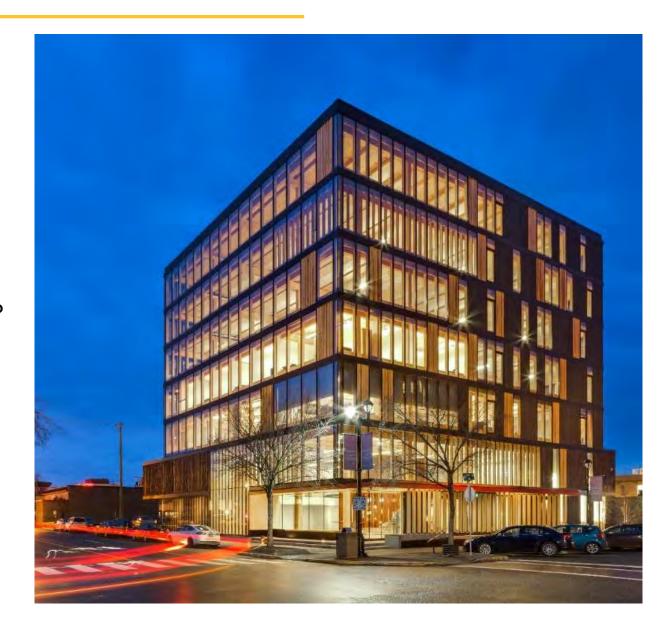
MASS TIMBER CONSTRUCTION MANAGEMENT

DESIGN ENGAGEMENT & SITE PLANNING


Building the Team

Considerations:

- □ Procurement method
- ☐ Design phase
- ☐ Team experience with mass timber
- ☐ Understanding of current code
- ☐ Has a decision on the use of mass timber been made?

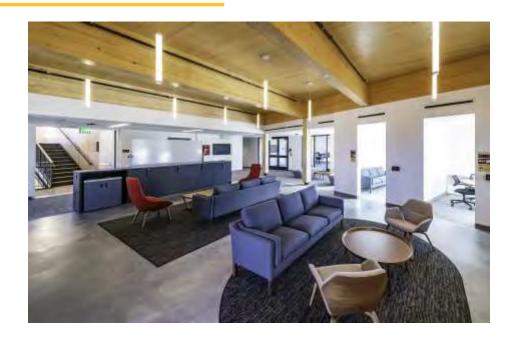
Design-Assist Subcontractors:

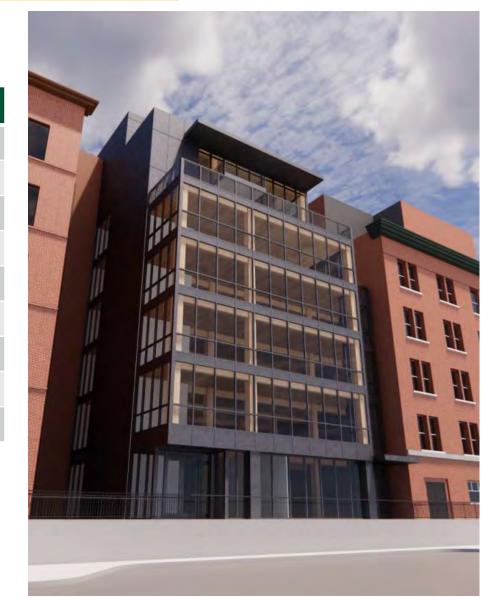
- Mass timber supplier
- Mass timber erector
- MEP subcontractors

Structure Comparison

Concept Pricing Considerations:

- ☐ Construction type
- ☐ Fire resistance rating
- ☐ Floor-to-floor height
- ☐ Structural grid & column spacing
- ☐ Transfer slab/beams (i.e. U/G parking)
- ☐ Lateral resistance frame & shear walls
- ☐ Foundation sizing & type
- ☐ Interior finishes
- ☐ Core & shell vs. fully built-out
- ☐ LEED/sustainability requirements
- ☐ Construction duration




Impact of Construction Type

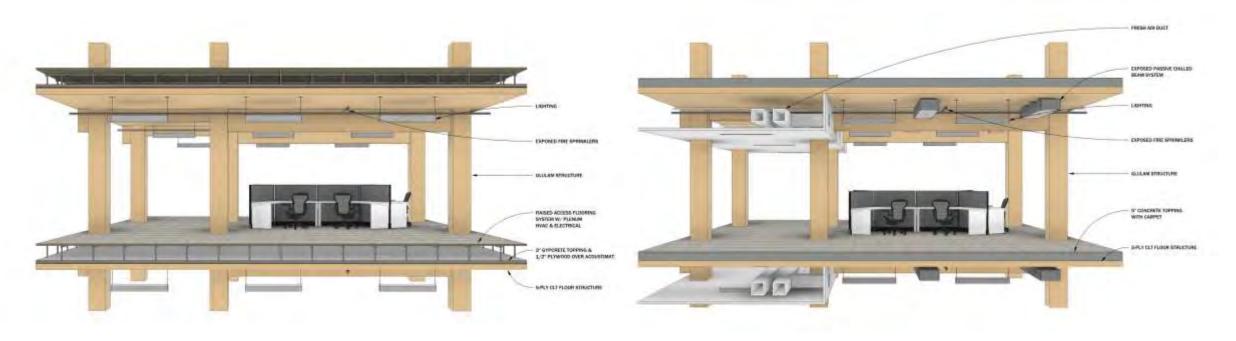
Location of Event Space	Rooftop	1 st Floor
Construction Type	III-A	III-B
Assembly Group	A-3	A-3
Fire Resistive Rating	1-Hr	Not required
Connections	Concealed	Exposed
CLT Panel Thickness	5-Ply	3-Ply
Superstructure Cost/SF	\$65/SF	\$53/SF

Impact of Construction Type

	Office & Residential	Office Only
Floors	9-stories	8-stories
Building Height	92'-6"	80'-6"
Construction Type	IV-B	IV-C
Occupancy	B & R-2	В
Fire Resistive Rating	2-Hr	2-Hr
Exposed Ceilings	30%	100%
Connections	Concealed	Concealed
CLT Panel Thickness	5-Ply	3-Ply
Superstructure Cost/SF	\$77/SF	\$62/SF

Manufacturer Selection

- Domestic vs. International Sourcing
- Varying Panel Fabrication Size Limits
- ☐ Engineering Support
- ☐ Panel Width Shipping Constraints Land vs. Sea
- Proximity to Jobsite / Shipping Costs
- ☐ Supplier Only vs. Turn-Key
- ☐ Sustainability FSC vs. SFI Certification
- Aesthetic Considerations
- Wood Species & Stains



Procurement Best Practices

- ☐ Early Go/No-Go Decision on Mass Timber
- ☐ Design-assist involvement
- ☐ Early supplier selection vs. competitive bid
- ☐ Optimize structural grid with supplier input
- ☐ Maximize time for design coordination
 - ☐ Shop drawing release
 - MEP coordination
 - ☐ Fabrication lead time
 - ☐ Constructability reviews
- ☐ Transfer of Revit model to contractor

MEP Coordination

Raised Access Flooring

Overhead Routing w/ Soffits

Case Study: Wood Innovation & Design Center

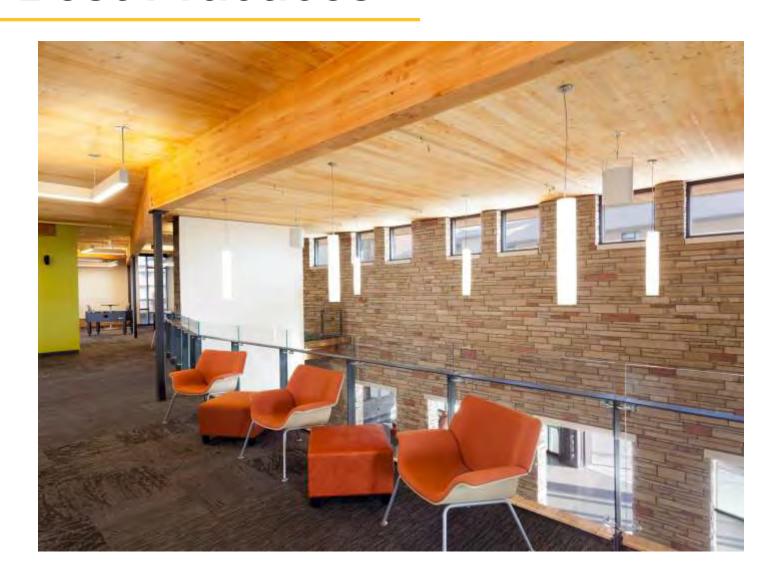
Case Study: CSU Pavilion at Laurel Village

1st CLT project in Colorado (2014)

LEED Platinum certification

- No topping slabs at floor assembly
- ☐ Rigid insulation at roof assembly
- ☐ Long span, exposed ceilings
- ☐ Extensive use of mockups

Case Study: DU Burwell Center


Challenge: No exposed conduit!

- Well defined space programming
- Originally explored access flooring
- ☐ 3" topping slabs at floor & roof assembly
- ☐ 3D model ALL conduit
- ☐ Penetration overlay with CLT shop drawings
- ☐ Strategic placement of soffits & ceilings
- Topping slab reinforcing

MEP Coordination: Best Practices

- ☐ Identify aesthetic MEP routing goals early
- ☐ Determine extent of flexibility required
- ☐ Early transfer of REVIT model
- ☐ Prioritize MEP penetration coordination
- ☐ Consolidate MEP in soffits/ceilings
- Maximize shop penetrations made withCNC machine in factory
- ☐ Minimize field penetrations

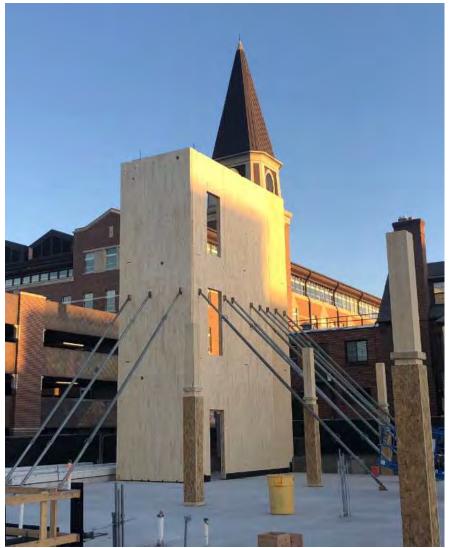
Critical Early Design Decisions

- Structure type
- ☐ Structural grid
- ☐ Select mass timber supplier
- ☐ Building height
- □ Construction type
- ☐ Fire Resistance Rating
- □ Occupancy Classification
- MEP systems
- MEP routing goals
- ☐ Floor-to-floor height

Construction Tolerances

Dissimilar structural material tolerances

- Allowable tolerances ACI, AISC
- Steel: +/- 1/2"
- Concrete: 1/4" in 10 ft., up to 1"
- Mass Timber: 1/16"


Quality Control

- Build tolerance into the interface detail
- Base plate layout & verification
- Overlay field scan with 3D model

Erection Sequence

- Shear wall bracing plan
- Early establishment of diaphragm lock the building in
- Coordination w/ Just-in-Time material delivery
- Ensure erection sequence aligns with details

Site Logistics

Targeted Goals:

- Pick CLT panels directly off the trailer
- Eliminate double-handling
- Eliminate onsite storage of material

Best Practices

- Align erection and fabrication sequence
- Optimize lay down area & crane placement
- Onsite vs. Offsite Marshalling Yard

Thank you!

