Mid-Rise Engineering Considerations for Engineered Wood Products

Presented by Jeff Olson, P.E.

Disclaimer: This presentation was developed by a third party and is not funded by WoodWorks or the Softwood Lumber Board.

"The Wood Products Council" is a Registered Provider with The American Institute of Architects Continuing Education Systems (AIA/CES), Provider #G516.

Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request. This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Course Description

Wood products take on a seemingly infinite variety of shapes and forms. While many designers are familiar with engineered wood products such as I-joists and structural composite lumber, it is important to understand the structural requirements associated with each in order to achieve proper performance—especially in mid-rise applications. With an emphasis on products used in commercial and multi-family buildings, this presentation will cover product overview, dimensional stability, lateral design, and fire resistance.

Learning Objectives

- 1. Review engineered wood product options for commercial and multifamily applications.
- 2. Dimension stability in regards to moisture content changes and the differences between EWP and solid wood products.
- 3. EWP Lateral design considerations, including information on I-joist diaphragm capacities and the detailing of rim board connections.
- 4. Fire resistance design, including wood I-joist assembly requirements and SCL char rate equivalency to solid wood.

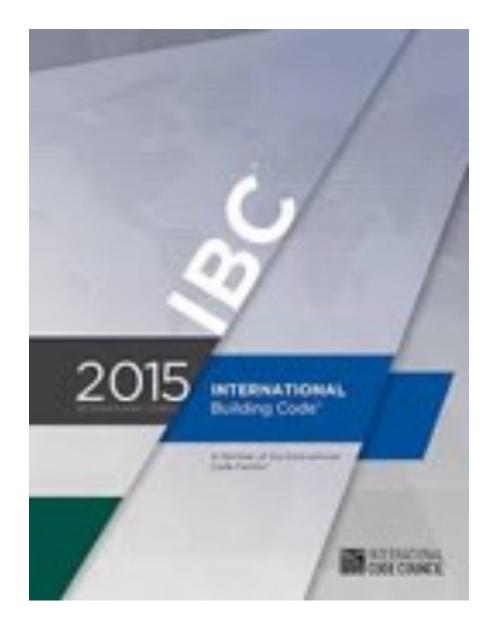
What is EWP?

Engineered Wood Products (EWP)

- Prefabricated Wood I-Joists
- Structural Composite Lumber (SCL)
 - Laminated Veneer Lumber (LVL)
 - Parallel Strand Lumber (PSL)
 - Laminated Strand Lumber (LSL)

Other EWP Products

- Glulam
- Plywood
- Metal-Plate Wood Trusses
- Oriented Strand Board (OSB)
- Cross Laminated Timber (CLT)



EWP Code Acceptance

104.11 Alternative materials, design and methods of construction and equipment. The provisions of this code are not intended to prevent the installation of any material or to prohibit any design ormethod of construction not specifically prescribed by this code, provided that any such alternative has been approved. An alternative material, design or method of construction shall be approved where the building officialfinds that the proposed design is ratiofactory and complies with the intent of the provisions of this code, and that the material, method or work offered is, for the purpose intended, at least the equivalent of that prescribed in this code in quality, strength, effectiveness, fire resistance, datability and safety.

104.11.1 Research reports. Supporting data, where necessary to assist in the approval of materials or assemblies not specifically provided for in this code, shall consist of valid research reports from approved sources.

2303.1.2 Prefabricated wood I-joists. Structural capacities and design provisions for prefabricated wood I-joists shall be established and monitored in accordance with ASTM D 5055.

2303.1.9 Structural composite lumber. Structural capacities for structural composite lumber shall be established and monitored in accordance with ASTM D 5456.

Wood I-Joists Product Acceptance

- ICC ES Evaluation Reports
- Allows proprietary product as an alternate building material in the code
- Based upon ASTM Standard D5055
- Approximately 600 tests to qualify one series of I-joists with 4 depths
- Third party certification required

ES ICC EVALUATION SERVICE	Most Widely Accepted and Trusted				
ICC-ES Evaluation Report	ESR-1336 Reissued September 1, 2011 This report is subject to renewal in two years.				
www.icc-es.org (800) 423-6587 (562) 699-0543	A Subsidiary of the International Code Council®				
DIVISION: 06 00 00—WOOD, PLASTICS AND COMPOSITES Section: 06 17 33—Wood I-joists REPORT HOLDER:	3.2 Material Specifications: Flanges: The flanges of the BCI I-joists are laminal veneer lumber that is currently recognized in the approv quality control manual. Flange width, depth and gra requirements are noted in Table 1.				
	3.2.1 Web: OSB web material is either ³ / ₈ -inch-thick (9.5 mm) or ⁷ / ₁₀ -inch-thick (11 mm) Exposure I with a span rating of 24/0.				
	3.2.2 Adhesive: Adhesives used in the fabrication of the I-joists are exterior-type, heat durable adhesives complying with ASTM D 2559 and ASTM D 5055 and are specified in the approved quality control manual and the Boise Cascade Corporation manufacturing standards.				
	4.0 DESIGN AND INSTALLATION				
	4.1 General:				
Compliance with the following codes: 2009 International Building Code [®] (2009 IBC) 2009 International Residential Code [®] (2009 IRC)	Design and installation of the BCI prefabricated wood Ljoists described in this report must comply with the conditions discussed in Sections 4.2 through 4.13 of this report.				
 2006 International Building Code[®] (2006 IBC) 2006 International Residential Code[®] (2006 IRC) 	4.2 Allowable Capacity:				
E000 International resolution 5000 [2000 Into]					

Properties evaluated:

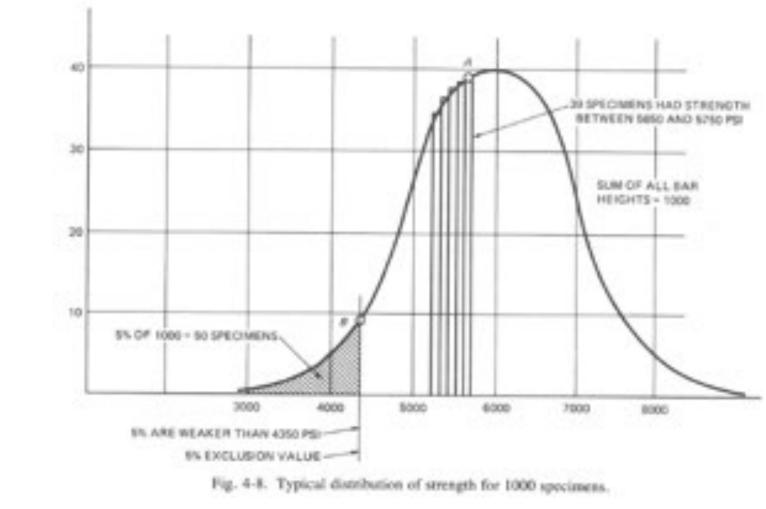
Fire-resistance ratings

Floor and roof spans

Structural

Sound ratings

Table 2 specifies reference design moments, shears, deflection coefficients and I-joist stiffness (*EI*). Reference design reactions are given in Table 3, and are based on a minimum bearing length of either 1¹/₂ or 1⁵/₄ inches (38.1 mm or 44.5 mm) for end supports and 3¹/₂ inches (89 mm)


> at intermediate supports for continuous spans. Other bearing conditions are also shown in the table; linear

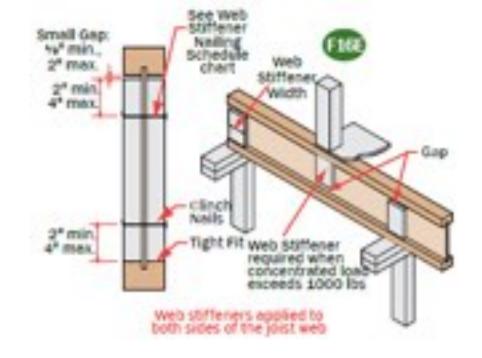
stemplation between the unlose is permitted 18thon inists

EWP Product Acceptance

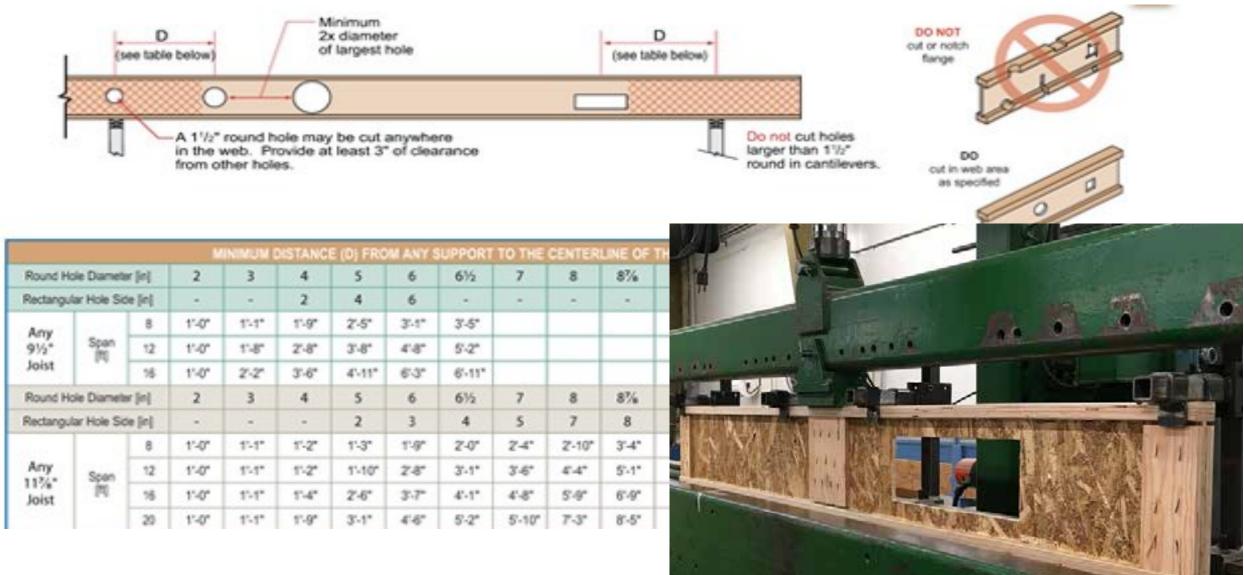
Design Value Determination

- Lower 5th Percentile value
- Safety factor per ASTM
 - Bending = 2.1
 - Shear = 2.4
- MOE: Mean of test data (serviceability)

Wood I-Joists Features


- Variety of flange sizes and joist depths
- Manufactured in 48' to 66' lengths
- Manufacturer technical staff to assist engineers, building officials
- Product warranty

Wood I-Joists: Mid-Rise Features


- Specific Commercial / Multi-Family Technical Literature
- Deep depths available (20"+)
- Web stiffener installation provides higher reaction values
- Large web hole allowances for mechanical

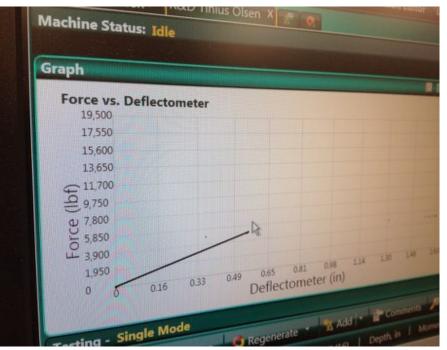
Wood I-Joists Web Holes

Structural Composite Lumber

- Laminated Veneer Lumber (LVL)
 - Veneers all oriented in same direction
- Parallel Strand Lumber (PSL)
 - Long strips of veneer glued together
- Laminated Strand Lumber (LSL)
 - 12" long strands
- Oriented Strand Lumber (OSL)
 - 3" 6" long strands

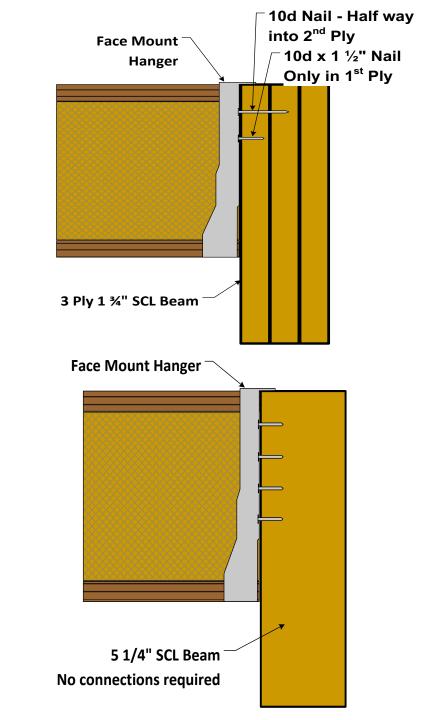
Laminated Veneer Lumber (LVL)

Birch LVL used through out the Hughes Aircraft H-4 Hercules (aka "Spruce Goose")


SCL Product Acceptance

ASTM D5456

- Strength & Stiffness
- Adhesives
- Durability
- Approximately 1000 tests to qualify a grade of SCL

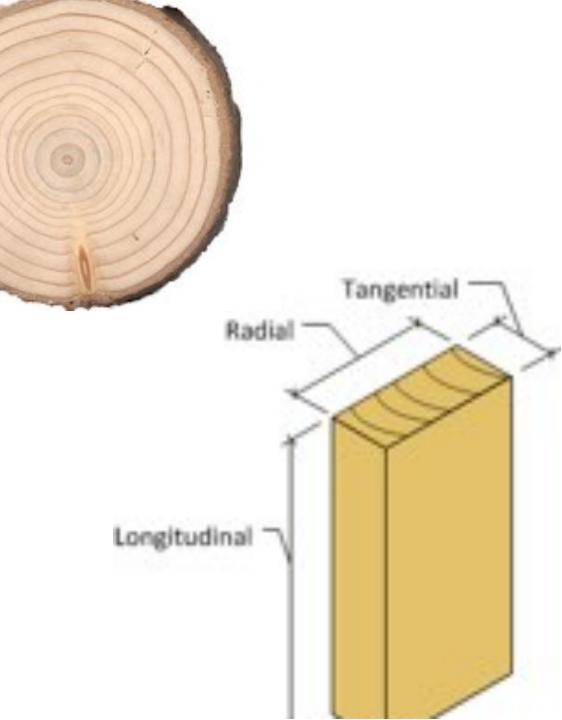


SCL Availability and Use

- Available in 1 ³/₄", 3 ¹/₂", 5 ¹/₄", 7" thicknesses, 1 ³/₄" most common
- Multiple ply beams must be connected properly for load to be distributed evenly to each ply
- See manufacturer's literature for nail, self-driving screw, and bolt patterns

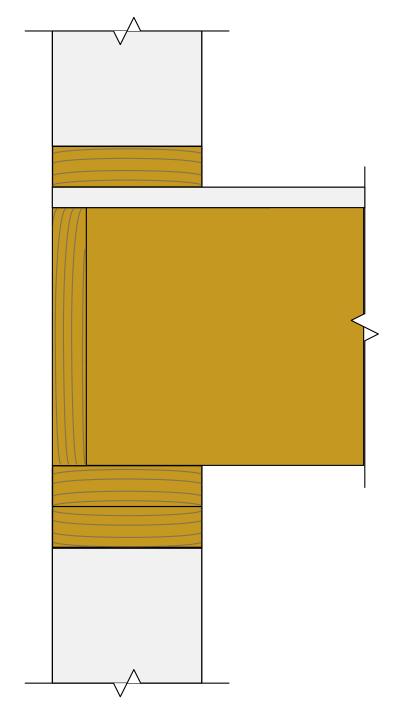
	2010/01/01/01/01	Sid	e-Load	led Ap	plicatio	ons			
			Maxim	um Unifor	m Side Lo	ad [pif]			
Number	Nailed		1/y* D	a. Through	Boltm	%" Dia. Through Bolt?"			
of Members	2 rows 16d Sinkers @ 12" e.c.	3 rows 16d Sinkers @ 12" e.c.	2 rows @ 24" o.c.	2 rows (8 12" o.c. stappered	2 rows @6"a.c. staggered	2 rows @ 24" o.c. staggered	2 rows @ 12" o.c. stopgered	2 rows @6" a.c. staggered	
200		1%*	LVL	(Depths	of 18" and	less)		1.1	
2	470	705	505	1010	2020	560	1120	2245	
3,0	360	525	375	755	1515	420	840	1685	
400	use bolt	schedule	335	670	1345	370	745	1495	

EWP Use in Mid-Rise Structures


Wood Dimension Stability

- Engineered wood typically manufactured at low moisture content (5 - 7%)
- No shrinkage after installation if product kept dry in supply chain
- Slight swelling to equilibrium in most climates

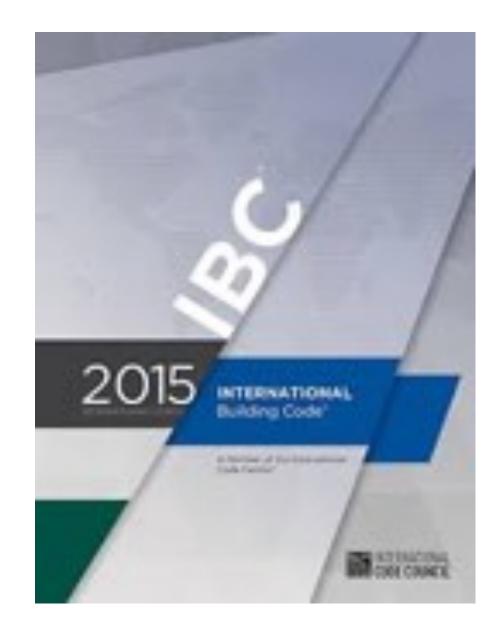
Dimension Stability


- Orthotropic material
- Very little movement in longitudinal direction (log length)
- Shrink/swell ratios:
 - Tangential (along growth rings) / Radial (across growth rings) / Longitudinal = 20 / 10 / 1

Wood Dimension Stability

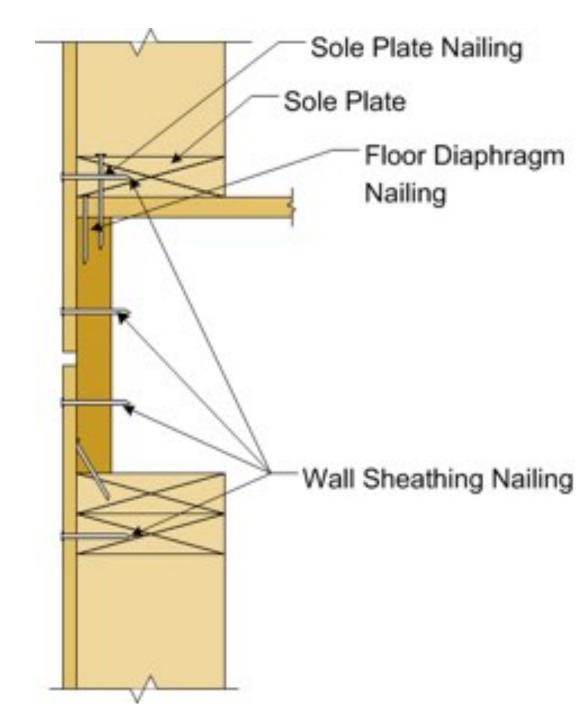
Example: Platform Framing Shrinkage (19% to 12% EMC) Joist, Rim: 0.21" Plates: 0.04" 9' Studs: 0.09" Total: 0.34"

Values per Forest Product Laboratory Wood Handbook, tangential direction for rim, radial direction for plates



Wood Dimension Stability

Building Code Requirement


<u>2404.3.3</u>:

- Shrinkage analysis required for walls supporting more than 2 floors and roof
- Shrinkage of the wood shall not have adverse effects on the structure or any plumbing, electrical or mechanical systems...

Lateral Load Transfer Design

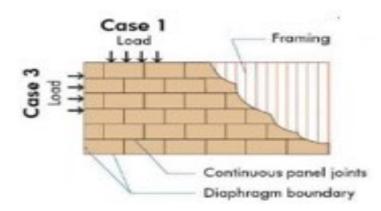
Wood I-Joist Diaphragms

- Each manufacturer tests to establish equivalency to lumber joist diaphragms
 - Original APA testing of lumber joists (1950's) – Current wood horizontal diaphragm tables in IBC
 - Wood I-joist testing per ICC Acceptance Criteria (full and small scale testing)

					Baos	ment D	happene	press.	Undercared I	Despinence
				Mananuan Nomanar Wate of Frameling Mantbur at Adjoining Passa Eages and Eages and Eages and Eages and Eages and	Natt Spacing (n) at displaragin boundaries (at cased, at continuous panel edges parallel to load (Cases 3 & 4), and at all panel edges (Cases 5 & 6) th				Nath Spaced 6" max. at Supported Edger th	
					6	4	2-1/2-	-	Case 1	
	Common	Nat Nat Penetration In Franting			Nat Spacing (n.) at other panet edges		edges-or continuous joints paratest	As other configurations (Cases 2, 3,		
Panel Grade	Num Storm	(m.)			-	6	4	3	to loued)	4.544)
	8-8H (0.1137-dis.)	1-1/4	5/16	2 3	185	290	375	420 475	165	125
APA STRUCTURAL I	84 (0.131° dia.)	1-3/8	3/8	2 3	270	360	530 400	600	340 365	180 200
grades	10dH (0.148* dks.)	1-1/2	15/32	2	320	425	640 720	730 820	285 220	215 240
	6dH (0.113° dia.)	1-1/4	5/16	2	170	225	335	380	150 170	110
			3/0	2	185	290	3/5	420	145	125
APA RATED SHEATHING		1-3/8	3/8	2	240	330 340	480 540	545	215 340	140 190
APA RATED STURD-1-FLOOR	8d (0.137° dis.)		2/16	2	255-285	340	505 570	575 645	200 255	1/90 1/90
and other APA großen except Species Group S			15/22	2	270	340	570	600	240	180
	1041	1-1/2	15/22	2	290 325	285	575	655 735	295 290	190 215
	(0.148* 60.)		19/32	2	320	400	640	730 #20	285 220	215 240

- (a) Four fearning of other specifics: Find specific gravity for specific all hordpar in the WERN WOS. Find there when from table above for null gas for strong gende and excluding value for the following adjustment feature: Specific Gravity Adjustment Factors = (1 - (0.3 - 302)), when SG = Specific Gravity of the framing lumber. This adjustment shall not be greater than 1.
- B) Space-Removal maximum 12 index o.c. along improvedore human mandates (8 index o.c. when supports are special 82 index o.c. or generatif.
- C Proving on adjacning panel edges shall be 2 inch reprint or wide and note shall be obggered where note are speced 3 inches o.c. a 3 1/2 reducts.
- (1) Propring at adjusting panel adjust shall be 2 inch numinal or wider, and state shall be mappened where both of the bilineing conditions pix met; (2) 106 rash hosing parametrizes into framing of more than 1.1/2 inches and (2) rash are spaced 2 inches tot. or has.
- 17 The minimum special width of frequency members set located at tenendaries or inflating panal adges shall be 2 incluse
- (g) Nor shake locals of normal ar parentrari local duration on dalmad lo AFE/N NOS, the volcas in the value above shall be realighted by 2.4 and 0.51, respectively.

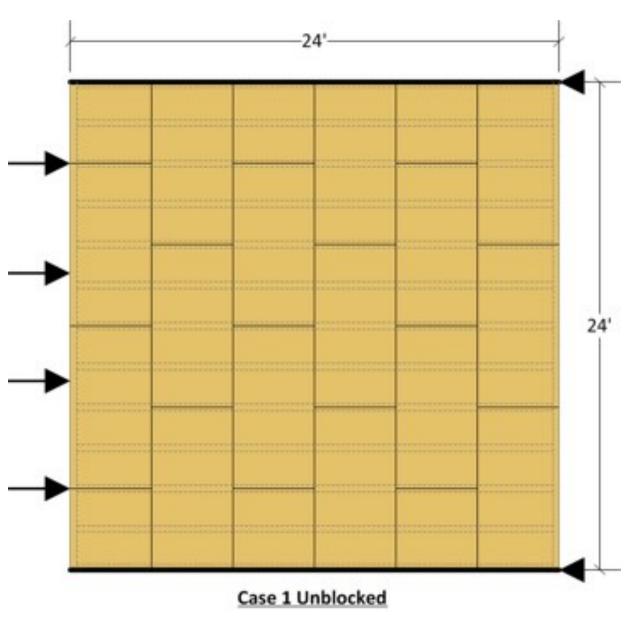
Note: Design for Sophropri aneque dispende or direction of contruma panal state with relevance to load, nor on direction of long dimentions or alwayth social shear. Continuous hearing may be in adher direction for blocked displicages.


Wood Frame Diaphragms

Where is the wood frame floor diaphragm table now?


• IBC & IRC reference the AWC SDPWS

6		6 4					2-1/2	2				
			Vail Spe	cing (in.)	at other	panel edg	es (Cases	1, 2, 3, &	4)			
	6		6				4			3		
v. (płn)	G (kips	-	v. (p#0		3. s/in.)	(140)		u(in.)	v. (p#)		i. s/in.)	
	058	PLY		058	PLY	1.223	OSB	PLY	1.0.0	058	PLY	
370	15	12	500	8.5	7.5	750	12	10	840	20	15	
420	12	9.5	560	7.0	6.0	840	9.5	8.5	950	17	13	
540	14	11	720	9.0	7.5	1060	13	10	1200	21	15	
600	12	10	800	7.5	6.5	1200	10	9.0	1350	18	13	
640	24	17	850	15	12	1280	20	15	1460	31	21	
720	20	15	960	12	9.5	1440	16	13	1640	26	18	
340	15	10	450	9.0	7.0	670	13	9.5	760	21	13	
380	12	9.0	500	7.0	6.0	760	10	8.0	860	17	12	
370	13	9.5	500	7.0	6.0	750	10	8.0	840	18	12	
420	10	8.0	560	5.5	5.0	840	8.5	7.0	950	14	10	
480	15	11	640	9,5	7,5	960	13	9,5	1090	21	13	
540	12	9.5	720	7.5	6.0	1080	11	8.5	1220	18	12	
510	14	10	680	8.5	7.0	1010	12	9.5	1150	20	13	
570	11	9.0	760	7.0	6.0	1140	10	8.0	1290	17	12	
540	13	9.5	720	7.5	6.5	1060	11	8.5	1200	19	13	
600	10	8,5	800	6,0	5,5	1200	9.0	7.5	1350	15	11	
580	25	15	770	15	11	1150	21	14	1310	33	18	
650	21	14	860	1.2	9.5	1300	17	12	1470	28	16	
640	21	14	850	13	9,5	1280	18	12	1460	28	17	
720	17	12	960	10	0.8	1440	14	11	1640	24	15	


Original Lumber Diaphragm Testing

Testing a 12 by 60-Foot Wood Diaphragm.

I-Joist Diaphragms

- Consult manufacturer for diaphragm values and limits
- Typical closest allowable nail spacing = 4"
- Most SCL flange joists have connector specific gravity equivalency to Douglas fir

I-Joist Diaphragms

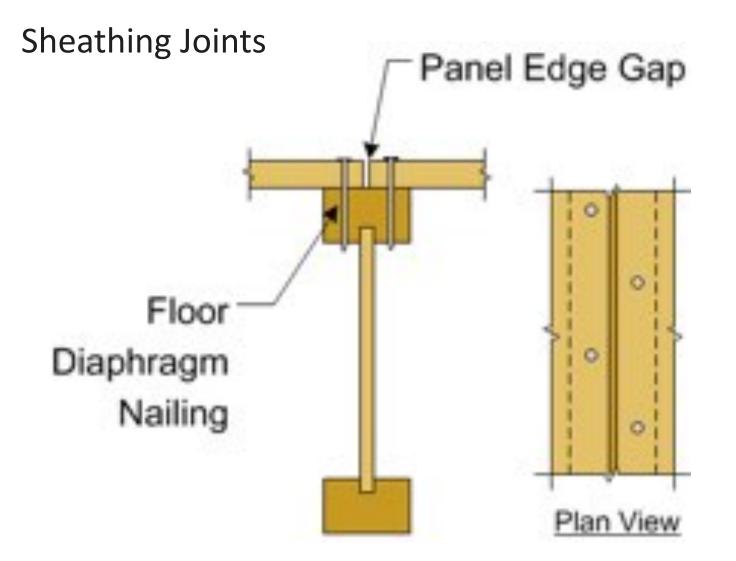
Manufacturer Literature

Glue Lines (Wide Face)	Nail Size	Nailing Glue L O.C. Spa Jincher
	8d Box	2
- In	8d Common	2
Nailing Parallel	10d & 12d Box	2
to Glue Lines	16d Box	2
(Narrow Face)	10d & 12d Common	3

Nailing Perpendicular to Glue Lines (Wide Face)				Joists	
f		Nailing Perpendicular to Nailing Paralle Glue Line (Wide Face) Glue Line (Narrow		araliel to arrow Face)	
	Nail Size	O.C. Spacing [inches]	End of Joist [inches]	O.C. Spacing [inches]	End of Joist [inches]
	8d Box	2	1%	4	156
- In	8d Common	2	135	4	3
raliei	10d & 12d Box	2	136	4	3
es Contraction	16d Box	2	155	4	3
No (*	10d & 12d Common	3	2	6	4
	16d Sinker	3	2	6	4
phrases Table (I)	16d Common	3	2	6	4

 If more than one row of naits is used, the rows must be offset at least % inch.

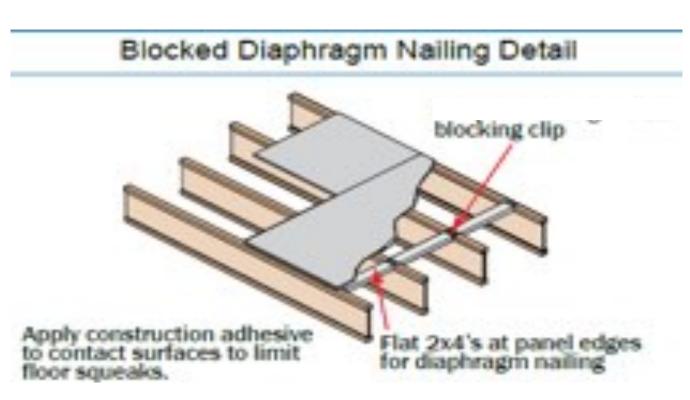
> A35 connectors may be attached to the side CH. (cest flanges only. Use nails as specified by do not attach connectors on both sides of a flange at the same location.

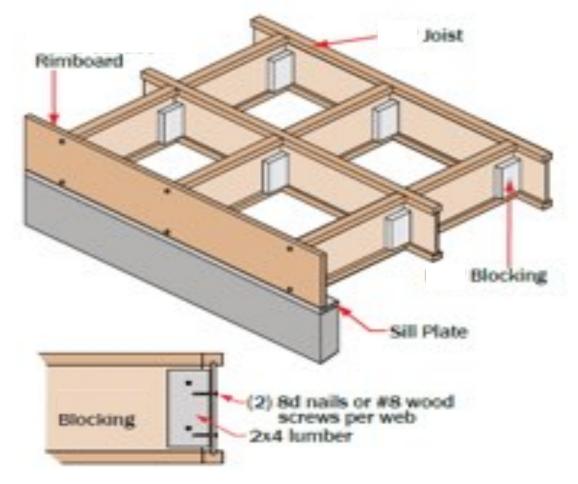

Diaphragm Table (1)

Flange Width	Diaphragm Capacity ^{as as} (b/ft)					
Flange width	Unblocked	Blocked				
יי	As permitted for 2x transing	320 lb/t for 6" o.c. nailing @ panel edges				
Z	in building code	425 Ibift for 4" o.c. naling, staggered, @ panel edges				
25/467	As permitted for 3x traming	360 lb/ft for 6° o.c. nailing @ panel edges				
2 5/16"	in building code	480 Ib/It for 4" o.c. nailing, staggered @ panel edges				
3 1/2"	As permitted for 3x transing in building code	As permitted for 3x framing in building code with nail spacing no closer than 3" o.c.				

NOTES:

- (1) See table 6 of ICC ESR 1336.
- joists may be substituted for solid sawn framing. (2) in horizontal wood diaphragms as shown in Table 2306.3.1 of the IBC.
- (3) Limits conrolled by spacing limits.
- closest allowable nail


I-Joist Diaphragms



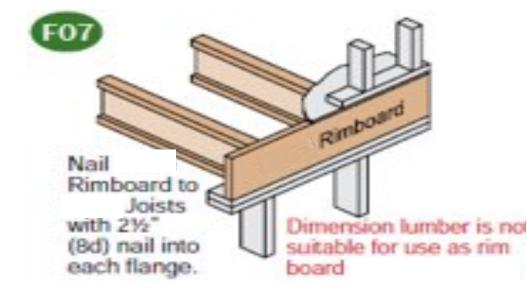
- Wider flange I-joists allow for more area at panel edges, easier to nail in field
- Consult with manufacturer on nail spacing limits, staggering, etc.

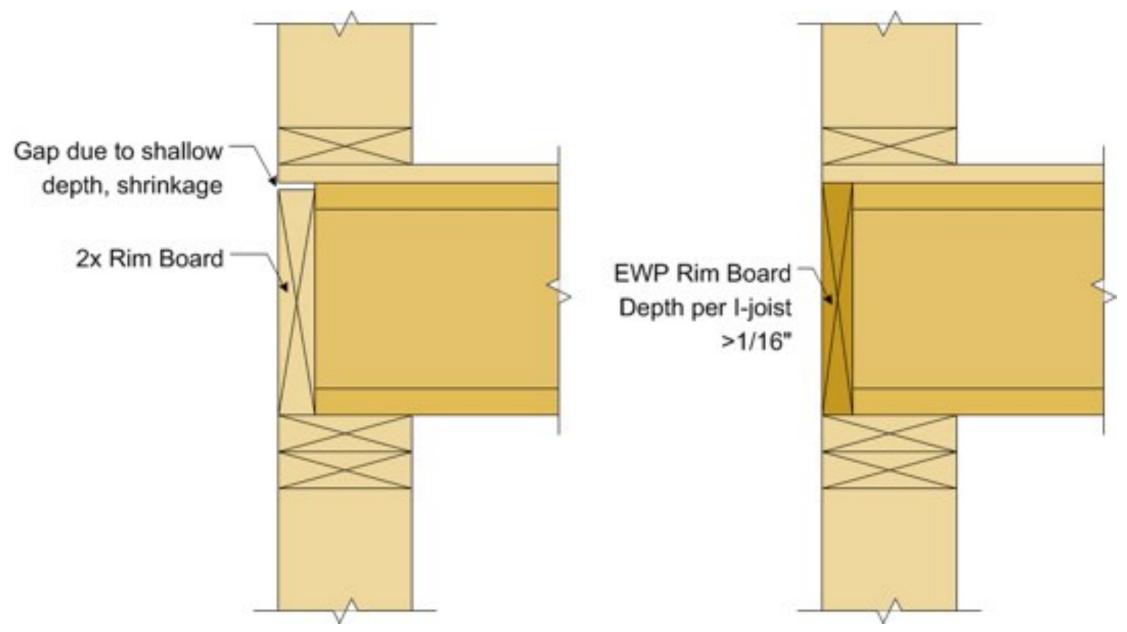
Blocked I-Joist Diaphragms

- Blocking: I-joists or flat 2x
- Check with manufacturer

Alternate Diaphragm Fasteners

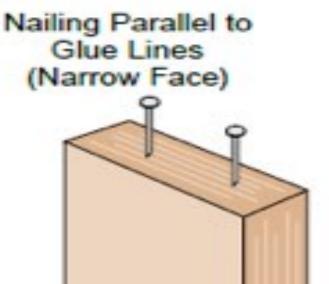
Proprietary Screws


- Typically less ductile failure compared to nails
- Manufacturer shall have evaluation report from accredited agency listing diaphragm values
- Marketed as a value-added product (improved floor performance, less squeaks, etc.)



Engineered Rim Board

- Typical Rim Board Thickness for Mid-Rise: 1 1/4" to 5 1/4" SCL
- Vertical load capacities and lateral design values for diaphragms
- ICC Acceptance Criteria for engineered rim board
- Dimension lumber should not be used as rim board with wood I-Joists



Engineered Rim Board

Engineered Rim Board

- Closest allowable nail spacing controls lateral design
- Thicker rim = tighter allowable spacing

		Closest A	llowable Nail Spa	acing - Nam	ow Face [in]	
Product	8d Box	8d Common	10d & 12d Box	16d Box	10d, 12d Common & 16d Sinker	16d Common
1 1/8" OSB	3	3	Not allow	wed with pre	escriptive rim boar	d
1 1/4" OSB	4	4	4	4	4	6
1 1/4" – 1 1/2" LVL	3	3	3	3	4	6
1 3/4" LVL	2	3	3	3	4	6

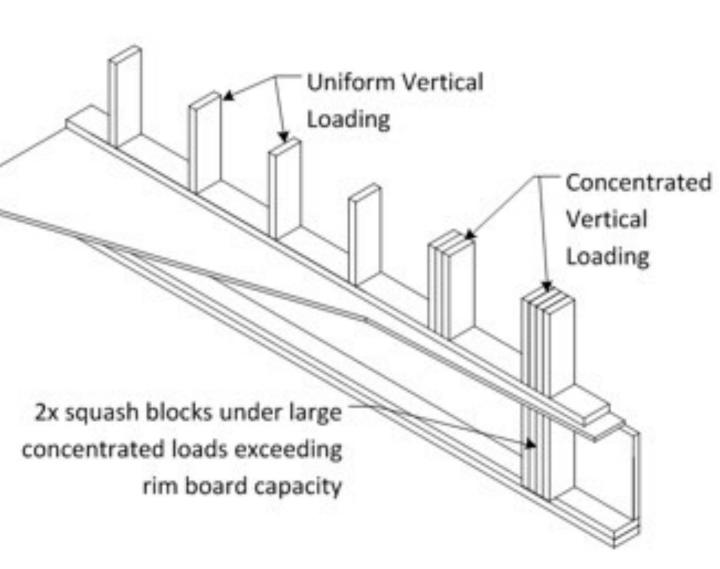
Nail Splitting in Wood

Splitting will not occur perpendicular to grain, no matter how close nails are

Staggering a line of nails parallel to wood grain minimizes splitting

Staggering

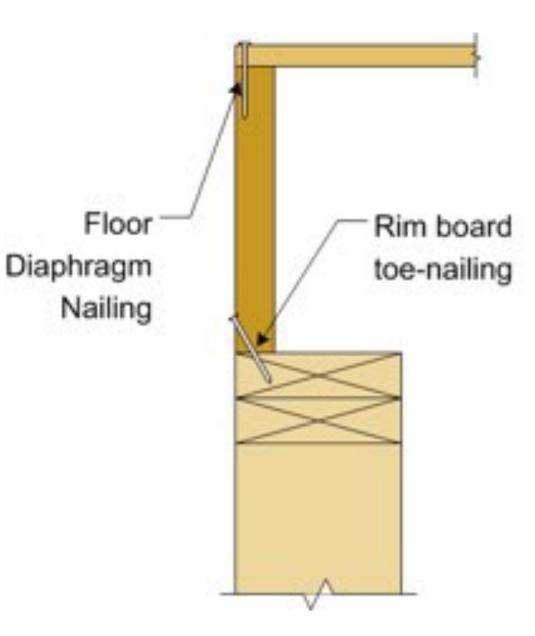
plitting occurs parallel to


grain

Engineered Rim Board

Vertical Load Capacities

- Uniform load values (lb/ft)
- Concentrated load values (lb)
 - Squash blocks (short studs) may be added for larger loads



- Rim Board Allowable Design Values
 - Uniform Vertical Load: >6000 lb/ft
 - Lateral Load: Equivalent to 2x lumber (Douglas fir SG = 0.5)


Edge Connection – Floor Diaphragm

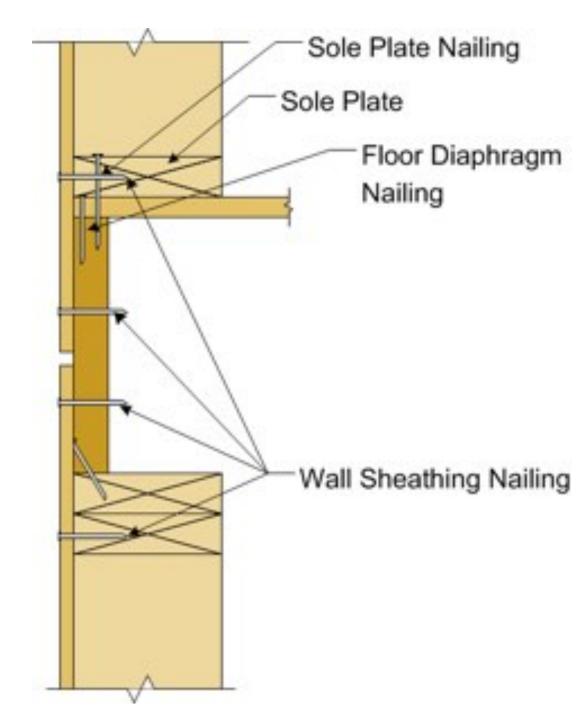
Nail Size & Spacing	Seismic/Wind				
	(1.6 Load Duration)				
8d Common @ 4" oc	360 lb/ft				
10d Common @ 4" oc	425 lb/ft				

Edge Connection – Sole Plate 16d common nails (225 lb) @ 5" o.c. = 540 lb/ft

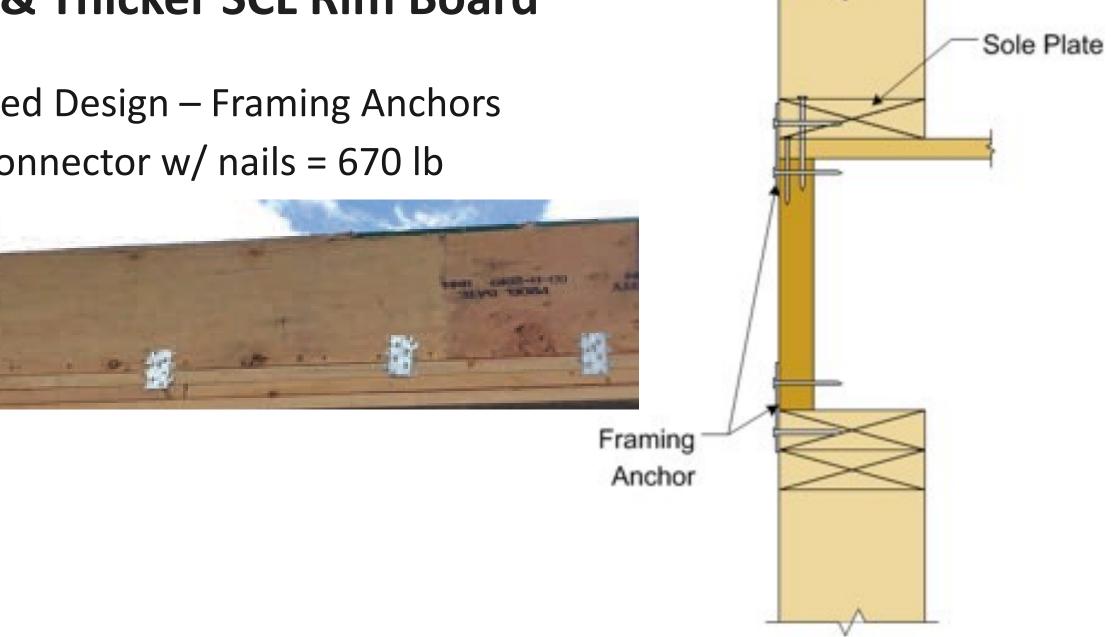
Use of framing anchors, additional blocks, sheathing nailing possible for increased load transfer

Proprietary Self-Driving Lag Screws

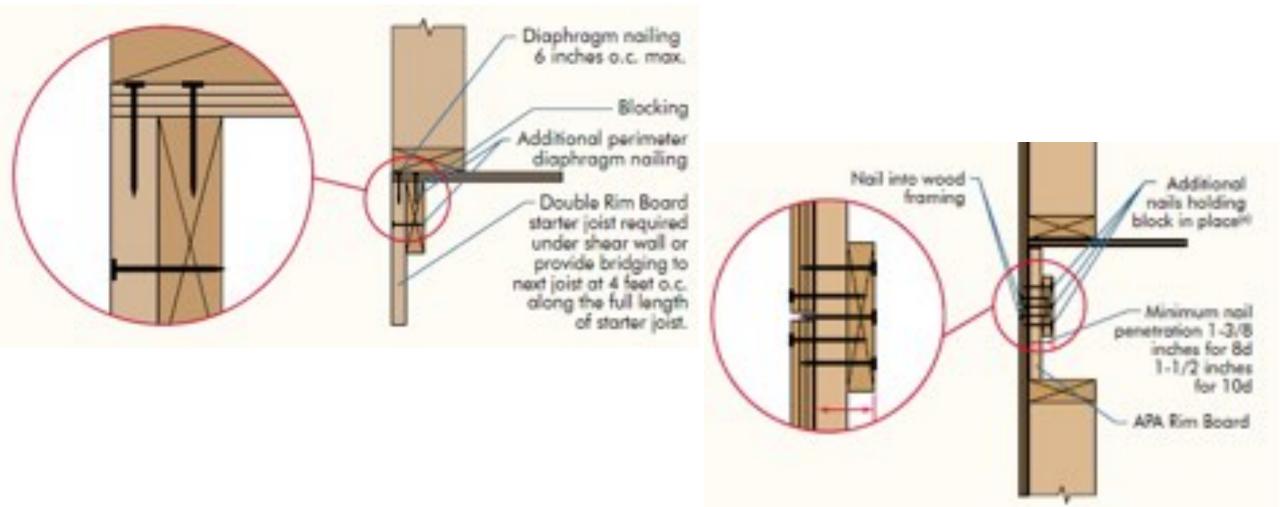
Edge Connection – Sole Plate


		Allowable Loads (lbs)																	
Size (in.)	Model No.	Sole Plate Nominal	Minimum Penetration				2x DF/SP Rim Board			1%" Min. LVL Rim Board		1 %" Min. LVL 1 %" Rim Board Rim		11%" Min. LSL Rim Board					
(in.)		Size	Rim Board (in.)	DF/SP Sole Plate	SPF/ HF Sole Plate	DF/SP Sole Plate	SPF/ HF Sole Plate	DF/SP Sole Plate	SPF/ HF Sole Plate	DF/SP Sole Plate	SPF/ HF Sole Plate	-	1	-	Center screw in middle of rim boar				
34 x 4.5	SDS25412	2x	2	250	190	190	190	190	190	220	190								
94 x 5	SDS25500	2x	2	250	190	190	190	190	190	220	190	*		1	Sole plate per tabl				
14 x 6	SD525600	2x or 3x	2	250	190	190	190	190	190	220	190			/					

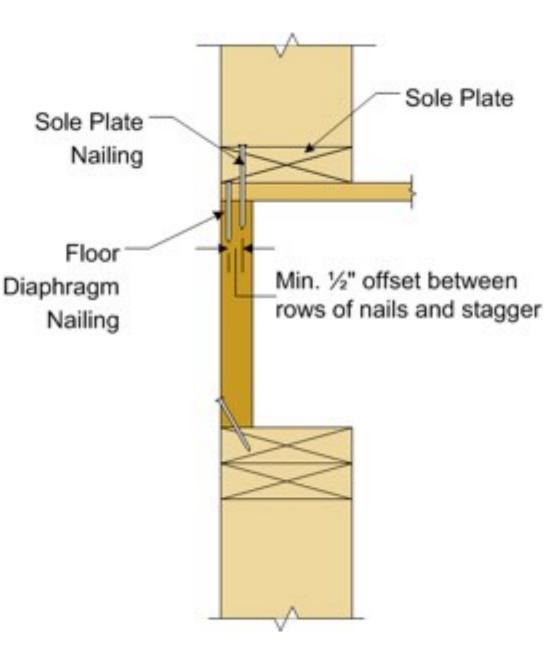
- Min. SCL rim thickness = 1 ¹/₄"
- Closest spacing = 6" on-center
- Reduced values compared to 2x
- 2 rows of screws requires min. 2 5/8" thick rim


Additional Nailing from Wall Sheathing

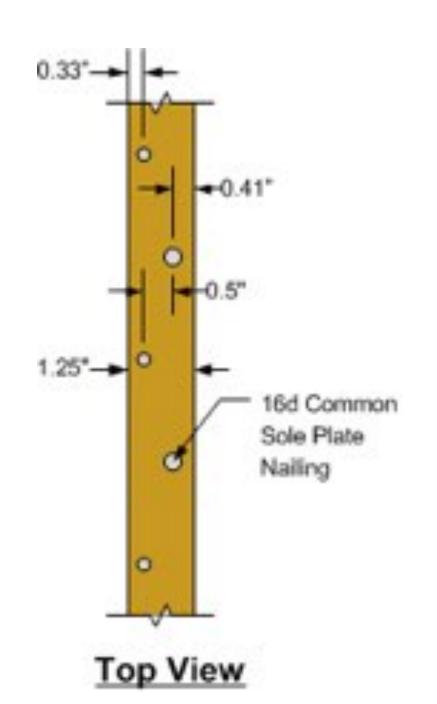
- 3/8" Sheathing & 8d Common
 - = 113 lb @ 6" o.c. = 226 lb/ft


7/16" Sheathing & 8d Common = 116 lb @ 6" o.c. = 232 lb/ft

Engineered Design – Framing Anchors Typical connector w/ nails = 670 lb



Alternate Connection Options: APA Shear Transfer at Engineered Wood Floors


Required Rim Thickness

- Specified by EOR
- Min. Edge Distance for nailing = 2.5 x nail diameter
- Min. 0.5" offset between rows
- Multiple shear wall sole plate nail rows require thicker rim
- Additional rim thickness provides more area for nail placement variance

Required Rim Thickness: Example


- 10d common diaphragm nail, 16d common sole plate nailing
- Min. Edge Distance
 - 10d cmn = 0.131" x 2.5 = 0.33"
 - 16d cmn = 0.162" x 2.5 = 0.41
- Min. 0.5" offset between rows
- Min. Rim Thickness = 0.33" + 0.41" + 0.5" = 1.24"

Shear Walls

- SCL has limits for nail spacing into edge of product (similar to rim)
- Contact each manufacturers' engineering department for technical support

Fire Resistance

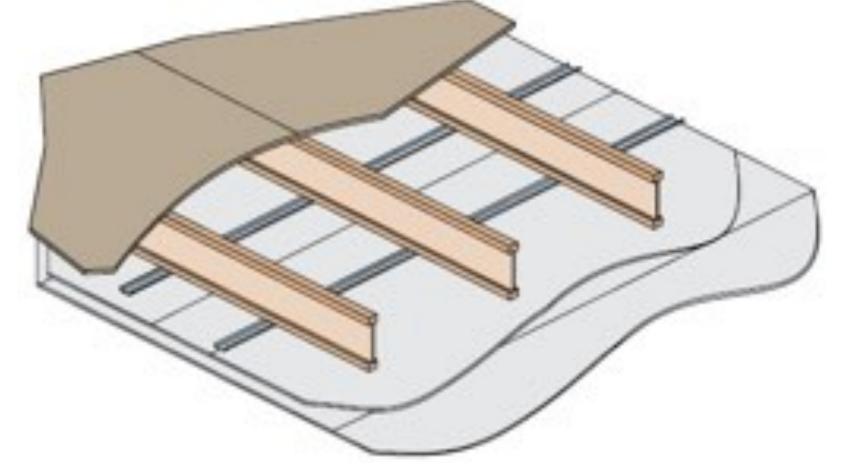
Flame Spread

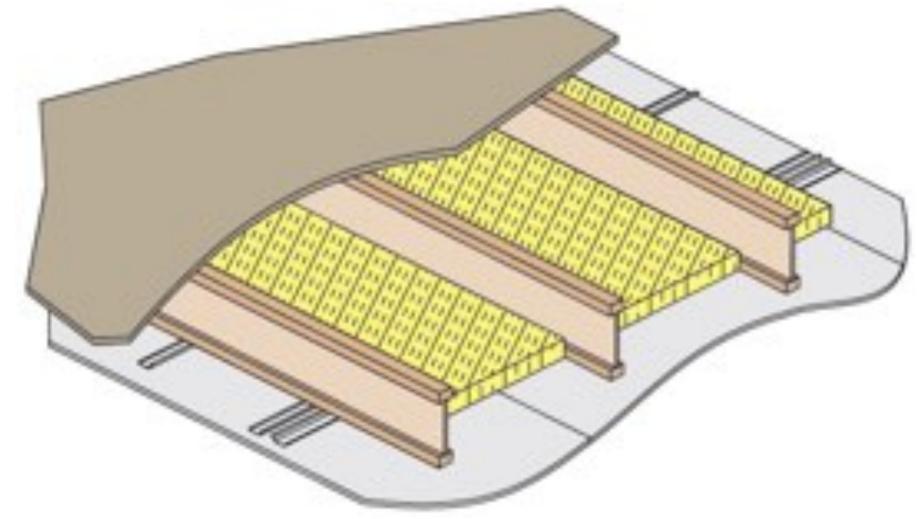
- Surface flammability
- Required for exposed framing
- ASTM E84

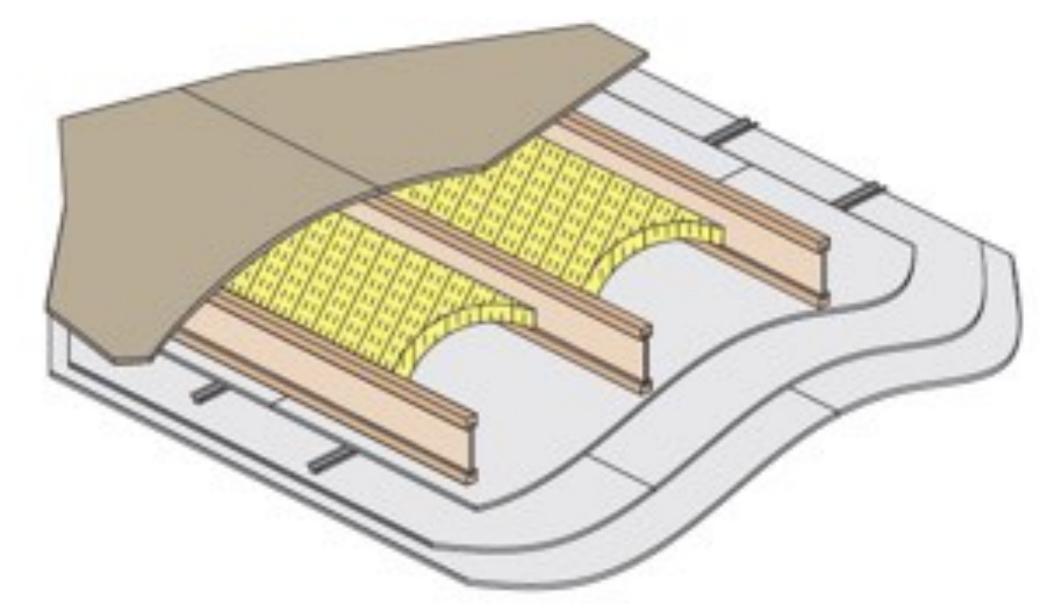
Fire Endurance

- System resistance for floor/ceiling assemblies
- Product char rate
- ASTM E119 Fire Tests
- Higher severity of fire exposure

Fire Resistance


Flame Spread – Steiner Tunnel Test – ASTM E84


Fire Endurance – ASTM E119


- Floor/ceiling assembly per ASTM E-119 fire test
 - 1 Hour: Separation between occupancies
 - 2 Hour: Separation between garage/retail/residence
- Most common 1 hour assembly requires 2 layers of fire-rated gypsum board

- 1 Hour Assembly 1 Layer of Fire-Rated GWB
 - Require additional fire resistance mineral wool insulation
 - Require larger joist flanges

• 2 Hour Assembly – 3 Layers of Fire-Rated GWB

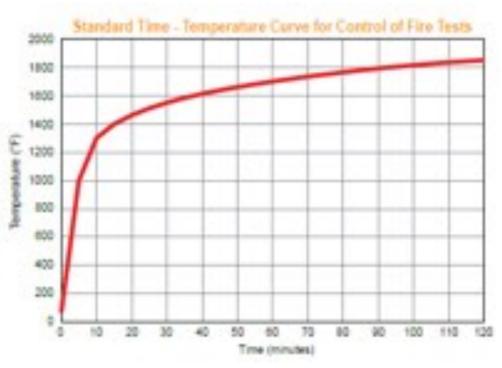
Wood I-Joist Fire Assembly Components

- Floor Sheathing: Typically 5/8" or 23/32" Plywood/OSB
- Resilient Channel: Required for sound transmission rating (decoupling joist from gypsum board)
- Insulation
 - Mineral wool Minimum thickness specified
 - Glass fiber Maximum thickness specified

Fire Assembly Testing

Clockwise:

- 1) Framing of full scale floor
- 2) Ceiling components
- 3) GWB
- 4) Loading to100% stresslevel



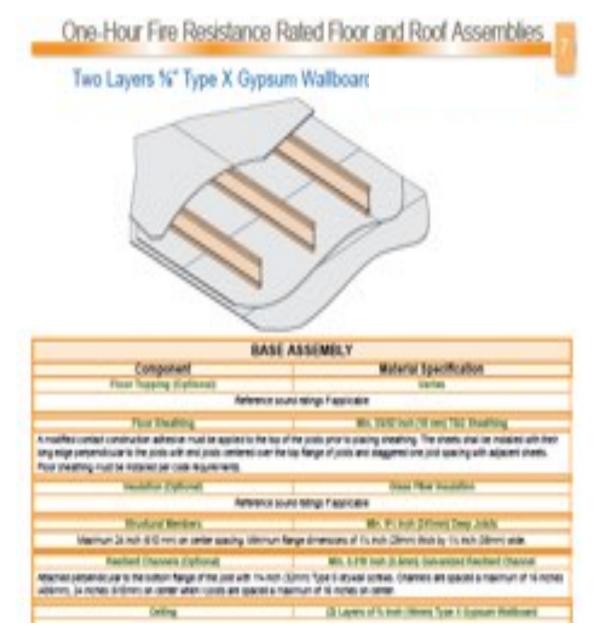
Fire Assembly Testing: ASTM E-119

Time – Temperature Curve

- 5:00: 1000 °F
- 10:00: 1300 °F
- 15:00: 1400 °F
- 30:00: 1500 °F
- 60:00: 1700 °F

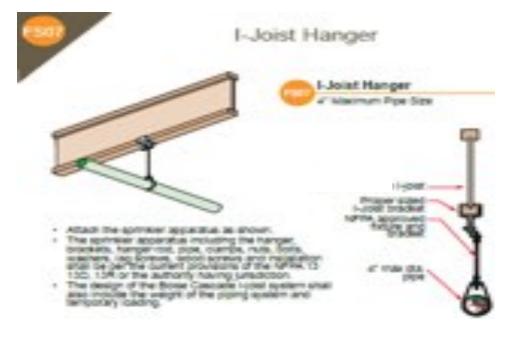


Failure Modes

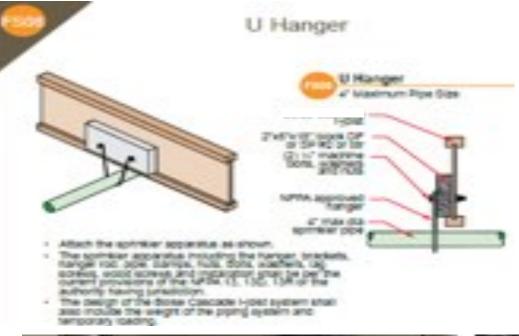

- Structural failure of joist
- Burn through of floor sheathing
- Temperature limit exceeded on decking
- Test is over if any of the above criteria is met

Fire Resistance Assembly Listings

- IBC Chapter 7: Table 721.1(3), starting with assembly 23-1.1
- Manufacturers' ICC ES / APA evaluation reports
- American Wood Council DCA-3
- Gypsum Association: Fire Resistance & Sound Control Manual

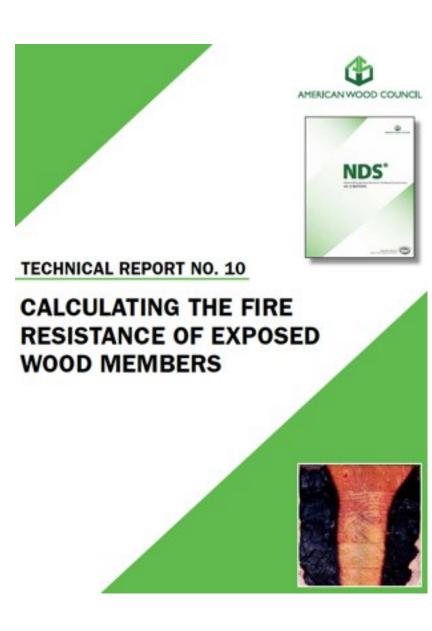


Fire Resistance Assembly – Sound Ratings


- STC (Sound Transmission Class): Resistance to airborne noise transfer (voice, music, etc.)
- IIC (Impact Isolation Class): Absorption of impact sound (footsteps)
- AWC TR 15 Calculation of Sound Transmission Parameters for Wood-Frame Assemblies

SOUND RATING (w/Resilient Channel)								
Components	STC	IIC						
Base Assembly with Carpet and Padding	54	68						
Base Assembly with 31/2" (89mm) Insulation	55	46						
Base Assembly with additional layer of %" Sheathing and 91/2" Insulation	61	50						
Base Assembly with Tarkett "Acoustiflor" vinyl and 31/2" Insulation	59	50						
Base Assembly with cushioned vinyl, %" Gypsum Concrete and 31/2" Insulation	67	51						

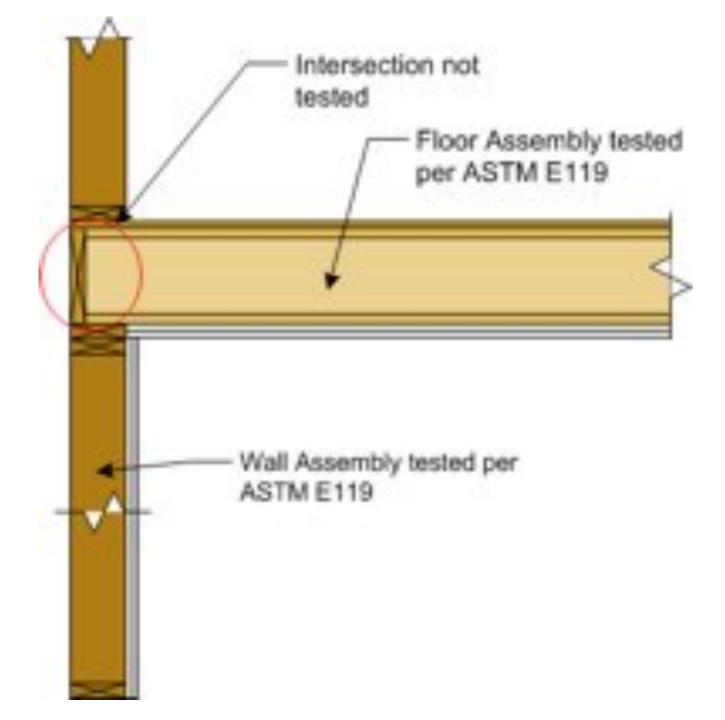
Wood I-Joist Fire Sprinkler Attachments



SCL Fire Design

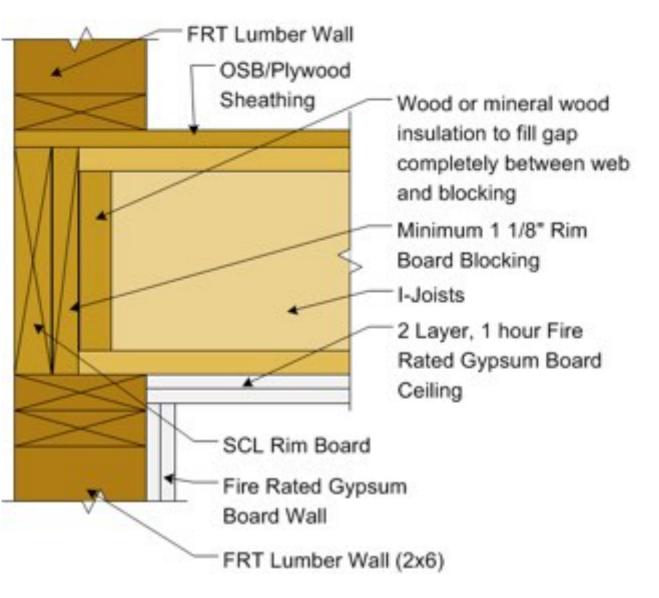
- SCL has the same char rate as solid timber
- Design Methodology prescribed in NDS Chapter 16, calculate endurance time of a wood member exposed to standard fire based upon:
 - the size of wood beam or column
 - percent of maximum allowable design load applied.
- Solid SCL beams only, multiple ply require further analysis
- More information AWC TR 10

SCL Fire Testing

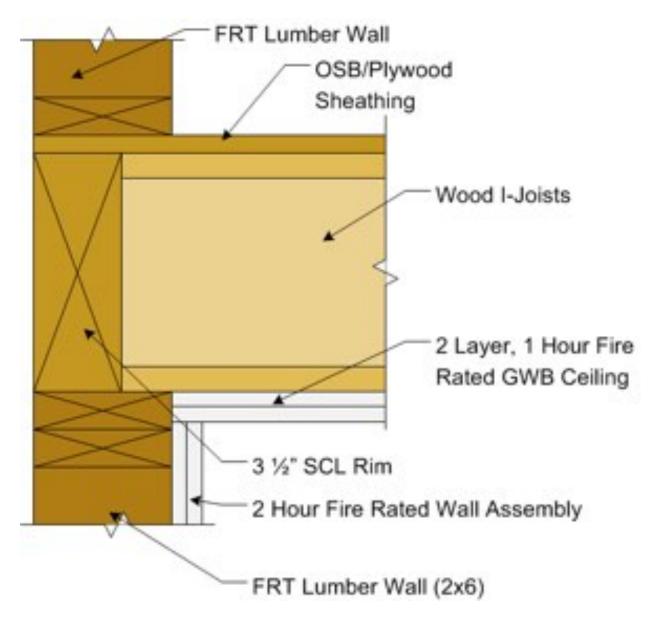


Type IIIA Wall / Floor Intersection

• No standardized fire test for intersection



ASTM Wall Test

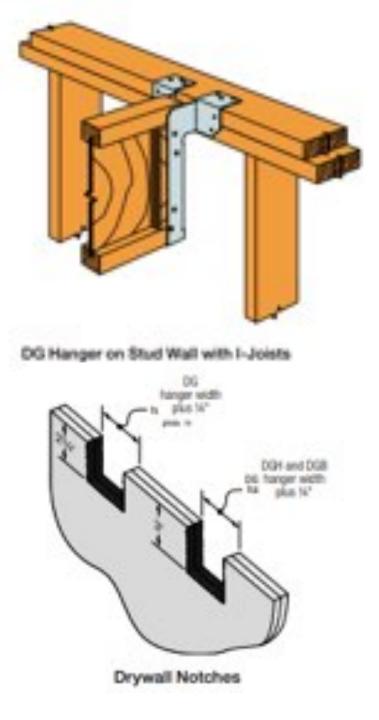

Type IIIA Wall / Floor Intersection

- Multiple SCL rim in lieu of FRT
- Methodology published in AWC
 DCA3: Fire-Resistance-Rated
 Wood-Frame Wall and
 Floor/Ceiling Assemblies

Type IIIA Wall / Floor Intersection

- Thicker SCL rim in lieu of FRT
 - Advantageous for both connections and char
- Methodology published in AWC
 DCA3: Fire-Resistance-Rated
 Wood-Frame Wall and
 Floor/Ceiling Assemblies

Type IIIA Wall / Floor Intersection


• Fasten-Thru Hangers

DHU Installed (Drywall cutaway)

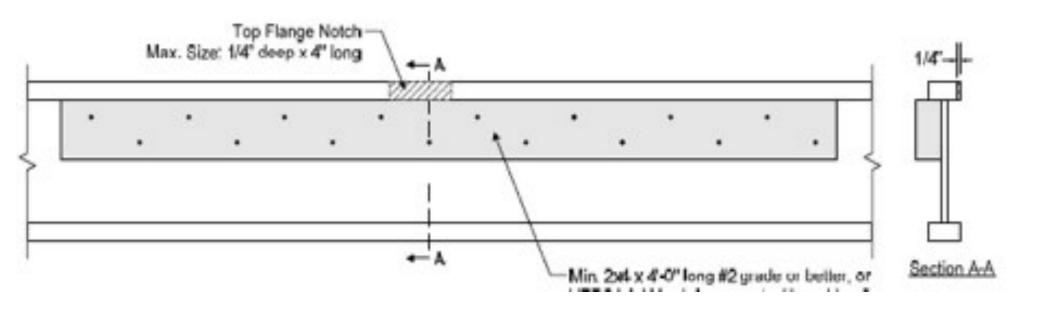
• Cantilever Hangers

EWP Design Resources

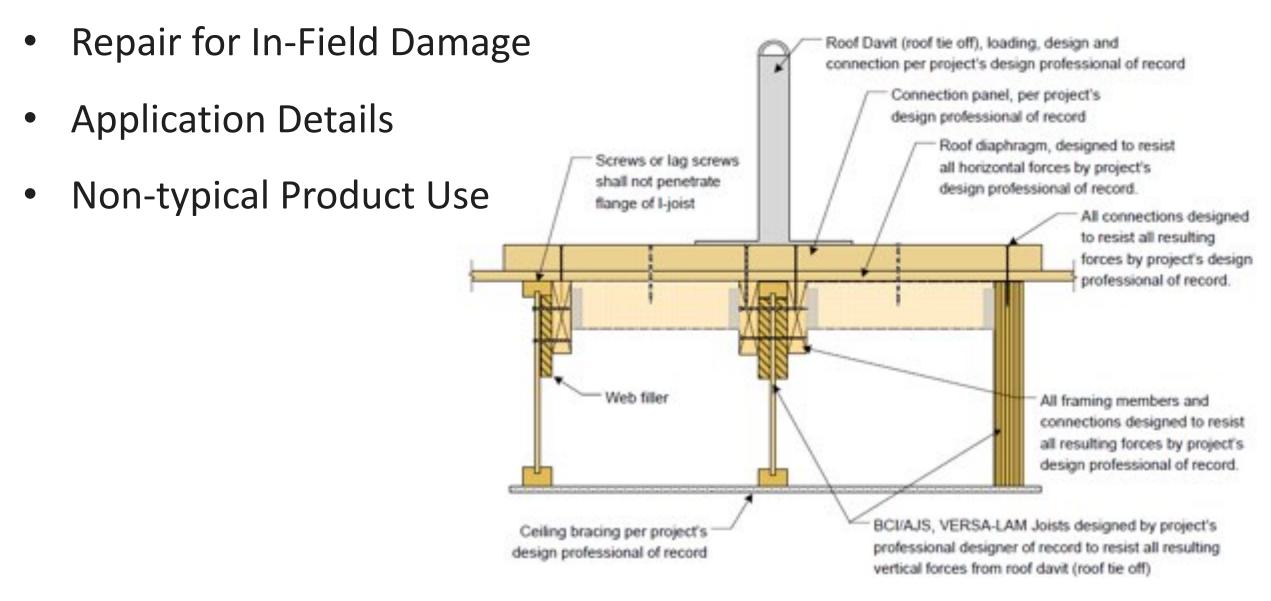
- APA The Engineered Wood Association
 - Installation/Application Information
- Individual EWP manufacturers
 - Technical & Fire Design Literature
 - Design Software

	-		-	-	-	_	p•6	0
-	×	R and						
inalysis for Engineered Wit	ood Products			5C/IRC 2009				
Project + Library +							7 🗰	Jeff Ce
		• • III	8015	Nerther J02				
								1
********						**********		
		Joist					_	
-			10-08-00				- 100	
81 50 50 80							R2 All Rs Cliff Rs	
FLL 440 8s UP 79 8s						FLL	Civil Ins	
07.14.69								
			Total Horizontal Product L	angth = 19-08-0	00			
					00	1000	Annal	Data da
Spans Sellings Load		e Netfini (Notes D		20	Control Type 🔶 🔻	Applied	Results
Detrops Lond	-Subfloor		Notes 0	etails		Moment	1797.6-84	44.3%
	-Subfloor	058 •	Live Deflection	Li400		Momant Neg. Momant	1797 A-ba -3100 A-ba	44.3% 76.4%
ок	-Subfloor		Notes 0	Li400	-1	Momant Neg. Momant End Reaction	1797 A-ba -3100 A-ba 505 Ro	44.35 76.45 38.45
OK	Subfloor-Material Thickness Performance Mo	058 + 34° + diters	Total Defection	L400 -		Moment Neg. Moment End Reaction Int. Reaction	1797 8-84 -3100 8-84 505 84 1955 84	44.3% 76.4% 38.4% 66.5%
OK ⊡Max Depth 11.737 + @Composite(Sive Nat)	Subfloor Material Thickness	058 v 54° v	Use Deflection Use Deflection For Cart. Spars Total Deflection For Triar Def.	L480 -		Momant Neg. Momant End Reaction	1797 A-ba -3100 A-ba 505 Ro	44.35 76.45 38.45
OK Max Depth 11-787 * Composite(Size Nal) Safe Load	Subfloor-Material Thickness Performance Mo	058 + 34° + diters	Total Defection	L480 -		Moment Neg. Moment End Reaction Int. Reaction	1797 8-84 -3100 8-84 505 84 1955 84	44.3% 76.4% 38.4% 66.5%
OK Max Depth 11.739" * @Composite(Gue Nail) Safe Load Gange Load	Subfloor- Material Thickness Performance Mo Oyseum Celling Blocking None	058 + 34° + difers None +	Use Deflection Use Deflection For Cart. Spars Total Deflection For Triar Def.	L480 - L/380 - L/240 - L/240 -		Women Neg, Moment End Reaction Int. Reaction End Shear	1797 8-864 -3100 8-866 500 856 1855 856 485 856	44.35 76.45 38.45 66.95 28.05
OK	Subfloor- Material Thickness Performance Mo Oyseum Celling Blocking None	058 + 34° + diters None + No. per Span 2	Total Defection Total Defection Total Defection Total Defection Prix Train Def. For Cart. Spars	LU480 - LU380 - LU340 - LU340 - LU340 - 1* -		Monant Neg, Monant End Reacton Int. Reacton End Shear Cont. Shear	1797 ft-lba -3100 ft-lbs 505 fbs 1055 fbs 405 fbs 1124 fbs	44.35 76.45 38.45 65.55 39.05 67.15
OK	Subfloor- Material Thickness Performance Mo Oyseum Celling Blocking None	058 + 34° + diters None + No. per Span 2	Total Defection Total Defection Total Defection Total Defection Total Defection For Cart. Spars Total Defection Defection Total Defection Total Defection Total Defection	LU480 - LU380 - LU340 - LU340 - LU340 - 1* -		Monant Neg. Monant End Reaction Int. Reaction End Shear Cont. Shear Total Load Det	1797 5-84 -3100 5-85 500 85 1866 85 1866 85 1866 85 1124 85 0.287	44.3% 76.4% 38.4% 66.5% 28.5% 67.5% 70.7%
OK	Subfloor- Material Thickness Performance Mo Oyseum Celling Blocking None	058 + 34° + diters None + No. per Span 2	Total Defection Total Defection Total Defection Total Defection Total Defection For Cart. Spars Total Defection Defection Total Defection Total Defection Total Defection	LU480 - LU380 - LU340 - LU340 - LU340 - 1* -		Monant Neg. Monant End Reaction Int. Reaction End Shear Cont. Shear Year Load Deft Live Load Deft	1797 8-84 -3100 8-84 500 84 1806 84 485 84 1124 84 0.2857 0.2277	44.3% 76.4% 38.4% 65.5% 29.5% 67.5% 70.7% 76.6%

WESTERN ENGINEERED WOOD PRODUCTS COMMERCIAL GUIDE


EWP Design Resources

- Wood Design 101: <u>https://www.woodworks.org/wp-</u> <u>content/uploads/Wood-design-structural-properties-</u> <u>performance-fact-sheet.pdf</u>
- Connection Design:
 - AWC Connector Calculator: <u>https://awc.org/codes-</u> <u>standards/calculators-software/connectioncalc</u>
 - ISANTA ICC-ES ESR Evaluation Report: <u>https://www.icc-es.org/wp-content/uploads/report-directory/ESR-1539.pdf</u>
 - Proprietary fasteners
- Fire Design: AWC TR-10 <u>https://awc.org/codes-</u> <u>standards/publications/tr10</u>


Manufacturers' Engineering Departments

- Technical services including: structural repairs, application review, product acceptance
- Available for all specifiers and building officials

Manufacturers' Engineering Departments

> QUESTIONS?

This concludes The American Institute of Architects Continuing Education Systems Course

Jeff Olson, P.E. Boise Cascade

jeffolson@bc.com