – Glulam beams & HSS Columns Lateral System – CMU Walls

#### **Cost Drivers**

Unique geometry Asymmetrical column grid Limited full size CLT panels Long roof spans – thicker CLT panels

Superstructure Cost \$82/SF (2020 dollars)



Level 2 CLT Panel Layout

### **Burwell Center for Career Achievement**

Construction Type 3-stories – 23,300 SF Type III-B – Unprotected Combustible

Mass Timber Structure Floor Panels – 3-ply CLT w/ 3" concrete toppir Roof Panels – 3-ply CLT Frame – Glulam beams & columns Lateral System – 5-ply CLT wall panels

#### **Cost Drivers**

Unique geometry – radiused perimeter edge Optimized column grid & beam sizes Exposed connections Small footprint w/ limited repetition

Superstructure Cost \$53/SF (2020 dollars)



# Impact of Construction Type

| Location of Event Space | Rooftop   | 1 <sup>st</sup> Floor |
|-------------------------|-----------|-----------------------|
| Construction Type       | III-A     | III-B                 |
| Assembly Group          | A-3       | A-3                   |
| Fire Resistive Rating   | 1-Hr      | Not required          |
| Connections             | Concealed | Exposed               |
| CLT Panel Thickness     | 5-Ply     | 3-Ply                 |
| Superstructure Cost/SF  | \$65/SF   | \$53/SF               |





# **TMBR Condominiums**

Construction Type 10-stories – 120' tall 217,000 SF Type IV-B

Mass Timber Structure Floor Panels – 5-ply CLT w/ 2 ¼" concrete topping Roof Panels – 7-ply CLT Frame – Glulam beams & columns Lateral System – Concrete core walls

#### **Cost Drivers**

7-ply CLT band-beams at column lines Efficient geometry & column grid Limited exposure of CLT ceilings

Mass Timber Superstructure Cost \$46/SF (2020 dollars)





### **Cost Drivers**

| Superstructure Costs | Mass Timber | Concrete | Structural Steel |
|----------------------|-------------|----------|------------------|
| Low Range            | \$40/SF     | \$38/SF  | \$36/SF          |
| High Range           | \$70/SF     | \$52/SF  | \$45/SF          |

#### Superstructure Cost Drivers

- Construction type & fire rating
- Size & geometry of building
- Structural column grid
- CLT panel spans & thickness
- Panel size & shapes
- Depth of glulam beams
- Connection details
- Acoustic floor assembly

#### **Offsetting Factors – Beyond Superstructure**

- Schedule reduction up to 40% faster on superstructure work
- Enhanced trade flow no re-shores
- Smaller foundations
- Reduced floor to floor height
- Reduction in ceiling finishes
- Smaller crane size
- Reduce temp heating costs



#### Thank you!

Ankit Sanghvi Preconstruction Manager PCL Construction Services asanghvi@pcl.com