

New Options for Tall Timber Buildings in California: Understanding Codes and Design

Presented on 09/17/20 by Mike Romanowski, SE

hoto: Kaiser+Path

Course Description

New tall mass timber code provisions approved for the 2021 International Building Code (IBC) will allow up to 18 stories of wood construction. The California Building Code (CBC) is also poised to permit tall timber buildings, but following a slightly different path. In August of 2020, the California Building Standards Commission unanimously approved a series of code changes based on the new IBC provisions, but with California-specific modifications. Attendees will learn how tall wood buildings will be covered in both the 2021 IBC and the 2019 CBC. Starting with a review of the technical research and testing that supported the provisions, we'll then take a detailed look at the new code language and methods of addressing the requirements. Topics will include fire-resistance ratings and allowances for exposed timber, penetrations, sprinklers, connections, exterior walls, and more. Designers can expect to take away the knowledge they need to pursue tall wood projects.

Learning Objectives

- 1. Review the global history of tall wood construction and highlight the mass timber products used in these structures.
- 2. Explore the work and conclusions of the ICC Ad Hoc Committee on Tall Wood Buildings in establishing 14 new Group A and 3 new Group B code provisions for the 2021 IBC that address tall wood construction.
- 3. Discuss code-compliant options for exposing mass timber, where up to 2hour fire-resistance ratings are required, and demonstrate design methodologies for achieving these ratings.
- 4. Review code requirements unique to tall wood buildings, focusing on items such as sprinklers, shaft construction and concealed spaces.

Questions we'll answer:

- What is tall wood?
- How tall is tall?
- What has been done?
- What wood products are used in tall wood?
- What does the Code allow now?
- How did we arrive at the proposed tall wood code changes?
- What are the new tall wood code provisions?

TALL WOOD IN NORTH AMERICA CIRCA 1906 9 STORIES THE LANDING, VANCOUVER

GLOBAL TALL WOOD CIRCA 2019 18-24 STORIES

TALL WOOD IN THE US CIRCA 2019

8 STORIES

Photos: Baumberger Studio/PATH Architecture/Marcus Kauffman | Architect: PATH Architecture

HEAVY TIMBER

Federal Center South, Seattle, WA Photo: Benjamin Benschneider

MASS TIMBER

Bullitt Center, Seattle, WA Photo: John Stamets

GLULAM

CROSS-LAMINATED TIMBER (CLT) NAIL-LAMINATED TIMBER (NLT)

DOWEL-LAMINATED TIMBER (DLT) MASS PLYWOOD PANELS (MPP)

DECKING

OFFICES | MULTI-FAMILY | COMMERCIAL | EDUCATIONAL

WHY TALL WOOD?

GLOBAL POPULATION BOOM

Global Population 7.6 billion now 9.8 billion by 2050 30% increase

Source: United Nations Department of Economic and Social Affairs

^{© 2018} United Nations, DESA, Population Division. Licensed under Creative Commons license CC BY 3.0 IGO.

Construction Traffic & Noise

Material Stockpiles Labor Costs Labor Availability Weather Risks

Resiliency Sustainability Fire & Life Safety

ESTIMATED ENVIRONMENTAL IMPACT OF WOOD USE

Volume of wood products used: 2,233 cubic meters of CLT and Glulam

U.S. and Canadian forests grow this much wood in: 6 minutes

Carbon stored in the wood: 1,753 metric tons of CO,

Avoided greenhouse gas emissions: 679 metric tons of CO₂

Total potential carbon benefit: 2,432 metric tons of CO,

THE ABOVE GHG EMISSIONS ARE EQUIVALENT

511 cars off the road for a year

Energy to operate a home for 222 years

"Estimated by the Wood Carbon Calculator for Buildings, based on research by Sather, 8. and J. D'Connor, 2010, A Synthesis of Research on Wood Products and Creenhouse Cas

end J. D'Connor, 2010, A Synthesis of Research on Wood Products and Greenhouse G Impacts, FPInnovations (this minter to carbon stored and availed GHG).

*CO2 in this case study refers to CO2 equivalent

Source: Naturally:Wood9

Reduced Embodied Carbon

Brock Commons, Vancouver, BC

Photo Credit: UBC

MARKET DRIVERS FOR MASS TIMBER

PRIMARY DRIVERS

- » Construction efficiency & speed
- » Construction site constraints urban infill
- » Innovation/Aesthetics

SECONDARY DRIVERS

 » Carbon reductions
 » Structural performance – lightweight

TALL WOOD IN THE U.S.

©2011 NATTAROL PORNSALNUWAT WWW.INTEGELOCKSTUDIO.COM

» Current Prescriptive Code Limit - 6 stories (B occupancy) or 85 feet

» Over 6 Stories - Alternate Means and Materials Request (AMMR) through performance-based design

» Based on the 1910 Heights and Areas Act

U.S. BUILDING CODE STATUS

Photo: Ema Peter

U.S. TALL WOOD DEVELOPMENT AND CHANGES

Seen as the catalyst for the mass timber revolution, CLT IS first recognized in US codes in the 2015 IBC

[BS] CROSS-LAMINATED TIMBER. A prefabricated engineered wood product consisting of not less than three layers of solid-sawn lumber or *structural composite lumber* where the adjacent layers are cross oriented and bonded with structural adhesive to form a solid wood element.

2303.1.4 Structural glued cross-laminated timber. Crosslaminated timbers shall be manufactured and identified in accordance with ANSI/APA PRG 320.

U.S. TALL WOOD DEVELOPMENT AND CHANGES

In December 2015, the ICC Board established the ICC Ad Hoc Committee (AHC) on Tall Wood Buildings. Objectives:

- 1. Explore the building science of tall wood buildings
- 2. Investigate the feasibility of tall wood buildings
- 3. Take action on developing code changes for tall wood buildings

Taller wood buildings create new set of challenges to address:

AHC established 6 performance objectives:

- 1. No collapse under reasonable scenarios of complete burn-out of fuel without automatic sprinkler protection being considered.
- 2. Highly reliable fire suppression systems to reduce the risk of failure during reasonably expected fire scenarios. The degree of reliability should be proportional to evacuation time (height) and the risk of collapse.

Performance Objectives

- 3. No unusually high radiation exposure from the subject building to adjoining properties to present a risk of ignition under reasonably severe fire scenarios.
- 4. No unusual response from typical radiation exposure from adjacent properties to present a risk of ignition of the subject building under reasonably severe fire scenarios.

Performance Objectives

- 5. No unusual fire department access issues.
- 6. Egress systems designed to protect building occupants during the design escape time, plus a factor of safety.

U.S. BUILDING CODES Tall Wood Ad Hoc Committee

Commissioned series of 5 full-scale tests on 2-story mass timber structure at ATF lab in MD, May-June 2017

Figure 1. General plan view of cross-laminated timber text structure.

U.S. BUILDING CODES Tall Wood Ad Hoc Committee

Test	Description	Construction Type
Test 1	All mass timber surfaces protected with 2 layers of 5/8" Type X Gypsum. No sprinklers.	IV-A
Test 2	30% of CLT ceiling area in living room and bedroom exposed. No sprinklers.	IV-B
Test 3	Two opposing CLT walls exposed – one in bedroom and one in living room. No sprinklers.	IV-B
Test 4	All mass timber surfaces fully exposed in bedroom and living room. Sprinklered – normal activation.	IV-C
Test 5	All mass timber surfaces fully exposed in bedroom and living room. Sprinklered – 20 minute delayed activation.	IV-C

TEST 1 (100% GWB protection, no sprinklers)

Photos provided by U.S. Forest Products Laboratory, USDA

Source: AWC

TEST 2 (partial GWB protection, no sprinklers)

Photos provided by U.S. Forest Products Laboratory, USDA

Source: AWC

TEST 3 (partial GWB protection, no sprinklers)

Photos provided by U.S. Forest Products Laboratory, USDA

Source: AWC

TEST 4

All mass timber surfaces fully exposed in bedroom and living room.

Sprinkler – normal activation

Source: AWC

Photos provided by U.S. Forest Products Laboratory, USDA

TEST 5

All mass timber surfaces <u>fully exposed</u> in bedroom and living room.

Sprinkler – activation delayed for 20 minutes after smoke detector activation...approximately 23-1/2 minutes from ignition

Although not directly affiliated with the TWB AHC, other mass timber and tall wood testing & research was occurring, the results of which the AHC included in their final decisions

Fire Safety Challenges of Tall Wood Buildings – Phase 2: Task 5 – Experimental Study of Delamination of Cross Laminated (CLT) Timber in Fire

DEVELOPMENT OF A FIRE PERFORMANCE ASSESSMENT METHODOLOGY FOR QUALIFYING CROSS-LAMINATED TIMBER ADHESIVES

Fire Resistance Testing of CLT Floor/Ceiling Assemblies to Establish Contribution of Gypsum Protection

U.S. BUILDING CODES DEVELOPMENT AND CHANGES

ICC TWB Ad Hoc Committee Group A proposals consisted of the following 14 parts:

Requirements for the new Types of Construction:

- IBC Section 602.4 Type of Construction (G108-18)
- IBC Section 703.8 Performance Method for Fire Resistance from Noncombustible Protection (FS5-18)
- IBC Section 722.7 Prescriptive Fire Resistance from Noncombustible Protection (FS81-18)
- IBC Section 703.9 Sealants at Edges (FS6-18)
- IBC Section 718.2.1 Fire and Smoke Protection (FS73-18)
- IBC Section 403.3.2 High-Rise Sprinkler Water Supply (G28-18)
- IBC Section 701.6 Owners' Responsibility (F88-18)
- IFC Section 3308.4 Fire Safety During Construction (F266-18)

Allowable building size limits:

- IBC Table 504.3 Building Height (G75-18)
- IBC Table 504.4 Number of Stories (G80-18)
- IBC Table 506.2 Allowable Area (G84-18)

Housekeeping changes:

- IBC Section 3102 Special Construction (G146-18)
- IBC Appendix D Fire Districts (G152-18)
- IBC Section 508.4 and 509.4 Fire Barriers (G89-18)

TALL WOOD APPROVED!

Unofficial results posted Dec. 19, 2018 Final votes ratified Jan. 31, 2019 AWC: Tall Mass Timber code changes get final approval

Dec 19, 2018

LEESBURG, VA. – The International Code Council (ICC) has released the unofficial voting results on code change proposals considered in 2018, including passage of the entire package of 14 tall mass timber code change proposals. The proposals create three new types of construction (Types IV-A, IV-B and IV-C), which set fire safety requirements, and allowable heights, areas and number of stories for tall mass timber buildings. Official results are expected to be announced during the first quarter of 2019. The new provisions will be included in the 2021 International Building Code (IBC).

"Mass timber has been capturing the imagination of architects and developers, and the ICC result means they can now turn sketches into reality. ICC's rigorous study, testing and voting process now recognizes a strong, low-carbon alternative to traditional tall building materials used by the building SO WHAT'S CHANGED??

Since its debut, IBC has contained 9 construction type options

5 Main Types (I, II, III, IV, V) with all but IV having sub-types A and B

TYPE I		TYPE II		TYPE III		TYPE IV	TYPE V	
А	В	Α	В	Α	В	HT	Α	В

U.S. BUILDING CODES Tall Wood Construction Types

Three Main Categories:

- 1. Noncombustible (Types I and II)
- 2. Light-Frame (Types III and V)
- 3. <u>Heavy/Mass Timber (Type IV)</u>

Use of heavy/mass timber products in low- to mid-rise buildings of Types III and V construction is very common

U.S. BUILDING CODES Tall Wood Ad Hoc Committee

2021 IBC Introduces 3 new tall wood construction types:

IV-A, IV-B, IV-C

Previous type IV renamed type IV-HT

BUILDING	TYPE	1	TYPE	11	TYPE	III	TYPE	IV			TYPE	V
ELEMENT	Α	В	Α	В	Α	В	Α	В	С	HT	Α	В

Credit: Susan Jones, atelierjones

WARDINGTOOD COMPARED AND ADDRESS AND DESIGN AFTER A TO ADDRESS ADDR

BUSINESS OCCUPANCY [GROUP B]

Type IV-A

16 STORIES BAILDING HEIGHT 2/10 ALLOWARLE BUILDING AREA 972,000 SF AVERAGE AREA PER INTORY 54,000SF

TYPE IV-A

Credit: Susan Jones, atelierjones

Photos: Structurlam, naturally:wood, Fast + Epp, Urban One

Type IV-A Protection vs. Exposed

18 STORIES BUILDING HEIGHT 270 ALDWARLE BUILDING AREA 972,000 SF AVETIAGE AREA PER BTORY 54,0005F

TYPE IV-A

Credit: Susan Jones, atelierjones

100% NC protection on all surfaces of Mass Timber

Type IV-A Height and Area Limits

18 STORIES BUILDING HEIGHT 270 ALLOWADLE BUILDING AREA 972,000 SF AVERIAGE AREA PER UTORY 54,0005F

TYPE IV-A

Occupancy	# of Stories	Height	Area per Story	Building Area
A-2	18	270 ft	135,000 SF	405,000 SF
В	18	270 ft	324,000 SF	972,000 SF
Μ	12	270 ft	184,500 SF	553,500 SF
R-2	18	270 ft	184,500 SF	553,500 SF

Areas exclude potential frontage increase

In most cases, Type IV-A height & story allowances = 1.5 × Type I-B height & story allowances

Type IV-A area = 3 × Type IV-HT area

Type IV-B

12 STORIES BUILDING HEIGHT 500 FT ALLOWABLE BUILDING AREA 646,000 SF AVERAGE AREA PER STORY 54,0000F

TYPE IV-B

Credit: Susan Jones, atelierjones

Credit: LEVER Architecture

Type IV-B Protection vs. Exposed

12 STORIES BUILDING HEIGRT 500 FT ALLOWALLE BUILDING AREA 646,000 SF AVERADE AREA PER STORY 54,0000F

TYPE IV-B

Timber excep

NC protection on all surfaces of Mass Timber except limited exposed areas

≈20% of ceiling or ≈40% of wall can be exposed, see code for requirements

Credit: Susan Jones, atelierjones

Type IV-B Height and Area Limits

12 STORIES BUILDING HEIGRT 5N0 FT ALLOWALLE BUILDING AREA 649,000 SF AVERADE AREA PER STORY 54,000SF

TYPE IV-B

Credit: Susan Jones, atelierjones

Occupancy	# of Stories	Height	Area per Story	Building Area
A-2	12	180 ft	90,000 SF	270,000 SF
В	12	180 ft	216,000 SF	648,000 SF
Μ	8	180 ft	123,000 SF	369,000 SF
R-2	12	180 ft	123,000 SF	369,000 SF

Areas exclude potential frontage increase

In most cases, Type IV-B height & story allowances = Type I-B height & story allowances

Type IV-B area = 2 × Type IV-HT area

Type IV-C

STORIES BUILDING HEIGHT HI ALLOWARE EBUILDING AREA AVERAGE AREA PER STORY #5,000 SF

TYPE IV-C

Photos: Baumberger Studio/PATH Architecture/Marcus Kauffman

Credit: Susan Jones, atelierjones

Type IV-C Protection vs. Exposed

9 STORES BRALDING HEIGHT BI ALLOWAILE BIALDING AREA 405,000 SF MYERADE AREA PER STORY 40,000 SF

TYPE IV-C

All Mass Timber surfaces may be exposed

Exceptions: Shafts, concealed spaces, outside face of exterior walls

Credit: Susan Jones, atelierjones

Type IV-C Height and Area Limits

9 STORES BRILDING HEIGHT ALOWARLE BRILDING APEA AUEPADE AREA PER STORY 40,000 SF

TYPE IV-C

Credit: Susan Jones, atelierjones

Occupancy	# of Stories	Height	Area per Story	Building Area
A-2	6	85 ft	56,250 SF	168,750 SF
В	9	85 ft	135,000 SF	405,000 SF
Μ	6	85 ft	76,875 SF	230,625 SF
R-2	8	85 ft	76,875 SF	230,625 SF

Areas exclude potential frontage increase

In most cases, Type IV-C height allowances = Type IV-HT height allowances, but add.'I stories permitted due to enhanced FRR Type IV-C area = 1.25 × Type IV-HT area

Tall Wood Fire Resistance Ratings (FRR)

	IV-A	IV-B	IV-C
Primary Frame or Brg Wall FRR	3 HR (2 HR at Roof)	2 HR (1 HR at Roof)	2 HR (1 HR at Roof)
Floor Construction FRR	2 HR	2 HR	2 HR
Roof Construction FRR	1.5 HR	1 HR	1 HR
Floor Surface Protection	1 inch of NC protection on top	1 inch of NC protection on top	No protection req.'d
Roof Construction Protection	2 layers 5/8" Type X gyp. on underside	2 layers 5/8" Type X gyp. on underside	No protection req.'d unless concealed space

Tall Wood Materials & Protection

Tall Wood Buildings in the 2021 IBC Up to 18 Stories of Mass Timber

Tant Deserting, Pol. 32, Second and Society (Second Math. Society, 22, page 4, March & Associety (Revent Relation), VI, 2007, DOI: https://doi.org/10.1016/j.acm/1

In Anisotre 2003 the formational Darks Convert (RCC) asymptotic is less physical to adjust tail second buildings are part of the 2023 homotechysical building. Color RCC I Based on these programs, the 2024 RC will exclude three new construction tages - Spin IV-A, VI Barriel V-C- adjusted part and of mead before or transmission building and and adjusted and based on the provide task theory. Timber particulation transmission that Will build and and additional task of mead because the visit of transient and transmission for explanations relations of the provide and and additional free explanations relating and leaders of resourced automation tasks provide and the today will building provide a discontraction tasks of the tasks of the relation of the provide provident additional tasks provide tasks the today will building provide a task additional tasks for which a community the file provides and additional tasks and the relation of the provide provident and tasks and the relation tasks and the relation of the tasks and the provident and tasks and the relation of the provide provident and the relation of the tasks and the relation of the tasks are seen and the second tasks and the relation tasks and tasks and the relation of the tasks are seen and the second tasks and tasks are relationed to tasks and tasks and tasks are tasks and tasks and tasks and the relation of the tasks are seen and the second tasks and tasks are relationed to tasks and tasks are tasks and tasks are relationed to tasks and tasks are tasks and the relation of the tasks are tasks and tasks are relationed to tasks and tasks are relationed to tasks are tasks and tasks are relationed to tasks and tasks are relationed to task

Raind or othermation finite publication in the Smucharal Explosion Republication of California SERACC 2018 Conferences Into endogs, the segant sufferences the Sackground to these protocols, feedback elements that suggested their elements and introduce changes to the SIC and product security sameters.

Background: ICC Tall Wood Building Ad Hoc Committee Out the and 10 print, them for bein a proving interest in tal'autoring constructed from more lander mamain (linearena 200, Terrore 200), Account the world train

WoodWorks Tall Wood Design Resource

http://www.woodworks.org/wp-content/uploads/wood_solution_paper-TALL-WOOD.pdf

EARLY TALL WOOD CODE ADOPTION IN CALIFORNIA

CALIFORNIA AGREES TO EARLY ADOPTION OF TALL WOOD PROVISIONS

California Building Standards Commission Passes Tall Wood Code Change Proposals

Source: Softwood Lumber Boar

On August 13, 2020 the California Building Standards Commission grouped the tall wood code change proposals into one agenda item and passed them unanimously.

The changes will be published as an amendment to the 2019 CBC on January 1, 2021 and will become effective on July 1, 2021.

California Building Standards Commission Passes Tall Wood Code Change Proposals

Source: Softwood Lumber Boar

"The early adoption of mass timber codes can be a benefit to California in many ways, but I would like to highlight three of those advantages in this proposal.

- 1. It has the potential to increase the market demand for mass timber production in California to meet the needs of the construction industry.
- 2. It will increase the pace and scale of our wildland fire prevention and forest management goals of treating 500 thousand acres per year by thinning the forest of smaller diameter trees that can be used in the production of cross laminated timber and other mass timber assemblies.
- 3. While wood products provide the benefit of storing carbon, another benefit or advantage is that mass timber construction can also help reduce the carbon footprint of concrete and steel production."
- Chief Mike Richwine, State Fire Marshal

CBC Tall Wood Building Size Limits

The CBC has historically not allowed "double-dipping" for sprinkler increases of building height and area for A, E, H, I, L or R occupancies. The IBC has no such restriction.

Also specific to the CBC, for multi-story buildings that are A, E, H, I, L or R occupancies, the total allowable building area is equal to the allowable floor area multiplied by the number of stories, not to exceed 2. In the IBC, this value is 3 for all occupancies.

This is also the case for Tall Wood.

	VS.	
Larger Area	•	Taller

CBC Tall Wood Building Size Limits

For example, if using the sprinkler area increases, the allowable height in the CBC is 20 ft and 1 story less than the IBC limits for Type IV-A, IV-B and IV-C construction for A, E, H-4, I-4, R-1 and R-2 occupancies.

0000040004	TYPE OF CONSTRUCTION							
OCCUPANCY		TYPE IV						
CLASSIFICATION	SEE FOOTNOTES	A	B	<u>C</u>	HT			
DEMCII	NS ^b	<u>65</u>	<u>65</u>	<u>65</u>	65			
B, F, M, S, U	S	<u>270</u>	180	<u>85</u>	85			
	NS°	<u>65</u>	<u>65</u>	<u>65</u>	65			
A, E	S (without area increase)	<u>270</u>	<u>180</u>	<u>85</u>	85			
	S (with area increase)	250	160	65	65			

CBC Tall Wood Building Size Limits

			Construct	ion Type (<u>Sprir</u>	nklered Values)		
	I-A	I-B	<u>IV-A</u>	IV-B	IV-C	IV-HT	III-A
Occupancies		Allowable	Building Heigh	t above Grade	Plane, Feet (CI	BC Table 504.3)	
B, F, M, S, U, R-3, R-4	Unlimited	180*	<u>270</u>	<u>180</u>	<u>85</u>	85	85
A, E, R-1, R-2 (w/ area increase)	Unlimited	180 (160)	<u>270 (250)</u>	<u>180 (160)</u>	<u>85 (65)</u>	85 (65)	85 (65)
		Allowable Number of Stories above Grade Plane (CBC Table 504.4)					
A-2, A-3, A-4 (w/	Unlimited	12 (11)	<u>18 (17)</u>	<u>12 (11)</u>	<u>6 (5)</u>	4 (3)	4 (3)
area increase)							
В	Unlimited	12	<u>18</u>	<u>12</u>	<u>9</u>	6	6
R-1, R-2 (w/ area	Unlimited	12 (11)	<u>18 (17)</u>	<u>12 (11)</u>	<u>8 (7)</u>	5 (4)	5 (4)
increase)							
		Allow	able Area Fact	or (At) for SM,	Feet ² (CBC Ta	able 506.2)	
A-1, A-2, A-3, A-4	Unlimited	Unlimited	<u>135,000</u>	<u>90,000</u>	<u>56,250</u>	45,000	42,000
(w/ height increase)			<u>(45,000)</u>	<u>(30,000)</u>	<u>(18,750)</u>	(15,000)	(14,000)
В	Unlimited	Unlimited	324,000	216,000	<u>135,000</u>	108,000	85,500
R-1, R-2 (w/ height	Unlimited	Unlimited	<u>184,500</u>	<u>123,000</u>	<u>76,875</u>	61,500	72,000
increase)			<u>(61,500)</u>	<u>(41,000)</u>	<u>(25,625)</u>	(20,500)	(24,000)

CBC Tall Wood Opportunities – Large Area

			Construct	ion Type (<u>Sprir</u>	nklered Values)		
	I-A	I-B	IV-A	IV-B	IV-C	IV-HT	III-A
Occupancies		Allowable	Building Heigh	t above Grade	Plane, Feet (CH	BC Table 504.3)	
B, F, M, S, U, R-3, R-4	Unlimited	180*	<u>270</u>	<u>180</u>	<u>85</u>	85	85
A, E, R-1, R-2 w/ area increase	Unlimited	160	<u>250</u>	<u>160</u>	<u>65</u>	65	65
		Allowable Number of Stories above Grade Plane (CBC Table 504.4)					
A-2, A-3, A-4 w/ area increase	Unlimited	11	<u>17</u>	<u>11</u>	<u>5</u>	3	3
В	Unlimited	12	<u>18</u>	<u>12</u>	<u>9</u>	6	6
R-1, R-2 w/ area	Unlimited	11	<u>17</u>	<u>11</u>	<u>7</u>	4	4
increase		Allow	able Area Fact	or (At) for SM	Feet ² (CRC Te	ble 506 2)	
A-1, A-2, A-3, A-4 w/o height increase	Unlimited	Unlimited	<u>135,000</u>	<u>90,000</u>	<u>56,250</u>	45,000	42,000
В	Unlimited	Unlimited	324,000	216,000	<u>135,000</u>	108,000	85,500
R-1, R-2 w/o height increase	Unlimited	Unlimited	<u>184,500</u>	<u>123,000</u>	<u>76,875</u>	61,500	72,000

CBC Tall Wood – Sprinkler Increase Options

CBC Tall Wood – Podium Option (w/ Sprinkler Increase)

CBC Tall Wood – Other Differences from IBC

OTHER NOTABLE DIFFERENCES:

- Section 403.3.2: The CBC requires <u>all</u> buildings taller than 120 ft to have dual water supply. The IBC requires it for buildings taller than 420 ft, or tall wood buildings more than 120 ft (end result is the same for tall wood).
- Table 504.3: H-1, H-2, H-3 & H-5 occupancies in the CBC allows 85 ft for IV-C; the IBC only allows 65 ft.
- Tables 504.3, 504.4 & 506.2: I occupancies, various differences in allowable heights & areas.
- Table 504.4: R-4 occupancies in the CBC only allows 11/5/5 stories for IV-A/IV-B/IV-C; the IBC allows 18/12/5.

Source: Michael Maltzan Architecture

MT Fire Resistance Ratings (FRR)

Section 722.7

The fire resistance rating of the mass timber elements shall consist of the fire resistance of the unprotected element (MT) added to the protection time of the noncombustible (NC) protection.

MT Fire Resistance Ratings (FRR)

However, FRR doesn't always need to be from a combination of MT + NC. In some cases, just NC can be used, in other cases, just MT can be used:

Section 602.4

Mass timber elements shall meet the fire resistance rating requirements of this section based on either the fire resistance rating of the noncombustible protection, the mass timber, or a combination of both.

Noncombustible Protection (NC)

TABLE 722.7.1(a)

PROTECTION REQUIRED FROM NONCOMBUSTIBLE COVERING MATERIAL

Required Fire Resistance Rating of Building Element per Tables 601 and 602 (hours)	Minimum Protection Required from Noncombustible Protection (minutes)
1	40 1 layer 5/8 Type X
2	80 2 layers 5/8 Type X
<u>3 or more</u>	120 3 layers 5/8 Type X

TABLE 722.7.1(b)

PROTECTION PROVIDED BY NONCOMBUSTIBLE COVERING MATERIAL

Noncombustible Protection	Protection Contribution (minutes)
1/2 inch Type X Gypsum Board	<u>25</u>
5/8 inch Type X Gypsum Board	<u>40</u>

MT Type IV Minimum Sizes

In addition to meeting FRR, all MT elements must also meet minimum sizes

These minimum sizes have been in place for the old Type IV construction (now called Type IV-HT) and the same minimum sizes also apply to MT used in the new Types IV-A, IV-B and IV-C construction.

Contained in Section 2304.11.

Type IV Minimum Sizes - Framing

Framing		Solid Sawn (nominal)	Glulam (actual)	SCL (actual)
Floor	Columns	8 x 8	6 ³ / ₄ x 8¼	7 x 7½
	Beams	6 x 10	5 x 10½	5¼ x 9½
Roof	Columns	6 x 8	5 x 8¼	5¼ x 7½
	Beams*	4 x 6	3 X 6 ⁷ / ₈	3½ X 5½

Minimum Width by Depth in Inches See Section 2304.11 for details

*3" nominal width allowed where sprinklered

Type IV Minimum Sizes – Floor/Roof Panels

Floor Panels/Decking:

- 4" thick CLT (actual thickness)
- 4" NLT/DLT/GLT (nominal thickness)
- 3" decking (nominal thickness) covered with: 1" decking <u>or</u> 15/32" WSP <u>or</u> 1/2" particleboard

Roof Panels/Decking:

- 3" thick CLT (actual thickness)
- 3" NLT/DLT/GLT (nominal thickness)
- 2" decking (nominal thickness)
- 1-1/8" WSP

MT Type IV Minimum Sizes – Walls

Exterior Walls for Type IV-A, B or C

• CLT or Non-combustible

Exterior Walls for Type IV-HT

- CLT or light-frame FRTW or Noncombustible
- 4" thick CLT (if CLT)
- 6" thick wall (if light-frame FRTW)

How do you determine FRR of MT?

Two options:

- 1. Calculations in accordance with Section 722 → NDS Chapter 16
- 2. Tests in accordance with ASTM E119

Fire exposed surface

MT FRR Calculation Method:

- Section 703.3 allows several methods of determining FRR; one is calculations per Section 722
- Section 722.1 refers to NDS Chapter 16 for exposed wood FRR

703.3 Methods for determining fire resistance. The application of any of the methods listed in this section shall be based on the fire exposure and acceptance criteria specified in ASTM E119 or UL 263. The required *fire resistance* of a building element, component or assembly shall be permitted to be established by any of the following methods or procedures:

3. Calculations in accordance with Section 722.

722.1 General. The provisions of this section contain procedures by which the *fire resistance* of specific materials or combinations of materials is established by calculations. These procedures apply only to the information contained in this section and shall not be otherwise used. The calculated *fire resistance* of concrete, concrete masonry and clay masonry assemblies shall be permitted in accordance with ACI 216.1/TMS 0216. The calculated *fire resistance* of steel assemblies shall be permitted in accordance of steel assemblies shall be permitted in accordance with Chapter 5 of ASCE 29. The calculated *fire resistance* of exposed wood members and wood decking shall be permitted in accordance with Chapter 16 of ANSI/AF&PA National Design Specification for Wood Construction (NDS).

Nominal char rate of 1.5"/HR is recognized in NDS Chapter 16. Effective char depth calculated to account for duration of fire and structural reduction in heat-affected zone. AWC's TR 10 is a great resource for explanations and design examples of NDS Chapter 16 char calculations.

Table 16.2.1B Effective Char Depths (f	for CLT
--	---------

with $\beta_n=1.5in./hr.$)

Required Fire Endurance (hr.)	Effective Char Depths, a _{thar} (in.) Iamination thicknesses, h _{an} (in.)								
	5/8	3/4	7/8	1	1-1/4	1-3/8	1-1/2	1-3/4	2
1-Hour	2.2	2.2	2.1	2.0	2.0	1.9	1.8	1.8	1.8
Di-Hour	3.4	3.2	3.1	3.0	2.9	2.8	2.8	2.8	2.6
2-Hour	4.4	43	4.1	4.0	3.9	3.8	3.6	3.6	3.6

Tested Assemblies Method:

 Many successful Mass Timber ASTM E119 fire tests have been completed by industry & manufacturers

Nam Ar skill B22.0 - Euronarda inferinal in an Indeas Totkier' annotisation, Mar Labor

Mass Timber Fire Design Resource

- Code compliance options for demonstrating FRR
- Free download at woodworks.org

100% NC protection on all surfaces of Mass Timber

IB STORIES BUILDING HEIGHT 270 ALLOWADLE BUILDING AREA 972,000 SF AVERAGE AREA PER UTORY 54,0005F

TYPE IV-A

Credit: Susan Jones, atelierjones

Type IV-A Fire	Resistan	ce Rating	s (FRR)
	FRR	Min. NC Protection	/
Primary Frame FRR	3 HR (2 HR at Roof)	120 min (80 min at Roof)	Titte
Ext or Int Bearing Wall FRR	3 HR	120 min	
Floor Construction FRR	2 HR	80 min	
Roof Construction FRR	1.5 HR	80 min	

Credit: Urban One

Type IV-A Protection

Floor Surface Protection

Roof Construction Protection

Ext Wall Protection

Min. 1 inch of NC protection

Min. 2 layers 5/8" type X gyp on inside face

Min. 1 layer 5/8" type X gyp on outside face Min. 2 layers 5/8" type X gyp on inside face (non-brg) Min. 3 layers 5/8" type X gyp on inside face (brg)

Type IV-A Fire Resistance Ratings (FRR) Floor Panel Example (2 HR):

Type IV-A Fire Resistance Ratings (FRR) IV-A Primary Frame (3 HR) + Floor Panel Example (2 HR): Min. 1" NC Mass Timber Floor Panel 2 layers 5/8" type 40 minutes 60 minutes of of MT FRR X gypsum MT FRR Glulam Beam (Primary 3 layers 5/8" type Structural Frame) X gypsum

IV-B

12 STORIES BALDING HEICHT LING FT ALLOWABLE BUILDING AREA 640,000 SF AVERADE AREA PER STORY 14,000SF

TYPE IV-B

Credit: Susan Jones, atelierjones

NC protection on all surfaces of Mass Timber except limited exposed areas

≈20% of ceiling or ≈40% of wall can be exposed, see code for requirements

Type IV-B Fire	Resistanc	e Rating	s (FRR) IV-B
	FRR	Min. NC Protection	
Primary Frame FRR	2 HR (1 HR at Roof)	80 min* (40 min* at Roof)	
Ext or Int Bearing Wall FRR	2 HR	80 min*	
Floor Construction FRR	2 HR	80 min*	
Roof Construction FRR	1 HR	40 min*	

*Applicable to most locations; limited exposed MT permitted

Credit: Urban One

Type IV-B Protection

Floor Surface Protection

Roof Construction Protection

Ext Wall Protection

Min. 1 inch of NC protection

Min. 1 layer 5/8" type X gyp on inside face*

Min. 1 layer 5/8" type X gyp on outside face Min. 2 layers 5/8" type X gyp on inside face*

*Applicable to most locations; limited exposed MT permitted

Type IV-B Fire Resistance Ratings (FRR) IV-B Floor Panel Example (2 HR): Min. 1" NC. Mass Timber Floor Panel 2 layers 5/8" type -3 layers 5/8" type 40 minutes OR of MT FRR* X gypsum* X gypsum*

*Applicable to most locations; limited exposed MT permitted

Type IV-B Fire Resistance Ratings (FRR)

Primary Frame (2 HR) + Floor Panel Example (2 HR):

IV-B

Limited Exposed MT allowed in Type IV-B for:

- MT columns which are not an integral part of walls, no area limitation applies
- MT ceilings/beams up to 20% of floor area in dwelling unit or fire area, <u>or</u>
- MT walls/columns up to 40% of floor area in dwelling unit or fire area, <u>or</u>
- Combination of ceilings/beams and walls/columns, calculated as follows:

IV-B

Credit: Kaiser+Path

Mixed unprotected areas, exposing both ceilings and walls:

 In each dwelling unit or fire area, max. unprotected area =

 $(\mathrm{U_{tc}}/\mathrm{U_{ac}}) + (\mathrm{U_{tw}}/\mathrm{U_{aw}}) \leq 1.0$

- U_{tc} = Total unprotected MT ceiling areas
- U_{ac} = Allowable unprotected MT ceiling areas
- U_{tw} = Total unprotected MT wall areas
- U_{aw} = Allowable unprotected MT wall areas

IV-B

Design Example: Mixing unprotected MT walls & ceilings

800 SF dwelling unit

- U_{ac} = (800 SF)*(0.20) = 160 SF
- U_{aw} = (800 SF)*(0.40) = 320 SF
- Could expose 160 SF of MT ceiling, <u>OR</u> 320 SF of MT walls, <u>OR</u>

IV-B

 If desire to expose 100 SF of MT ceiling in Living room, determine max. area of MT walls that can be exposed

Credit: AWC

Design Example: Mixing unprotected MT walls & ceilings

- $\begin{array}{l} (U_{tc}/U_{ac}) + (U_{tw}/U_{aw}) \leq 1.0 \\ (100/160) + (U_{tw}/320) \leq 1.0 \\ U_{tw} = 120 \; \text{SF} \end{array}$
- Can expose 120 SF of MT walls in dwelling unit in combination with exposing 100 SF of MT ceiling

IV-B

Credit: AWC

Horizontal separation of unprotected areas:

 Unprotected portions of mass timber walls and ceilings shall be not less than 15 feet from unprotected portions of other walls and ceilings, measured horizontally along the ceiling and from other unprotected portions of walls measured horizontally along the floor.

IV-B

Credit: Kaiser+Path

IV-C

STORES BURLDING HEIGHT MS ALLOWARE E BURLDING AREA WERAGE AREA PER STORY 65,000 SF

TYPE IV-C

Credit: Susan Jones, atelierjones

All Mass Timber surfaces may be exposed

Exceptions: Shafts, concealed spaces, outside face of exterior walls

Type IV-C Fire Resistance Ratings (FRR)

Primary Frame FRR	2 HR (1 HR at Roof)
Ext or Int Bearing Wall FRR	2 HR
Floor Construction FRR	2 HR
Roof Construction FRR	1 HR

Credit: Ema Peter

Type IV-C Protection

Type IV-C Fire Resistance Ratings (FRR)

Floor Panel Example (2 HR):

No NC req.'d

Concealed Spaces in previous Type IV

Previous Type IV (now IV-HT) provisions prohibited concealed spaces

Concealed Spaces in Type IV-HT

Type IV-HT will now permit concealed spaces where one of the following conditions exists:

- 1. The building is sprinklered throughout with an NFPA 13 sprinkler system and sprinklers are provided in the concealed space.
- 2. The concealed space is completely filled with noncombustible insulation.
- Surfaces within the concealed space are fully sheathed with not less than 5/8" Type X gypsum.

Concealed spaces within interior walls and partitions with a one hour or greater fire resistance rating complying with Section 2304.11.2.2 do not require additional protection.

Concealed Spaces in Type IV-HT

Option 2 Noncombustible insulation

Option 1

Sprinklers in concealed spaces

Option 3

 5/8" Type X gypsum on all MT surfaces

Concealed Spaces in Type IV-A, IV-B & IV-C

New Type IV-HT concealed space provisions do not apply to Type IV-A, IV-B & IV-C;

But, can still have concealed spaces in Type IV-A, IV-B & IV-C:

- <u>Type IV-A & IV-B</u>: Combustible construction forming concealed spaces protected with NC of 80 minutes (2 layers of 5/8" Type X Gypsum)
- <u>Type IV-C:</u> Combustible construction forming concealed spaces protected with NC of 40 minutes (1 layer of 5/8" Type X Gypsum)

Concealed Spaces in Type IV-A & IV-B

w/ dropped ceiling

Concealed Spaces in Type IV-C

Shaft Enclosures in Type IV-A, IV-B & IV-C

	IV-A	IV-B	IV-C
Exit & Hoistway Enclosures	Up to 12 Stories or 180 ft: MT protected with 2 layers 5/8" type X gyp (if 2 HR req'd) or 3 layers 5/8" type X gyp (if 3 HR req'd) both sides	NC or MT protected with 2 layers 5/8" type X gyp (Section 602.4.2.6) both sides	NC or MT protected with 1 layer 5/8" type X gyp (Section 602.4.3.6) both sides
	Above 12 Stories or 180 ft: Noncombustible shafts (Section 602.4)		
E&H Enclosures FRR	2 HR (not less than FRF	of floor assembly per	netrated, Section 713.4)

Mid-Rise vs. High-Rise

FIGURE 6-6 Determination of high-rise building

Sprinklers in High-Rise

- Two Water Mains Required if:
 Building Height Exceeds 420 ft, or
 - Type IV-A and IV-B buildings that exceed 120 ft in height

CLT Fire Performance – Fire Re-Growth

In tall buildings, preventing fire re-growth is key. Fire re-growth is a phenomenon in which the heat-release rate of a fire intensifies following a decay phase. Fire re-growth can be initiated when delamination occurs (char fall-off), as this exposes un-charred wood surfaces, thereby resulting in an influx of fuel available for consumption by the fire.

CLT Fire Performance – Char Fall-Off

Facts about CLT char fall-off:

- Only an item to consider in tall buildings. Important to avoid in high-rise construction where required performance is containment of fire within compartment of origin with no sprinkler or fire service suppression
- Not applicable when discussing mid-rise mass timber (or any building under types II, III, IV-HT or V)
- Largely a function of adhesive performance under high temps
- Has been addressed in PRG 320-18 (required for all CLT, not just tall wood)

CLT Fire Performance – PRG 320

Section 602.4 added:

Cross-laminated timber shall be labeled as conforming to PRG 320-18 as referenced in Section 2303.1.4.

Standard for Performance-Rated Cross-Laminated Timber

In Construction Types IV-A, IV-B & IV-C, building elements are required to be FRR as specified in Tables 601 and 602. Connections between these building elements must be able to maintain FRR no less than that required of the connected members.

16.3 Wood Connections

Wood connections, including connectors, fasteners, and portions of wood members included in the connection design, shall be protected from fire exposure for the required fire resistance time. Protection shall be provided by wood, fire-rated gypsum board, other approved materials, or a combination thereof.

Many ways to demonstrate connection fire protection: calculations, prescriptive NC, test results, others as approved by AHJ

2017 Glulam Beam to Column Connection Fire Tests under standard ASTM E119 time-temperature exposure

Softwood Lumber Board Glulam Connection Fire Test Summary Report

Issue | June 5, 2017

Full Report Available at:

FIRE PERFORMANCE EVALUATION OF A LOAD BEARING GLILAM BEAM TO COLUMN CONNECTION, INCLUDING A CLT PANEL, TESTED IN GENERAL ACCORDANCE WITH ASTM ELIF-16a, STANDARD TEST METHODS FOR FIRE TESTS OF BUILDING CONSTRUCTION AND MATERIALS

FINAL REPORT Consisting of 32 Pages

https://www.thinkwood.com/wp-content/uploads/2018/01/reThink-Wood-Arup-SLB-Connection-Fire-Testing-Summary-web.pdf

SOUTHWEST RESEARCH INSTITUTE

Rest (2178) (a) with a constraint of the second strengt and a second constraint constraint of the second seco

CHERRY AND CHERICAL ENGINEERING DIVISION

Penetration Fire Protection

Although not a new code requirement or specific to tall wood, more testing & information is becoming available on firestopping of penetrations through MT assemblies

Penetration Fire Protection

Most firestopping systems include combination of fire safing (e.g. noncombustible materials such as mineral wool insulation) plus fire caulk

Penetration Fire Protection

Sealants at MT Panel Edges

Section 703.9 Sealing of adjacent mass timber elements. In buildings of Type IV-A, IV-B and IV-C construction, sealant or adhesive shall be provided to resist the passage of air in the following locations:

- At abutting edges and intersections of mass timber building elements required to be fire resistance-rated
- 2. At abutting intersections of mass timber building elements and building elements of other materials where both are required to be fire resistance-rated.

Sealants at MT Panel Edges

Sealants shall meet the requirements of ASTM C920 (elastomeric joint sealants). Adhesives shall meet the requirements of ASTM D3498 (gap filling construction adhesives, i.e. not fire caulk).

Exception: Sealants or adhesives need not be provided where they are not a required component of a fire resistance- rated assembly.

Sealants at MT Panel Edges

Several MT fire tested assemblies have successfully been completed w/o adhesives/sealants at abutting panel edges

Periodic special inspections of adhesive/sealant installation will be required (when required to be installed)

QUESTIONS?

WoodWorks – Wood Products Council Mike Romanowski, SE Regional Director | CA-South, AZ, NM This concludes The American Institute of Architects Continuing Education Systems Course

Copyright Materials

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

© The Wood Products Council 2020