

Mass Timber Construction: Products, Performance and Design

Speaker Name

WoodWorks

Photo: Corey Gaffer courtesy Perkins + Will

"The Wood Products Council" is a Registered Provider with The American Institute of Architects Continuing Education Systems (AIA/CES), Provider #G516.

Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request. This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

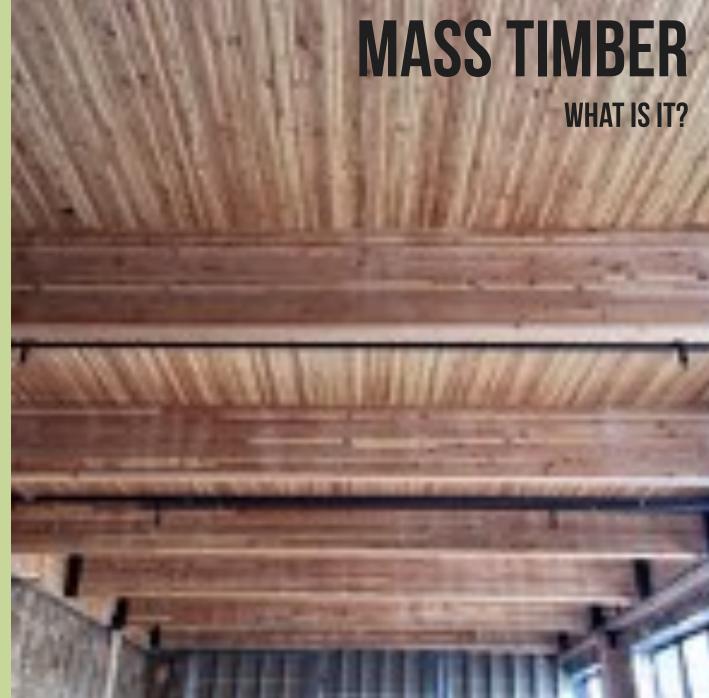
Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Course Description

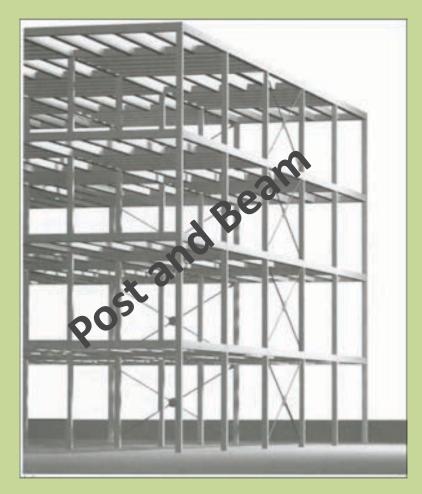
Due to their high strength, dimensional stability and positive environmental performance, mass timber building products are quickly becoming materials of choice for sustainably-minded designers. This presentation will provide a detailed look at the variety of mass timber products available, including glue-laminated timber (glulam), cross laminated timber (CLT), nail laminated timber (NLT), heavy timber decking, and other engineered and composite systems. Applications for the use of these products under modern building codes will be discussed, and examples of their use in U.S. projects reviewed. Mass timber's ability to act as both structure and exposed finish will also be highlighted, as will its performance as part of an assembly, considering design objectives related to structural performance, fire resistance, acoustics, and energy efficiency. Other topics will include detailing and construction best practices, lessons learned from completed projects and trends for the increased use of mass timber products in the future.

Learning Objectives

- 1. Identify mass timber products available in North America and consider how they can be used under current building codes and standards.
- 2. Review completed mass timber projects that demonstrate a range of applications and system configurations.
- 3. Discuss benefits of using mass timber products, including structural versatility, prefabrication, lighter carbon footprint, and reduced labor costs.
- 4. Highlight possibilities for the expanded use and application of mass timber in larger and taller buildings.

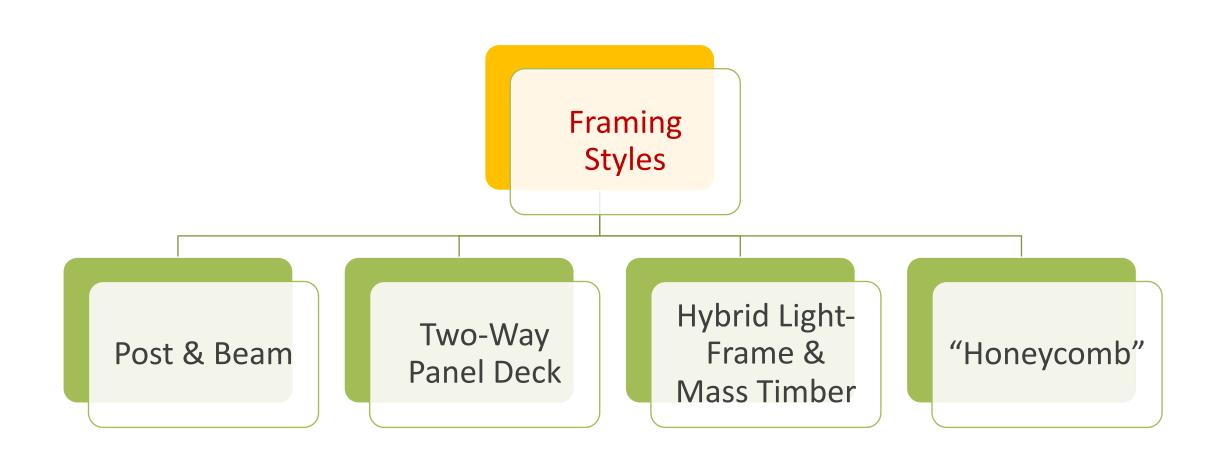


TODAY'S AGENDA MASS TIMBER CONSTRUCTION


MASS TIMBER

- SYSTEMS
- **PRODUCTS**
- APPEAL
- **DESIGN TOPICS**
 - CONSTRUCTION, SOURCING & COST CASE STUDIES
- WHAT'S NEXT?

MASS TIMBER IS A CATEGORY OF FRAMING STYLES OFTEN USING SMALL WOOD MEMBERS FORMED INTO LARGE PANELIZED SOLID WOOD CONSTRUCTION INCLUDING CLT, NLT OR GLULAM PANELS FOR FLOOR, **ROOF AND WALL FRAMING**


BUILDING FRAME SYSTEMS

Mass Timber Framing Systems

POST & BEAM

T3 MINNEAPOLIS MINNEAPOLIS, MN Image credit: blaine brownell

TWO-WAY PANELS

5 PLY CLT PANELS, 2-WAY SPAN ~9'X13' GRID OF COLUMNS

BROCK COMMONS VANCOUVER, BC Images: Acton Ostry Architects

HONEYCOMB

CANDLEWOOD SUITES REDSTONE ARESENAL, AL IMAGE CREDIT: LENDLEASE

What's in a mass timber building? Products used

Mass Timber Framing Systems

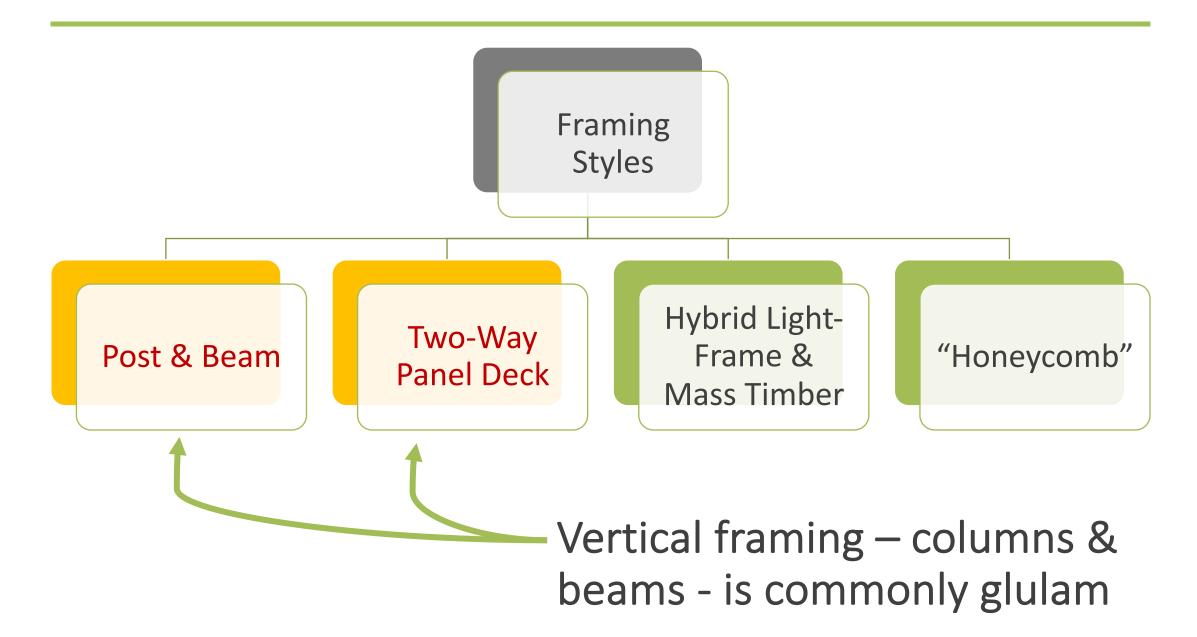


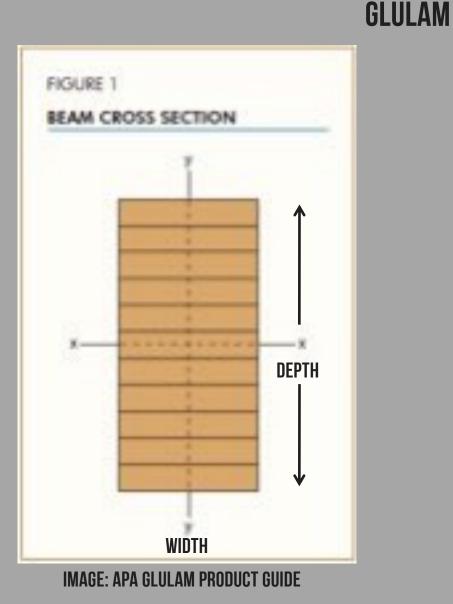
PHOTO CREDIT: ALEX SCHREYER

GLULAM

MASS TIMBER PRODUCTS GLULAM

GLULAM = A STRUCTURAL COMPOSITE OF LUMBER AND ADHESIVES

- RECOGNIZED IN IBC 2303.1.3 USING ANSI/AITC A 190.1 AND ASTM D 3737
- CAN BE USED FOR FLOOR, ROOF PURLINS, BEAMS, ARCHES, COLUMNS


GLULAM SPECS:

TYPICAL WIDTHS:

3-1/8", 3-1/2", 5-1/8", 5-1/2", 6-3/4", 8-3/4", 10-3/4", 12-1/4"

TYPICAL DEPTHS: INCREMENTS PER # OF LAMS FROM 6" TO 60"± WESTERN SPECIES LAMS ARE TYPICALLY 1-1/2" THICK SOUTHERN PINE LAMS ARE TYPICALLY 1-3/8" THICK

<u>TYPICAL SPECIES:</u> Douglas-Fir, Southern Pine, Spruce Also Available in Cedar & Others

GLULAM DESIGN VALUES

		Bending About X-X Axis (Loaded Perpendicular to Wide Faces of Laminations)									
		Be	nding	Perp	pression endicular Grain	Shear Parallel to Grain	Modulus of Elasticity				
		Roburn of Bouars, Dressed In Torscen Produce Deciding	Top of Boars Browsed in Toroken (Nepature Bendrag)	Tension Face	Compression Face		For Deflection Calculations	For Statulity Calculations			
Combination	Species	F _{bx} F _{bx}		1	elx	F _{vx} ⁽²⁾	Ex	Exmin			
Symbol	Outer/ Core	(psi)	(psi)		(psi)	(psi)	(10 ⁸ psi)	(10 ⁶ psi)			
24F-1.8E		2400	1450	650		265	1.8	0.95			
24F-V4	DF/DF	2400	1850	650	650	265	1.8	0.95			
24F-V8	DF/DF	2400	2400	650	650	265	1.8	0.95			
24F-E4	DF/DF	2400	1450	650	650	265	1.8	0.95			
24F-E13	DF/DF	2400	2400	650	650	265	1.8	0.95			
24F-E18	DF/DF	2400	2400	650	650	265	1.8	0.95			
24F-V3	SP/SP	2400	2000	740	740	300	1.8	0.95			
24F-V8	SP/SP	2400	2400	740	740	300	1.8	0.95			
24F-E1	SP/SP	2400	1450	805	650	300	1.8	0.95			
24F-E4	SP/SP	2400	2400	805	805	300	1.9	1.00			

GLULAM

termine child

Benigs Spines for West Construction

2012 EDITION

SOURCE: NDS SUPPLEMENT TABLE 5A

GLULAM BEAM CAPACITIES

	DF-2	7 FIR -	LAR	СН		THE	AME	RICA	N INS	тітит	E OF	тімв	ER C	ONST	RUCI	NON	
FLO	OR B	EAM	s			Stru	ctura	I Glue	d Lar	ninate	ed Tin	nber					
1997 - Carlos C.	Contraction of the			n		(E2)	F,	E		Co	Defle	otion	limit				GLUED LAMINATED
FLOOR LIVE LOAD Simple Span Beams For Preliminary Design Purposes			2400 240 1.8 psi psi million psi			C _D Deflection limit 1.00 Span / 360 for LIVE LOAD					BEAM DESIGN TABLES						
and the second		icknes			5					ROOR	LOAD FA	+ ROTO	0.60	0			
and the second	1925	BEAM	1		_		BEA	MCAP	ACITY		and the second s		v, plf				
Weth	Depth	WEIGHT	SPAN.	h													
1.10	d.10.	10	8	- 8 2	10	-(11)	- 12	- 13	- 16	15	16	= 17	- 180	19	20	- 21	
51/8	6	7.5	601 D	422.0	307 D	231 D	176 D	140 D	112 D	91 D	+	£.	i de la compañía de	43	1	4	States of a local property in
51/8	7 1/2	9.3	1173 D	824 D	601 D	451 D	348 D	273 D	219 D	178.0	147.0	122 0	103 D	Harry .	and the second	÷6	The second se
51/8	9	11.2	1730 B	1367.8	1038 D	780.0	601 D	472 D	378 D	307 D	253.0	211 D	178 D	151 D	130 0	112.0	
51/8	10 1/2	13.1	2354 B	1860 8	1507 B	1238 D	954 D	750 D	601 D	458 D	402 D	335 D	283 D	240 D	206.0	178 D	
5.1/8	12	14.9	3075 B	2430 8	1968 8	1626.8	1367 8	1120 D	896 D	729 0	601 D	501 D	422 0	369 D	307 D	266 D	
51/8	13 1/2	16.8	3850 S	3075 B	2491 B	2058 8	1730 8	1474 8	1271 B	1038 D	855 D	713 D	601 D	511 D	438.0	378 D	
51/8	15	18.7	4473 S	3785 S	3075 8	2541.8	2135 8	1820 8	1569 B	1367 8	1173 D	978 D	824 D	700 D	601 D	519.0	
5.1/8	16 1/2	20.6	5154.5	4330 \$	3721 8	3075 8	2584 8	2202 8	1898.8	1654 B	1447.8	1274 8	1097 D	932 D	799 D	691 D	
51/8	18	22.4	5904 S	4920 \$	4217 8	3660 B	3075 B	2620 B	2259 8	1954 B	1707 8	1503 B	1333 B	1190 8	1038 D	896 D	100
5 1/8	19 1/2	24.3	6000 *	5562.8	4738 S	4126 8	3609 8	3073 8	2630 8	2275 8	1987 8	1750 8	1552 B	1385 B	1244 8	1123 8	APA
51/8	21	26.2	6000 °	6000 *	5298 5	4592.5	4052.5	3538 8	3028 8	2620 8	2208.0	2014 B	1786 B	1595 8	1432 B	1292 B	
51/8	22 1/2	28.0	6000*	6000*	5904 S	5090 S	4473.5	3969 S	3452 B	2905 8	2608 8	2296.8	2036 B	1818.8	1632 8	1473 B	SOURCE: APA
51/8	24	29.9	6000 *	6000*	6000 *	5623 8	4920 8	4373 8	3902 B	3376 8	2948 B	2596 8	2302 B	2055 8	1845 B	1665 8	JUUNGE. AFA
51/8	25.1/2	31.8	6000 *	6000 *	6000*	6000 *	5396-8	4779 8	4289 S	3788 8	3308 8	2913 8	2583 8	2306 8	2070 B	1569-8	

AITC BEAM CAPACITY TABLES <u>HTTP://WWW.AITC-GLULAM.ORG/CAPACITY.ASP</u>

S = CONTROLLED BY SHEAR, D = CONTROLLED BY DEFLECTION, B = CONTROLLED BY BENDING

GLULAM COLUMN CAPACITIES

GLULAM

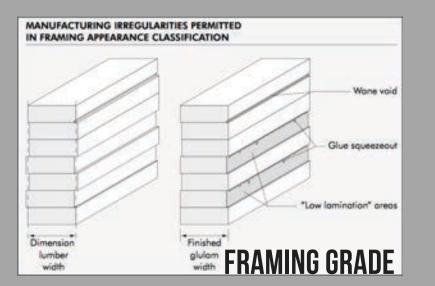
	5 19945	and the second	erican Laminate					Contraction of the second	802975		
Combinat	tion 47**	(SP N2M)	na contrator L	PERSONAL PROPERTY AND	9040984005		Dura	tion of Lo	oad (C _D) =	1.00	
amination Thickness = 1- 3/8 in. Dry Conditio											
Width (in) Depth (in)	3 4 1/8	5 1/2	4 1/8	5 5 1/2	5 6 7/8	6 3/4 5 1/2	6 3/4 6 7/8	5 3/4 8 1/4	8 1/2 8 1/4	Width (in) Depth (in)	
Length (ft)	Column Capacity (lb)										
.4	6350	13900	14270	24690	32110	33690	43720	53390	67420	4	
5	7410	11260	13370	23420	30710	31780	42120	51920	65700	5	
6 7	6240	9020	12300	21700	28950	29600	40230	50160	63660	6	
	5180	7300	11100	19780	26820	27200	38100	48090	61320	7	
8 9	4310	6000	9860	17780	24000	24700	35770	45730	58730	8	
9	3620	5000	8680	15860	21050	22230	33300	43090	55930	9	
10	3080	4230	7630	14110	18470	19930	30760	40210	52950	10	
11	2640	3610	6720	12580	16270	17870	28250	37230	49840	11	
12	2290	3120	5940	11240	14400	16050	25870	34210	46680	12	
13			5280	10090	12810	14460	23680	31060	43550	13	
14	18 C	¥2	4720	9090	11460	13080	21690	28250	40520	142	
15	1	++	4240	8220	10300	11860	19890	25750	37670	15	
16	(H)	÷.	3830	7440	9300	10800	18290	23530	35020	16	
17	(#	÷	3470	6750	8440	9870	16850	21570	32580	17	
15	1		to make it	6150	7690	9050	15560	19820	30340	18	
19			2.465	5620	7030	8320	14400	18270	28290	19	
20				5160	6450	7680	13360	16890	26420	20	

AITC COLUMN CAPACITY TABLES HTTP://WWW.AITC-GLULAM.ORG/COLUMN.ASP

MASS TIMBER PRODUCTS GLULAM

GLULAM SPECS: PT READILY AVAILABLE FRT MAY BE AVAILABLE, VARIES BY MANUFACTURER & TREATER

CAN BE CAMBERED, CURVED & TAPERED


DIFFERENT APPEARANCE GRADES AVAILABLE

GLULAM APPEARANCE GRADES

GLULAM

GLULAM LAYUP: VARY STRENGTH OF LAMINATIONS

- HIGHER STRENGTH LAMS AT TOP AND BOTTOM -Tension and compression stresses are high
- LOWER STRENGTH LAMS IN CENTER PLIES

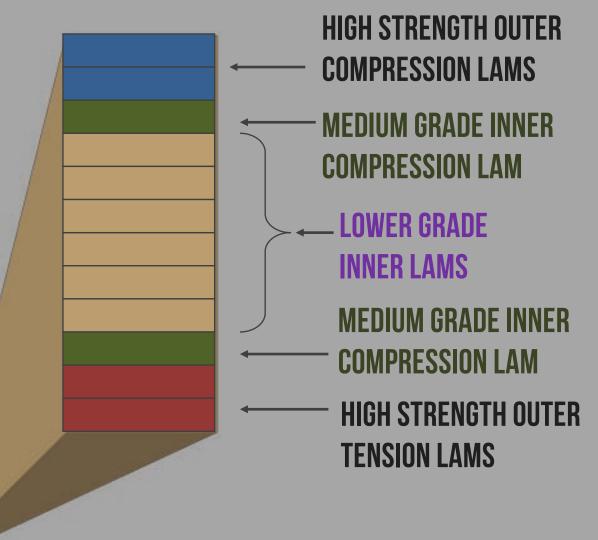
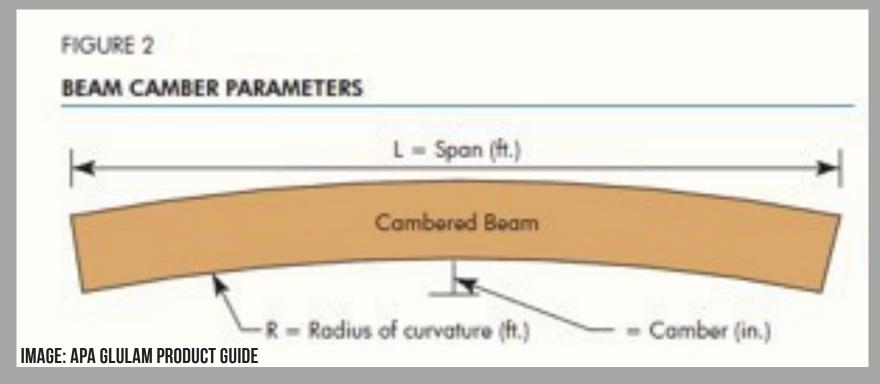



IMAGE: APA

GLULAM

GLULAM CAMBER

- GLULAM CAN BE MANUFACTURED WITH CAMBER TO OFFSET DEAD LOAD DEFLECTION
- VERY IMPORTANT FOR LONG SPAN MEMBERS
- GLULAM INDUSTRY RECOMMENDS CAMBER = 1.5 TIMES CALCULATED DEAD LOAD DEFLECTION

FLEXIBILITY OF SPANS AND SHAPES

RICHMOND OLYMPIC OVAL, RICHMOND, BC, CANADA Design team: Cannon Design Architecture, FAST + EPP, glotman Simpson Photo Credit: Stephanie Tracey, Craig Carmichael, Jon Pesochin, KK Law Creative, Ziggy Welsch

104' SPAN GLULAM ARCHES GLULAM PURLINS @ 4' O.C

LEMAY AMERICA AUTO MUSUEM Photo credit: Western wood structures THE CATHEDRAL OF CHRIST THE LIGHT, OAKLAND, CA Photo: Timothy Hursley, Cesar Rubio, and John Blaustein BUFFALO HARBOR CENTER RINK 1, BUFFALO, NY Photo: Harborcenter.com

LONG SPAN GLULAMS

PHOTO: AMERICAN WOOD COUNCIL

MASS TIMBER PRODUCTS GLULAM

BUILT UP SECTIONS: AVAILABLE FROM SOME MANUFACTURERS FOR WIDE BEAMS, LARGE COLUMNS. WIDTHS OF 24" ± AVAILABLE

FIRST TECH CREDIT UNION

HILLSBORO, OR

5 STORIES 156,000 SF

ARCHITECT: HACKER IMAGE CREDIT: STRUCTURLAM

FIRST TECH CREDIT UNION HILLSBORD, OR

ARCHITECT: HACKER IMAGE CREDIT: STRUCTURLAM

Mass Timber Framing Systems

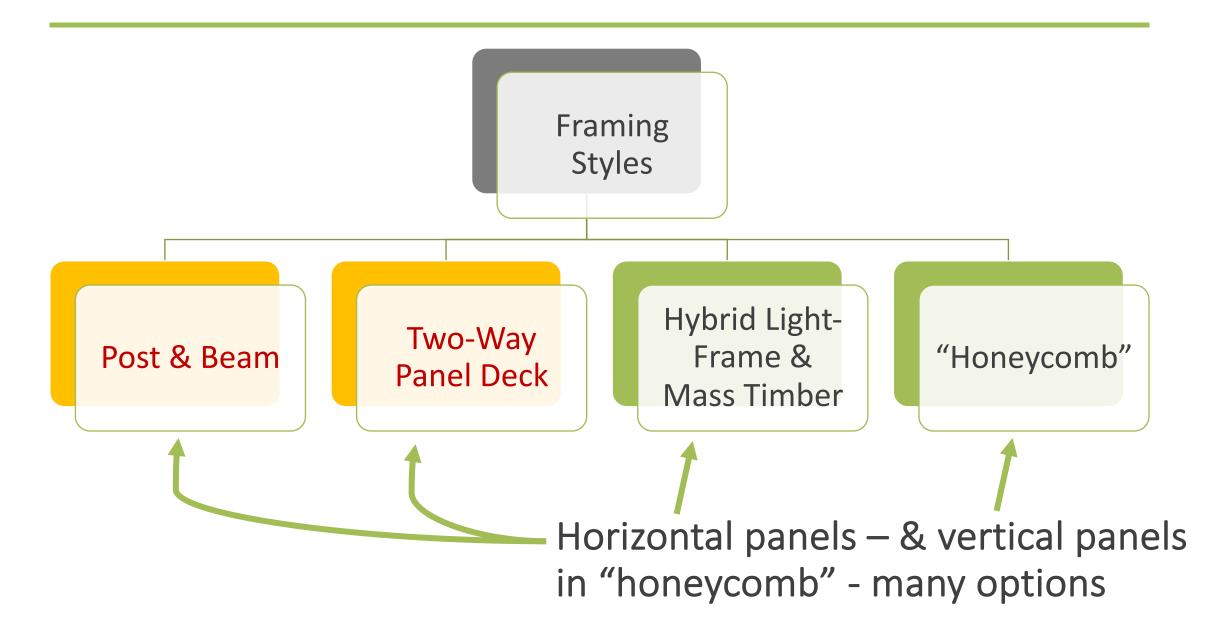


Photo credit: StructureCraft Builders/Freres Lumber

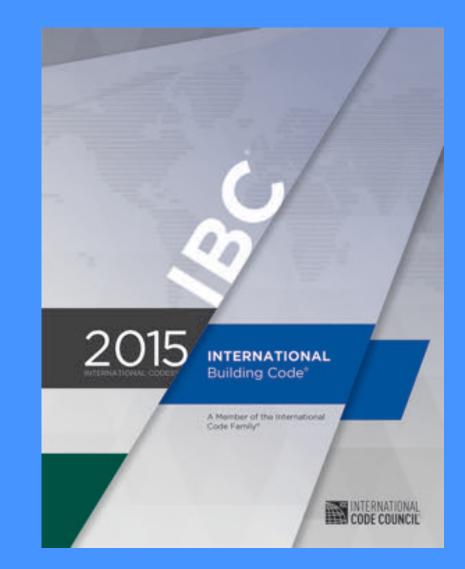
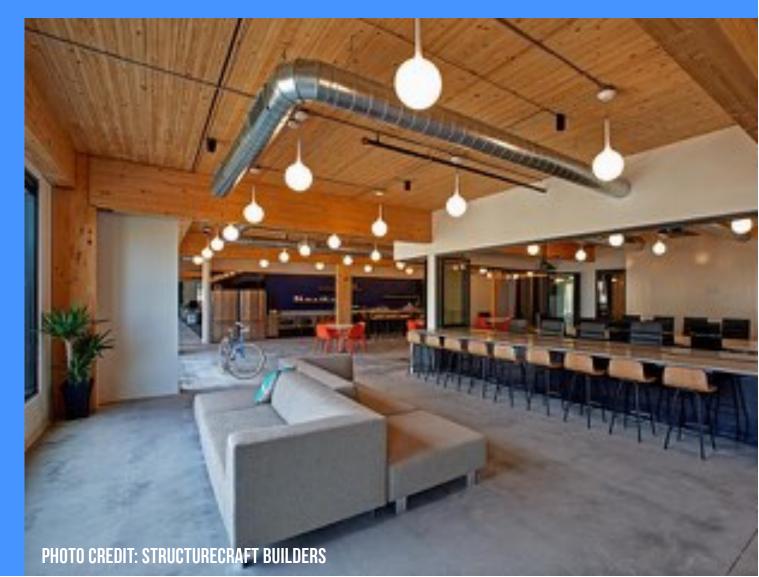
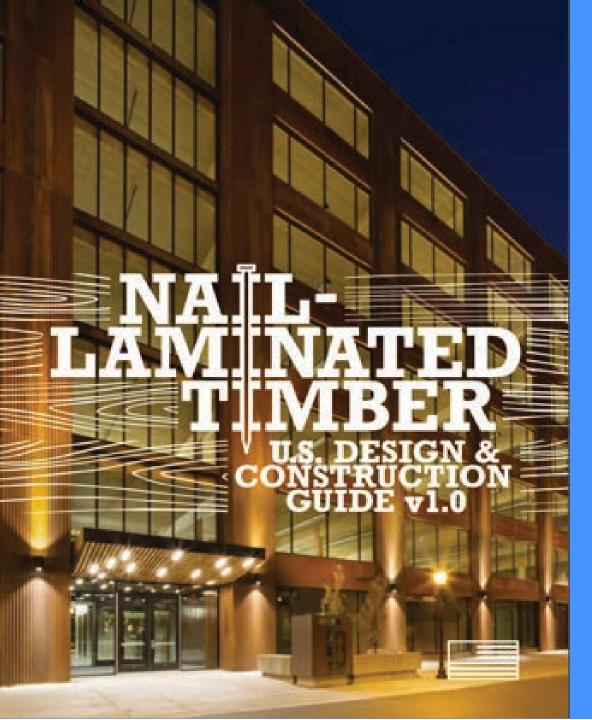


PHOTO CREDIT: STRUCTURECRAFT BUILDERS

What is it? Nail-laminated timber (NLT) is mechanically laminated to create a solid timber panel. NLT is created by placing dimension lumber (nominal 2x, 3x, or 4x thickness and 4 in. to 12 in. width) on edge and fastening the individual laminations together with nails.


When does the code allow it to be used? IBC defines NLT as mechanically laminated decking per IBC 2304.9.3

Permitted anywhere that combustible materials and heavy timber are allowed, plus more


When is it used?

NLT is typically used for floor and roof panels. Plywood/OSB added to one face can provide in-plane shear capacity, allowing the product to be used as a diaphragm. Can also be used for walls, shafts.

OFTEN EXPOSED ON UNDERSIDE STRUCTURE IS FINISH

PHOTO CREDIT: WOODWORKS

CONTENT INCLUDES:

- ARCHITECTURE
 - FIRE

- STRUCTURE
- ENCLOSURE
- SUPPLY AND FABRICATION
- CONSTRUCTION AND INSTALLATION
- ERECTION ENGINEERING

FREE DOWNLOAD AT

WWW.THINKWOOD.COM/NLTGUIDE

NLT DIAPHRAGM DESIGN:

LACK OF TESTED, PUBLISHED DIAPHRAGM VALUES FOR Bare NLT Lead Many Engineers to covering with Wood Structural Panels. Design as a blocked, Sheathed Diaphragm. Use Sdpws table 4.2a/4.2b

MASS TIMBER PRODUCTS NAIL-LAMINATED TIMBER (NLT) PANELS

PHOTO CREDIT: STRUCTURECRAFT BUILDERS

NLT SHRINKAGE/EXPANSION DESIGN: RULE OF THUMB: LEAVE ONE PLY OUT PER 8'-10' WIDE PANEL

FLUTED PANEL OPTIONS VARY LAMINATION DEPTHS

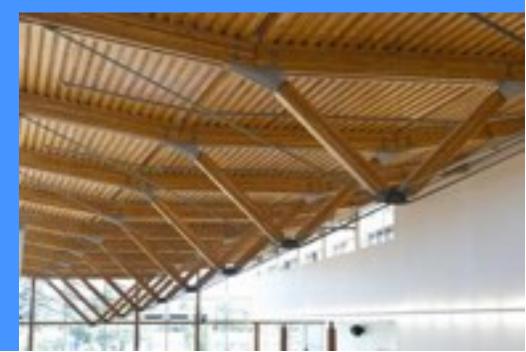


PHOTO CREDIT: STRUCTURECRAFT BUILDERS

NLT PANELS CAN BE BUILT ON-SITE/IN-PLACE OR PRE-FABRICATED OFFSITE

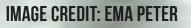
PHOTO CREDIT: STRUCTURECRAFT BUILDERS

OFTEN PRE-SHEATHED ONCE INSTALLED, ADD STITCHING STRIPS, TAPE JOINT IF APPLICABLE

T3 MINNEAPOLIS

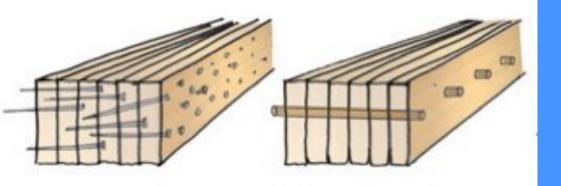
MINNEAPOLIS, MN

Photo Credit: Blaine Brownell


T3 MINNEAPOLIS MINNEAPOLIS, MN

Type IV Construction 7 stories (6 Timber on 1 Concrete) 234,000 sf 2x8 NLT Floor Panels w/3" Concrete Topping Glulam Beam and Column Frame 20'x25' Grid

Image Credit: StructureCraft Builders


T3 MINNEAPOLIS

MINNEAPOLIS, MN

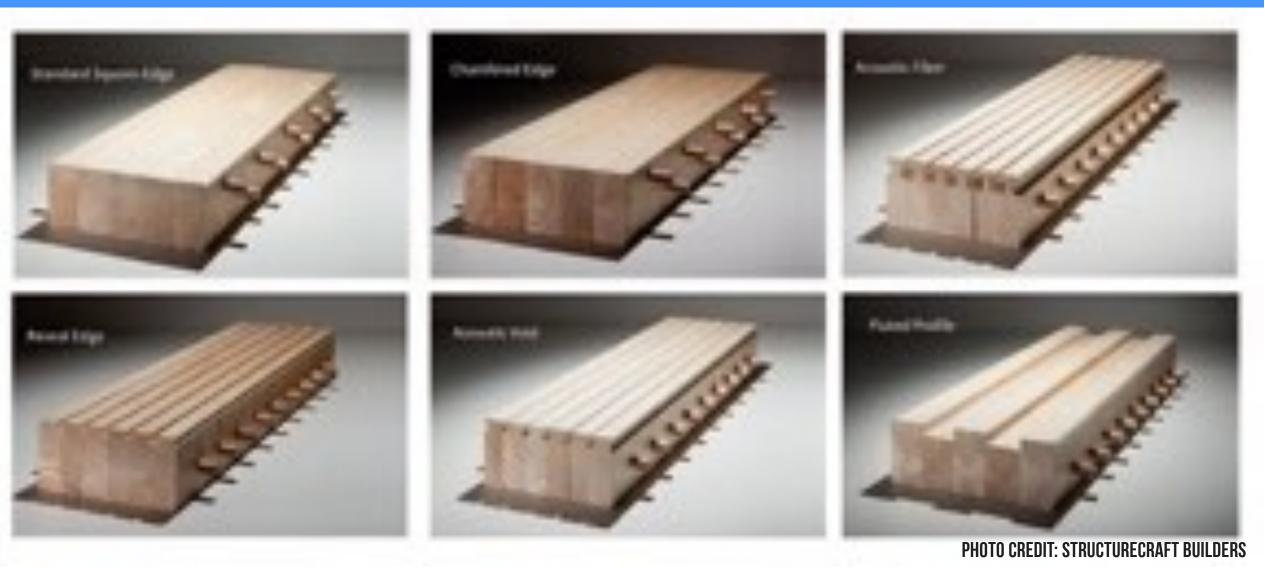
MASS TIMBER PRODUCTS

DOWEL-LAMINATED TIMBER (DLT)

DLT:

- SIMILAR TO NLT NAILS Connecting Lams Replaced With Hardwood Dowels
- COMMON IN EUROPE OFTEN Referred to as brettstapel
- NOT CURRENTLY RECOGNIZED AS PRESCRIPTIVELY PERMITTED MATERIAL IN IBC
- TIMBER FRAMERS GUILD Resources on dowel design

MASS TIMBER PRODUCTS Dowel-Laminated Timber (DLT) PANELS Dowel Laminated Timber


The All Wood Panel

Mass Timber Design Guide

DLT: SIMILAR TO NLT – BUT LAMS ARE USUALLY FINGER JOINTED IN DLT SO JOINT LAYUPS NOT A CONCERN

CREDIT: STRUCTURECRAFT BUILDERS

VARIOUS PROFILE OPTIONS

111 EAST GRAND Des moines, ia

CREDIT: NUEMANN MONSON ARCHITECTS Courtesy: Ryan companies

CREDIT: STRUCTURECRAFT BUILDERS

4 STORY, 66,800 SF SPEC OFFICE BUILDING DLT PANELS, GLULAM FRAME

111 EAST GRAND Des moines, ia

PHOTO CREDIT: STRUCTURE FUSION

GLULAM DECKING:

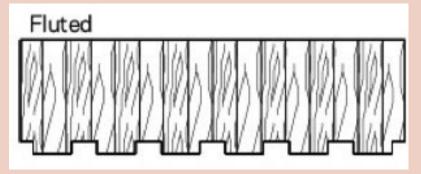
- SIMILAR TO DEEP GLULAM BEAMS LAID ON THEIR SIDE
- SAME CODE REFERENCES AND MANUFACTURING STANDARDS AS GLULAM BEAMS AND COLUMNS
- BE CAREFUL OF DESIGN STRESSES AND LAYUPS USED SPEC Uniform Layup (All Lams Same Species & Grade)

IMAGE SOURCE: STRUCTURECRAFT BUILDERS

MASS TIMBER PRODUCTS

GLUE-LAMINATED TIMBER (GLT) PANELS

IMAGE SOURCE: STRUCTURECRAFT BUILDERS


		_			Use with	Table	5A A	ijus to	pent Fac	tors		
		a.	oaded Pe	ng About X pendicular to f Lamination	Bending About Y-Y Axis (Loaded Parallel to Wide Faces of Laminations)							
	lending		Compression Perpendicular to Onen		Shear Parallel Io Grain	Modulus d Elasticity		Bending	Compression Perpendicular to Grain	Shear Parater to Grain	Modulus of Eleaticity	
		Break in Spreak	Tension Face	Compression Face		Par Defection Calculations	For . Matoli Comunities		Enterator)		Par Defection Calculations	Fir Besidey Coloure
ecies el Core	Fisk Fisk (psi) (psi)			elle (pei)	F _{va} (2) (ps)	E, (10 ⁴ p4i)	E _{s min} (10 ⁴ psi)	F _{by} (psi)	14 June 12 705 1	F _{vy} (2(3)	E, (10 ¹ 24)	Eymin (10 ⁴ ps)
1000	2400	1450	(14.11.14.1) (50 (15.11.11.14)		265	1.8	0.95	1450	560	230	1.6	0.85
00000	2400 2400 2400 2400 2400	1850 2400 3450 2400 2400	850 650 650 650 650	650 650 650 650 650	265 265 265 265 265	1.8 1.8 1.8 1.8	0.95 0.95 0.95 0.95 0.95	1450 1550 1400 1750 1950	560 560 560 560 560	230 230 230 230 230	1.6 1.8 1.7 1.7 1.7 1.7	0.85 0.85 0.90 0.90 0.90
P.S.P.	7400	2000	740	740	300	1.6	0.95	1700	650	260	1.6	0.85

NDS SUPPLEMENT LISTS DIFFERENT DESIGN VALUES FOR BENDING. LAYUP COMBINATIONS TYPICALLY OPTIMIZED FOR BEAM APPLICATIONS. LAYUP COMBINATIONS AREN'T EFFECTIVE IN GLT DECKING APPLICATIONS

MASS TIMBER PRODUCTS GLUE-LAMINATED TIMBER (GLT)

SAME SHRINKAGE AND DIAPHRAGM Considerations as NLT:

- GAP PANELS TO ALLOW MOVEMENT
- COVER WITH WOOD STRUCTURAL Panel for Diaphragm
- AVAILABLE IN VARIETY OF LAMINATION OPTIONS

MASS PLYWOOD PANELS (MPP)

THICKNESSES IN 1" INCREMENTS STRUCTURAL PROPERTIES IN APA PRODUCT REPORT PR-L325

MASS TIMBER PRODUCTS MASS PLYWOOD PANELS (MPP)

		Constant of
		The second
A CONTRACTOR OF THE OWNER.		-

MPP	Layup ID	Thickness, &		Major Strengt	h Direction		Minor Strength Direction				
			(FuS)unco (IbI-8/8)	(E7)Jatzs (10 ^b 8/-in. ² /ft)	(GA).ess (10 ⁶ lbf/R)	Vs.0 (0491)	(FuS)urrso (bf-fsR)	(El)utito (10 ⁴ Ed-in, ² /8)	(GA).et.to (10 ⁴ 8/(R)	V _{4.00} (Ibl9t)	
	F16-2	2	1,110	16	0.82	2,190	210	2.8	0.17	695	
	F16-3	3	1,870	51	1.23	2,190	355	9.0	0.26	695	
	F16-4	4	3,325	122	1.64	2,925	630	-21	0.34	930	
	F16-5	5	5,200	238	2.05	3,650	985	42	0.43	1,160	
	F16-6	6	7,500	410	2.46	4,375	1,420	72	0.69	1,390	
F16	F16-7	7	10,200	652	2.66	5,100	1,930	114	0.81	1,630	
	F16-8	a	13,325	973	3.04	5,825	2,525	170	0.91	1,860	
	F16-9	9	16,850	1,385	3.42	6.575	3,200	242	1.04	2.090	
	F16-10	10	20,825	1,900	3.80	7,300	3,950	333	1.15	2,320	
	F16-11	11	25,175	2,529	4.18	8,025	4,775	443	1,27	2,550	
	F16-12	12	29,975	3,283	4.55	8,750	5,675	575	1.38	2,775	

For SI: 1 in. = 25.4 mm; 1 ft = 304.8 mm; 1 lbf = 4.448N

⁽ⁱⁱⁱ⁾ Tabulated values are allowable design values.

^{III} Tabulated values are limited to MPP manufactured with 1-inch-thick Freres 1.6E Douglas-fir LVL.

¹¹¹ Deflection under a specified uniformly distributed load, w, acting perpendicular to the face of a single deflections due to moment and shear effects using the effective bending stiffness, (EI)us, and the effective bending stiffness. follows:

$$\delta = \frac{22.5wt^4}{(KI)_{eff}} + \frac{3wt^2}{2(GA)_{eff}}$$

where: a = Estimated deflection, inches: L = span, feet:

w = uniform load, plf; (EI) = tabulated effective bending stiffness, 10⁴ (GA) + tabulated effective in-plane (planar) shear rigidity, 10⁴ Ib/R

MASS TIMBER PRODUCTS TONGUE AND GROOVE DECKING

E BLOCK I, RMW ARCHITECTURE & **BUEHLER ENGINEERING. BE**

TONGUE AND GROOVE DECKING: 2X, 3X or 4X solid or laminated wood decking Laid flat with interlocking tongue and groove on Narrow (side) face

- RECOGNIZED IN IBC 2304.8 (LUMBER DECKING)
- 2X USUALLY HAS A SINGLE T&G; 3X AND 4X Usually have a double t&G
- 6" AND 8" ARE COMMON WIDTHS
- CAN BE USED FOR FLOOR, ROOF DECKING

CAN BE USED BY ITSELF AS A DIAPHRAGM: SDPWS TABLE 4.2D OR ADD LAYER OF WSP ON TOP, TREAT AS BLOCKED DIAPHRAGM

MASS TIMBER PRODUCTS TONGUE AND GROOVE DECKING

T&G DIAPHRAGM DESIGN

MASS TIMBER PRODUCTS TONGUE AND GROOVE DECKING

T&G DECKING DESIGN

Table 4E	(Tabulat	ed design value	Values for Visually Graded Decking ^{1,2} as are for normal load duration and dry service conditions, unless specified 3 for a comprehensive description of design value adjustment factors.)								
		U	SE WITH		ADJUSTME						
		3	Design values in pounds per square inch (pel) Banding					-			
Species and com	enercial grade	See classification	Single Repetitive Member Member		Compression perpendicular Its grain	Modulus of Elasticity		Specific Gravity	Grading Rules Agency		
			- K.	(51)(51	14		f				
CALCAN FIR				11.11		and the second	Constraints	-			
Seet		2'4' thes		1,660		1,500.000	560,000	0.000	NELMA		
Conversal N.C.	1000	- Colorada		1,400		1,300,000	470,000				
COAST STIKA SPR	1001		1					1			
Select		2.4" 1968	1,250	-1,403	435	1.700.000	8425,000	645	NLOA		
Constantial		4'A wider	1,060	1,200	455	1,800,000	560,000	-	- Handre		
COAST SPECIES											
Select		214° Inici	1,250	1,480	3/0	1,600,000	500.000	0.43	NUGA		
Connectel		4'& wider	1,050	1,200	370	1,400,000	\$10,000		ristan.		
DOUGLAS FIRILAS	ICH										
Select Dex		2'4' hits	1.750	2.009	425	1.800.000	865,000	1.50	10.8		
Section Section Section		at all the	1.000	6 446	1.00	1.000.000	a101 0000	0.000	17.4.10		

NDS SUPPLEMENT CONTAINS ALLOWABLE DESIGN VALUES AWC'S WCD-2 CONTAINS SPAN TABLES

TONGUE AND GROOVE ROOF DECKING

ICE BLOCK I

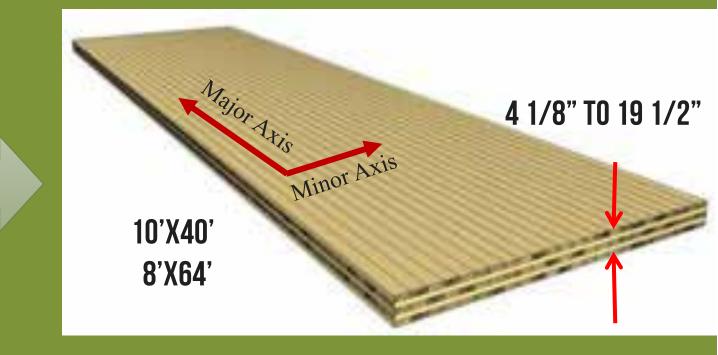
SACRAMENTO, CA

ICE BLOCK I, RMW ARCHITECTURE & INTERIORS, BUEHLER Engineering, Bernard André Photography

ICE BLOCK SACRAMENTO, CA

PHOTO CREDIT: RMW ARCHITECTURE

135,000 SF OF RETAIL AND RESTAURANT SPACE Glulam Frame, 3x t&g decking


E BLOCK I, RMW ARCHITECTURE & INTERIORS, Buehler Engineering, Bernard André Photography

MASS TIMBER PRODUCTS CROSS-LAMINATED TIMBER (CLT)

WHAT IS CLT? Solid wood panel 3 layers min. Of solid sawn lams 90 deg. cross-lams Similar to plywood sheathing

MASS TIMBER PRODUCTS CROSS-LAMINATED TIMBER (CLT)

MASS TIMBER PRODUCTS CROSS-LAMINATED TIMBER (CLT)

COMMON CLT LAYUPS

3-PLY 3-LAYER

5-PLY 5-LAYER

7-PLY 7-LAYER


9-PLY 9-LAYER

7-PLY 5-LAYER

9-PLY 7-LAYER

MASS TIMBER PRODUCTS

CROSS-LAMINATED TIMBER (CLT)

PHOTO CREDIT: DR JOHNSON

MASS TIMBER PRODUCTS

CLT PANEL FABRICATION

CROSS-LAMINATED TIMBER (CLT)

MASS TIMBER PRODUCTS CROSS-LAMINATED TIMBER (CLT)

CLT PREFABRICATION

- FINISHED PANELS ARE PLANED, SANDED, CUT TO SIZE. THEN OPENINGS ARE CUT WITH PRECISE CNC ROUTERS.
- THIRD PARTY INSPECTION AT FACTORY
- CUSTOM ENGINEERED FOR MATERIAL EFFICIENCY
- CUSTOM DESIGNED FOR PROJECT
- EACH PANEL NUMBERED, DELIVERED & INSTALLED IN PREDETERMINED SEQUENCE

PORTLAND, OR

4 STORIES 16,000 SF GREEN ROOF

ARCHITECT: LEVER ARCHITECTURE IMAGE CREDIT: LEVER ARCHITECTURE

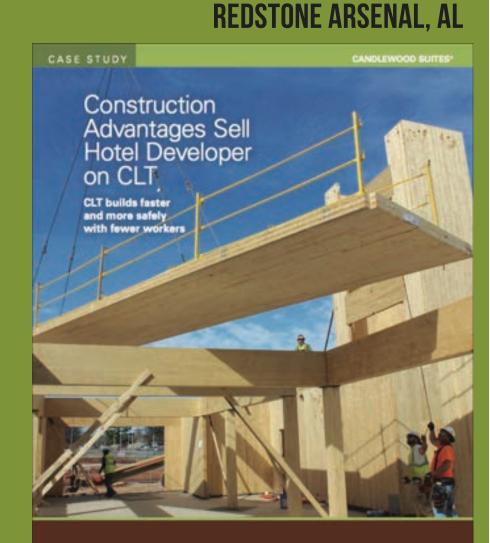
- 20'X20' GRID, 12' FLOOR TO FLOOR
- 3-PLY CLT FLOOR PANELS WITH ELECTRICAL CONDUIT Poured into 1" light weigh gypsum topping
- WOOD SHEARWALL CORE WITH OPEN FRONT DESIGN For glazing wall

CLT PANELS FOR AN ENTIRE FLOOR INSTALLED IN LESS THAN 4 HOURS SOURCE: LEVER ARCHITECTURE¹

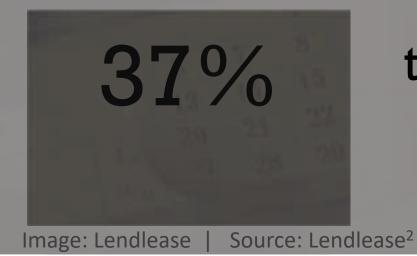
> ARCHITECT: LEVER ARCHITECTURE IMAGE CREDIT: LEVER ARCHITECTURE

CANDLEWOOD SUITES REDSTONE ARSENAL, AL

IMAGE CREDIT: IHG® ARMY HOTELS, LENDLEASE


CANDLEWOOD SUITES

- 62,600 SF, 4 STORY HOTEL, 92 PRIVATE Rooms
- CLT UTILIZED FOR WALLS, ROOF PANELS, AND FLOOR PANELS
- 1,557 CLT PANELS; TYPICAL FLOOR PANEL IS 8'X50' & WEIGHS 8,000 LBS
- COMPLETED LATE 2015

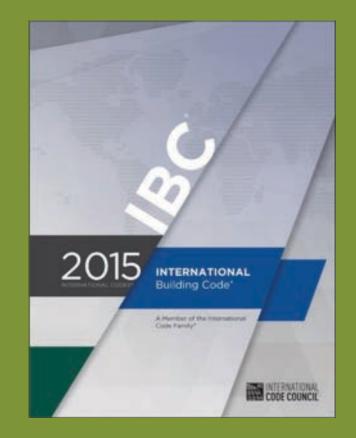

CANDLEWOOD SUITES

PAL Portfolio	Typical New PAL Hotel (Actual*)	Redstone Arsenal (Actual)	Difference
Gross square feet (sf)	54,891	62,688	+14%
Average # of employees	18 (peak 26)	10 (peak 11)	-43%
Structural duration (days)	123	78	-37%
Structural person hours	14,735	8,203	-44%
Structural production rate/day	460 sf	803 sf	+75%
Overall schedule	15 months	12 months	-20%

 PAL New Build Hotel Historical Average Source: Lendlease

Savings on this CLT project compared to typical light gauge steel construction

> Candlewood Suites at Redstone Arsenal, AL 4 Stories, 62k SF


MASS TIMBER PRODUCTS CROSS-LAMINATED TIMBER (CLT)

IN 2015 IBC, CLT IS NOW DEFINED IN CHAPTER 2 DEFINITIONS:

[BS] CROSS-LAMINATED TIMBER. A prefabricated engineered wood product consisting of not less than three layers of solid-sawn lumber or *structural composite lumber* where the adjacent layers are cross oriented and bonded with structural adhesive to form a solid wood element.

AND IS REFERENCED IN CHAPTER 23:

2303.1.4 Structural glued cross-laminated timber. Crosslaminated timbers shall be manufactured and identified in accordance with ANSI/APA PRG 320.

AH51/APA PEG 320-3018

AMERICAN NATIONAL STANDARD

Standard for Performance-Rated Cross-Laminated Timber

MASS TIMBER PRODUCTS CROSS-LAMINATED TIMBER (CLT)

CLT PRODUCT STANDARD

6 7/8" V2

MILL 0000 ANSI/APA PRG 320-2012

ANSI / APA PRG 320 STANDARD FOR PERFORMANCE RATED CROSS-LAMINATED TIMBER

CLT PRODUCT REPORTS

INTERTEK DIRECTORY OF BUILDING PRODUCTS

KLH Massivholz GmbH - Massivholzplatten (solid wood slabs)

	lam CrossLam lam Products LP	PR-L314 Revised May 9, 2016
Products: St Structurtem F 2176 Govern Penticton, Br (250) 492-89 www.structur 1. Basis of	APA PRODU	JCT REPORT
 2015 In Lamina 2012 at 2015 In Cross-I 2012 at 2012 at ANSUA Timber 	Products: Nortic X-Lam Nortic Structures 1100 Avenue des Canadiene-de-Montréal, Su Montreal, Québec, Canada H3B 252 (514) 871-8526 www.nordic.ca	
FPtn other Z. Product Structur (SPF) lu approve of engin Structur used in	Basis of the product report 2015 International Building Code (IBC Laminated Timber 2012 and 2009 IBC: Section 104.11 A 2015 International Residential Code (I Cross-Laminated Timber 2012 and 2009 IRC: Section R104.11 ANSI/APA PRG 320-2012 and PRG 3 Timber	RC) Sections R502.1.6, R602.1.6, and R802.1.6 Alternative materials 20-2011 Performance Rated Cross-Laminated
used in 120 inct 3. Design j Structur or with t	FPInnovations Reports 201002775, 30 14054R, and other qualification data Product description: Nordic X-Lam cross-laminated timber (CL	T) is manufactured with spruce-pine-fir in

MASS TIMBER PRODUCTS

CROSS-LAMINATED TIMBER (CLT)

APA PRODUCT REPORT					
Products: Sma SmartLam, LLC 1863 13 th Stree Columbia Falls 406) 862-0098 www.smartlam	APA	PRODUCT	and the second s		
 Basis of the 2015 in Lamina 2012 al 2012 al 2015 in Cross- 2012 al ANSI/A Timber 	Riddle Lau Products: DRJ C Riddle Laminali 1991 Pruner Ro P.O. Box 66 Riddle, OR 1974 (541) 874-8287 www.dblumber.	APA PRODU	JCT REPORT		
APA R Product d SmartLam lumber in qualificatis Allowable Table 1. 3 manufacts and lengt	1. Basis of th 2015 In Laminal 2012 ar 2015 In Cross-L 2012 ar ANSUA Tenhar	materials	Issued July 3, 2018		
Design pr SmartLan design ad factors, et (www.reth approved shearwalt designs, a record	DRJ cross accordance qualificatio Allowable 1 1 DRJ CL nominal w	materials ANSUMPA PRG 325-2017 Performance ASTM 05456-14b, 05456-13, and 0545 IBC and IRC, and 2012 BC and IRC is APA Report 12018P-21 and other qual Product description: Frees mass parel products (MPP) are ma fr LVL in accordance with custom layups is	Rated Cross-Lamerated Timber 56-DF recognized by the 2018 IBC and IRC, 2015 Readledy Readler data		

2

MASS TIMBER PRODUCTS

CROSS-LAMINATED TIMBER (CLT)

Structural Design

design issues for structural engineers

ncreased availability of cross-laminated timber (CLT) in North America, combined with successful use in projects worldwide, has generated interest in its properties and performance within the U.S. design community. With the inclusion of CLT in the 2015 International Building Code (IBC) and 2015 National Design Specification" (NDS^{*}) for Wood Construction, curiosity is evolving, with some developers, architects and structural engineers using CLT in projects. One application under frequent consideration is the use of CLT within horisontal floor and roof systems to create longspanning structural decks. This article covers the available U.S. design standards and methods being used by engineers on these projects.

CLT in North America

Cross-laminated timber is an engineered wood component manufactured from dimension

lember or structural composite limber to create larger flat panels of solid wood. It is a member of a newclass of massive (or "mass") timber products - i.e., large-dimension engineered sepactural wood, components that components that

sawn lumber, solid aswn timbers, and structural composite lumber products frequently used in building framing. Other forms of mass

Paper 1. CLT term panels as large as a feet by 40 feet. While CLT is shipped anywhere in the U.S., it is not a "stock" produce with material sitting at a local distribution center, panels are manufactured for specific projects. Design teams considering using CLT should work closely with manufactures to undermand-itvallability and lead times. With extended had times, importing CLT from overseas, notably Europe, is also possible.

CLT panels can be used in floor, roof, and wall framing. There are cases where buildings were constructed using CLT for all of the structural framing above the foundations, including walls, floors, and roofs. Other buildings use CLT for specific structural components such as floor decking.

Cross-Laminated Timber Structural Floor and Roof Design

By Scott Breneman, Ph.D., P.E., S.E.

- 1. INTRODUCTION
- 2. MANUFACTURING
- **3. STRUCTURAL**
- 4. LATERAL
- **5. CONNECTIONS**
- 6. DOL AND CREEP
- 7. VIBRATION
- 8. FIRE
- 9. SOUND

- **10. ENCLOSURE**
- **11. ENVIRONMENTAL**
- 12. LIFTING

MASS TIMBER PRODUCTS CROSS-LAMINATED TIMBER (CLT)

THINKWOOD.COM/CLTHANDBOOK

Timber Concrete Composite

Timber Concrete Composites

Design Considerations:

- Unique composite connection options

TIMBER COMPOSITE TECHNOLOGY

www.TiComTec.de

UBC Earth Science Building, Vancouver, Canada ARCHITECT: Perkins + Will ENGINEER: Equilibrium Photo Credit: Structurlam

MASS TIMBER PRODUCTS WOOD CONCRETE COMPOSITE

PHOTO CREDIT: ALEX SCHREYER

MASS TIMBER PRODUCTS STRUCTURAL COMPOSITE LUMBER (SCL)

GRID OPTIONS AND MEMBER SIZES: What's been done

1 /

PHOTO CREDIT: JOHN STAMETS

BULLITT CENTER

SEATTLE, WA

11'-6" BEAM SPACING 11'-6" COLUMN SPACING AT EXTERIOR 23'-0" COLUMN SPACING AT INTERIOR 2X6 NLT FLOOR DECK

PHOTO CREDIT: JOHN STAMETS

CLAY CREATIVE

PORTLAND, OR

- ~8' FINISHED FLOOR TO BOTTOM OF BEAM
- 25'X30' AT PERIMETER
- 30'X30' BAYS AT CENTER
- 2X6 NLT SPANS 15'
- EXTERIOR STEEL MOMENT FRAME KEEPS CORE AREA MORE VERSATILE

HUDSON BUILDING

VANCOUVER, WA

- 25'X25' GRID, 1 ROW INTERMEDIATE BEAMS
- 15'-18' FLOOR TO FLOOR HEIGHTS
 COMPOSITE FLOOR: 2X4 AND 2X6 NLT FLOOR PANELS WITH 3 ½"

REINFORCED CONCRETE TOPPING

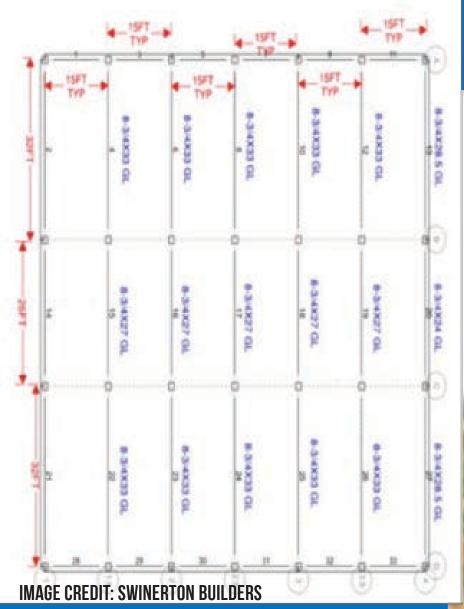
T3 MINNEAPOLIS

MINNEAPOLIS, MN

20'X25' GRID 2X8 NLT FLOOR PANELS SPAN 20' W/3" CONCRETE TOPPING

IMAGE CREDIT: EMA PETER

PORTLAND, OR



20'X20' GRID BEAMS AT 10' O.C. 3-PLY CLT

ARCHITECT: LEVER ARCHITECTURE IMAGE CREDIT: LEVER ARCHITECTURE

HILLSBORO, OR

15'X32' & 15'X26' GRIDS 5-PLY CLT SPANS 15'

ARCHITECT: HACKER IMAGE CREDIT: STRUCTURLAM

CANDLEWOOD SUITES

REDSTONE ARSENAL, AL

• 5-PLY CLT FLOOR PANELS, 3-PLY ROOF PANELS SPAN 16.5 FT

IMAGE CREDIT: LENDLEASE

JOHN W. OLVER DESIGN

BUILDING

UMASS, AMHERST, MA

5-PLY CLT FLOOR PANELS, COMPOSITE WITH HBV SYSTEM
GRIDS 20'X24' TO 26'

PHOTO CREDIT: ALEX SCHREYER

BROCK COMMONS VANCOUVER, BC

IMAGES: ACTON OSTRY ARCHITECTS

5 PLY CLT PANELS, 2-WAY SPAN ~9'X13' GRID OF COLUMNS

MASS TIMBER APPEAL

MARKET DRIVERS FOR MASS TIMBER

PRIMARY DRIVERS

- » Construction Efficiency & Speed
- » Construction site constraints Urban Infill
- » Innovation/Aesthetic

SECONDARY DRIVERS

- » Carbon Reductions
- » Structural Performance lightweight

MASS TIMBER APPEAL

WHAT IS THE ULTIMATE APPEAL AND DRIVER FOR ANY BUILDING AND MATERIAL TYPE?

MASS TIMBER APPEAL REDUCED CONSTRUCTION TIME

MURRAY GROVE, LONDON UK 8 STORIES OF CLT OVER 1 STORY CONCRETE PODIUM

8 STORIES BUILT IN 27 Days (~1/2 the time of precast concrete)

SOURCE: ARCHITECT MAGAZINE³

FRANKLIN ELEMENTARY SCHOOL, FRANKLIN, WV

45,200 FT2 2 STORY Elementary School

2.5 MONTHS TO ERECT CLT

MASS TIMBER APPEAL REDUCED CONSTRUCTION TIME

1 Floor = 3 Days

17 Floors Erected in 9.5 Weeks

Brock Commons, Vancouver, BC Source: naturally:wood⁵

Source: Solid Timber Construction⁶, Ryan Smith

MASS TIMBER APPEAL

FORTE TIME LAPSE VIDEO

REDUCED CONSTRUCTION TIME

MASS TIMBER APPEAL Alternate to concrete & masonry

MASS TIMBER APPEAL MATERIAL MASS

MASS TIMBER APPEAL

MATERIAL MASS

75% LIGHTER WEIGHT THAN CONCRETE SOURCE: STRUCTURLAM⁷

FORTE', VICTORIA HARBOR, MELBOURNE, AUSTRALIA Architect: Lendlease | Source: Lendlease⁸

MASS TIMBER APPEAL

MATERIAL MASS

COMPLETED IN 2012 10 STORIES ~ 105 FT. TALL, > 18.6 K SQFT. 3 YEAR INVESTMENT IN R&D POOR SOILS REQUIRED A MUCH LIGHTER BUILDING

ESTIMATED ENVIRONMENTAL IMPACT OF WOOD USE

Volume of wood products used: 2,233 cubic meters of CLT and Glulam

U.S. and Canadian forests grow this much wood in: 6 minutes

Carbon stored in the wood: 1,753 metric tons of CO₂

Avoided greenhouse gas emissions: 679 metric tons of CO₂

Total potential carbon benefit: 2,432 metric tons of CO,

THE ABOVE GHG EMISSIONS ARE EQUIVALENT

511 cars off the road for a year

Energy to operate a home for 222 years

"Estimated by the Wood Carbon Calculator for Buildings, based on research by Sathre,

R. and J. O'Connor, 2010, A Synthesis of Research on Wood Products and Greenhouse Gas Impacts, FPInnovations (this relates to carbon stored and avoided GHG).

*CO2 in this case study refers to CO2 equivalent

SOURCE: NATURALLY:WOOD⁹

MASS TIMBER APPEAL Reduced embodied carbon

BROCK COMMONS, VANCOUVER, BC

PHOTO CREDIT: ACTON OSTRY ARCHITECTS

MASS TIMBER APPEAL

MASS TIMBER ELEMENTS FABRICATED TO TIGHT TOLERANCES

MASS TIMBER APPEAL PREFABRICATED AND PRECISE

COMPUTER NUMERICALLY CONTROLLED (CNC) CONNECTIONS

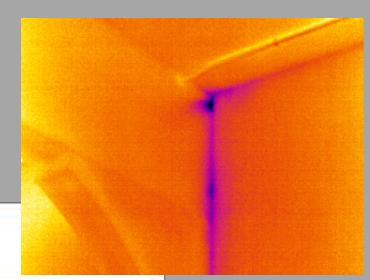


PHOTO CREDIT: NATURALLY:WOOD

MASS TIMBER APPEAL ENERGY EFFICIENT

Table 2

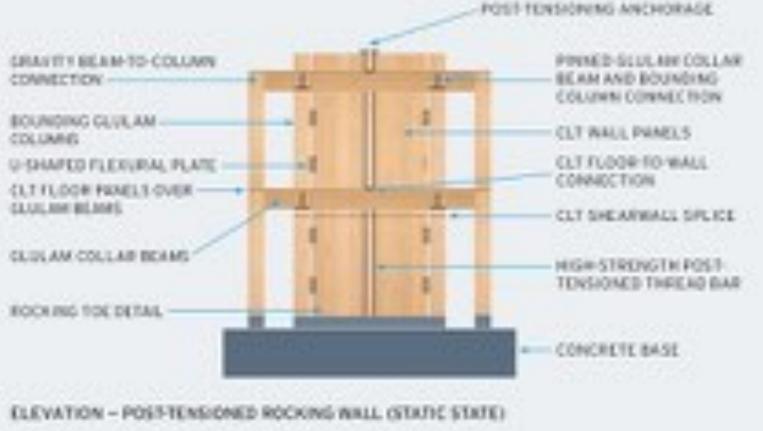
Thermal resistance of typical softwood at various thicknesses and 12% moisture content

Thickness	1 in. (25 mm)	4 in. (100 mm)	6 in. (150 mm)	8 in. (200 mm)
R-value (h-ft. ^{2.} •F•Btu ⁻¹)	1.25	5.00	7.50	10.00
RSI (m ² ·K·W ⁻¹)	0.22	0.88	1.30	1.80

CLT HAS AN R-VALUE OF APPROXIMATELY 1.25 PER INCH OF THICKNESS. Source: US CLT HANDBOOK¹⁰

MASS TIMBER APPEAL

DISASTER RESILIENT



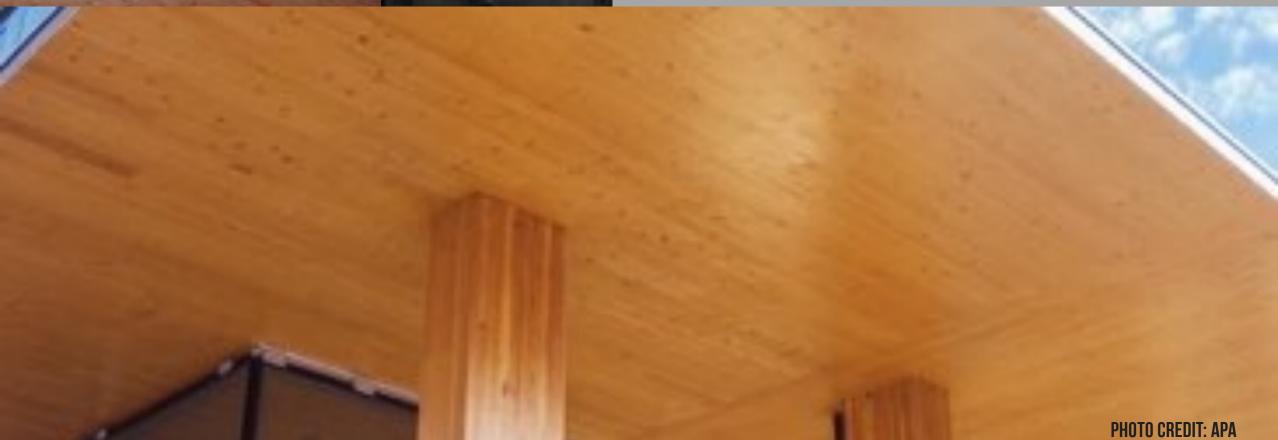
MASS TIMBER APPEAL DISASTER RESILIENT

INNOVATIVE MASS TIMBER LATERAL Force resisting systems

CLT ROCKING SHEAR WALL CONCEPT

MASS TIMBER SHAKE TABLE TEST AT UCSD

SOURCE: KPFF


MASS TIMBER APPEAL DISASTER RESILIENT

LIVE BLAST PERFORMANCE OF MASS TIMBER TESTING PROJECT ON-GOING INITIAL RESULTS PROMISING

Image Credit: USDA FS FPL/SLB/WoodWorks Live Blast Testing at Tyndall Air Force Base http://www.woodworks.org/publications-media/blast-testing-research/

MASS TIMBER APPEAL STRUCTURAL FLEXIBILITY

EIN TIMBER BUILDI

WOOD ENVIRONMENTS MARE PEOPLE HAPPY.

ARROW DOLLARS

NGS?

MASS TIMBER APPEAL AESTHETICS/OCCUPANT COMFORT

PHOTO CREDIT: ALEX SCHREYER

MASS TIMBER SUCCESS

AS A DEVELOPER IS IMPROVED BY ...

- HAVING A RANGE OF SCALE IN YOUR PORTFOLIO
- OPERATING REPETITIVELY IN THE SAME JURISDICTIONS
- STARTING WITH HORIZONTAL APPLICATIONS (ROOFS AND FLOORS)
- BEING FLEXIBLE WITH REGARDS TO LEVEL OF MASS TIMBER EXPOSURE
- COMMITTING EARLY AND HAVE TIME FOR Negotiation

DESIGN TOPICS

- CONSTRUCTION TYPES
- FIRE RESISTANCE
- ACOUSTICS
- SHAFTS
- MEP DETAILING
- BUILDING ENCLOSURE
- LATERAL FRAMING
- CONNECTIONS
- CONSTRUCTION PROCESS

CONSTRUCTION TYPES

Q: OF THE 5 CONSTRUCTION TYPES, WHICH ONES CAN MASS TIMBER BE USED IN?

A: ALL 5!

ASTER A

IBC CHAPTER 6

WHERE DOES MASS TIMBER FIT IN IBC'S CONSTRUCTION TYPES?

IBC 602

IBC DEFINES 5 CONSTRUCTION TYPES: I, II, III, IV AND V A BUILDING MUST BE CLASSIFIED AS ONE OF THESE

CONSTRUCTION TYPES I & II: ALL ELEMENTS REQUIRED TO BE NON-COMBUSTIBLE MATERIALS

HOWEVER, THERE ARE EXCEPTIONS INLCUDING SEVERAL FOR MASS TIMBER

IBC 602

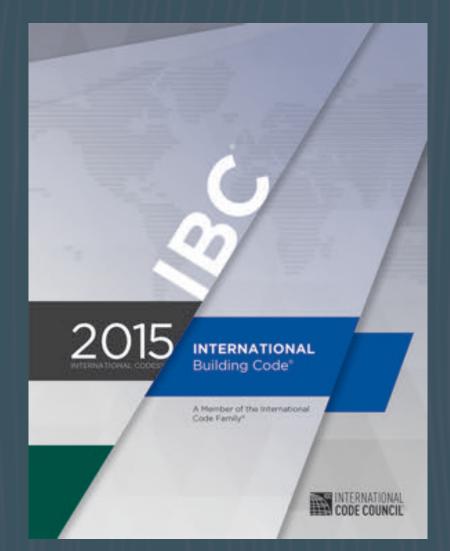
ALL WOOD FRAMED BUILDING OPTIONS:

TYPE III

EXTERIOR WALLS NON-COMBUSTIBLE (MAY BE FRTW) Interior elements any allowed by code, including mass timber

TYPE V All Building Elements are any allowed by code, including mass timber

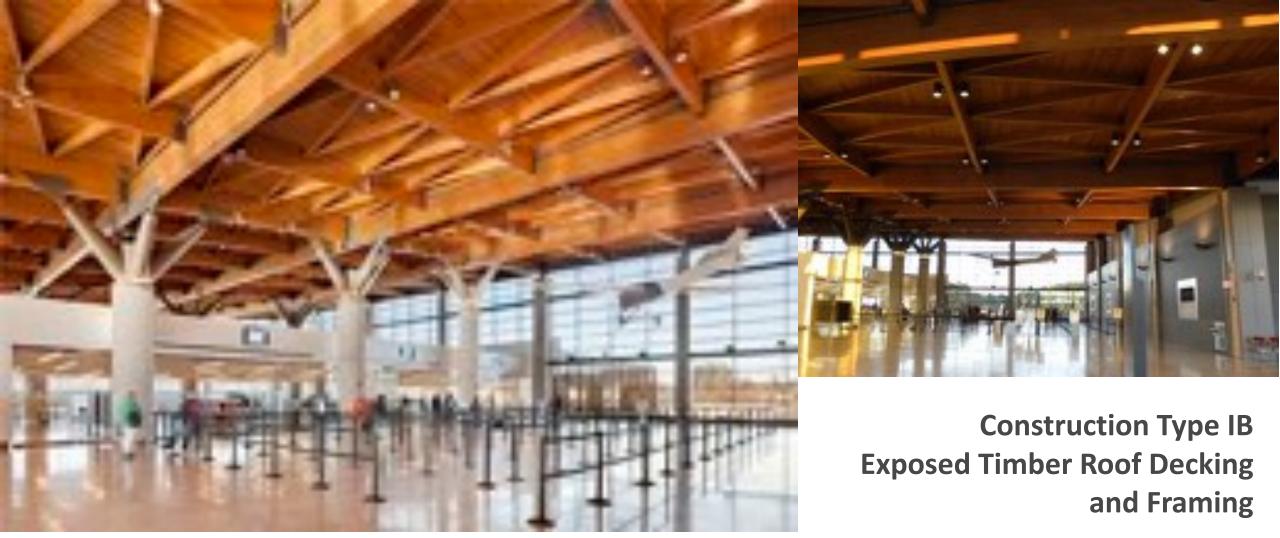
TYPES III AND V ARE SUBDIVIDED TO A (PROTECTED) AND B (UNPROTECTED)


TYPE IV (HEAVY TIMBER)

EXTERIOR WALLS NON-COMBUSTIBLE (MAY BE FRTW OR CLT) Interior elements qualify as heavy timber (MIN. Sizes, no concealed spaces)

IBC 602

When does the code allow mass timber to be used? IBC defines mass timber systems in IBC Chapter 2 and notes their acceptance and manufacturing/testing standards in IBC Chapter 23


Permitted anywhere that combustible materials and heavy timber are allowed, plus more

Chapter 6: Types of Construction

Where does the code allow MT to be used? • <u>Type IB & II</u>: Roof Decking

Image: StructureCraft Builders

Portland International Jetport

- LEED Gold
- Completed 2012

Design Team: Gensler, Oest Associates Photo Credit: DeStafano & Chamberlain, Inc, Robert Benson Photography

Chapter 6: Types of Construction

Where does the code allow NLT to be used?

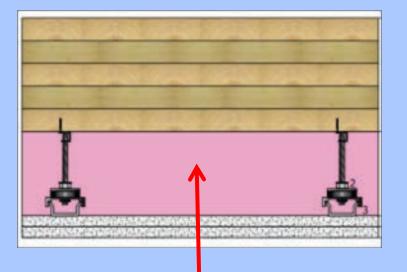
<u>Type III</u>: Interior elements (floors, roofs, partitions/shafts) and exterior walls if FRT

Where does the code allow mass timber to be used?
<u>Type IV</u>: Any interior elements & roofs if meets min. size; exterior walls if FRT. No concealed spaces permitted

Chapter 6: Types of Construction

IBC 602

TYPE IV CONSTRUCTION PERMITS EXPOSED HEAVY/MASS TIMBER Elements of minimum sizes. Examples inlcude:


- ROOF DECKING: 3" CLT, 2X T&G
- COLUMN SUPPORTING ROOF: 6X8
- BEAM SUPPORTING FLOOR: 6X10

MINIMUM NOMINAL SOLID SAWN SIZE			ED-LAMINATED	MINIMUM STRUCTURAL COMPOSITE LUMBER			
Width, inch	Depth, inch	Width, inch	Depth, inch	Width, inch	Depth, inch		
8	8	63/4	8 ¹ /4	7	71/2		
6	10	5	101/2	51/4	9 ¹ / ₂		
6	8	5	8 ¹ /4	51/4	71/2		
6	6	5	6	51/4	51/2		
4	6	3	67/2	31/2	5 ¹ / ₂		

CONCEALED SPACES

TYPE IV CONSTRUCTION REQUIRES THAT INTERIOR ELEMENTS BE WITHOUT CONCEALED SPACES:

- CONCEALED SPACES INCLUDE DROPPED CEILINGS, ATTICS, CHASES, OTHERS
- CONCEALED SPACE RESTRICTION DOES NOT APPLY TO ANY OTHER CONSTRUCTION TYPE. IF USING MASS TIMBER ELEMENTS IN NON TYPE IV CONSTRUCTION, CONCEALED SPACES ARE PERMITTED BUT MAY BE REQUIRED TO BE SPRINKLERED
- IBC 602.4.6 PERMITS 1 HOUR FIRE RESISTANCE RATED CONSTRUCTION FOR PARTITIONS

IBC 602

EXAMPLE OF CONCEALED SPACE CREATED BY DROPPED CEILING

Chapter 6: Types of Construction

Where does the code
allow MT to be used?
Type V: Interior
elements, roofs &
exterior walls

Image: Christian Columbres Photography

Type III: 6 stories

CONSTRUCTION TYPES

Allowable mass timber building size for group B occupancy with NFPA 13 Sprinkler

Image: Christian Columbres Photography Type V: 4 stories

Type IV: 6 stories

Image credit: Ema Peter

ALLOWABLE BUILDING SIZE

					TYPE O	F CONSTI	RUCTION			
		TYP	PE I	TYPE II		TYPE III		TYPE IV	TYP	ΈV
	00000000	A	В		8	(A)	В	HT	A	В
	HEIGHT (feet)	UL	160	65	55	65	55	65	50	40
GROUP		STORIES(S) AREA (A)								
A-1	S A	UL	5 UL	3 15,500	2 8,500	3 14,000	2 8,500	3 15,000	2 11,500	1 5,500
A-2	S A	UL	11 UL	3 15,500	2 9,500	3 14,000	2 9,500	3 15,000	2 11,500	1 6,000
A-3	S A	UL	11 UL	3 15,500	2 9,500	3 14,000	2 9,500	3 15,000	2 11,500	1 6,000
A-4	S A	UL	11 UL	3 15,500	2 9.500	3 14,000	2 9,500	3. 15,000	2 11,500	1 6,000
A-5	S A	UL	UL	UL	UL UL	UL. UL	UL UL	UL	UL UL	UL
в	S A	UL	11 UL	5 37,500	3 23,000	5 28,500	3 19,000	5 36,000	3 18,000	2 9,000
E	S A	UL	5 UL	3 26.500	2 14,500	3 23.500	2 14.500	3 25.500	1 18,500	9.500

IBC 503

ALLOWABLE BUILDING SIZE

MULTI STORY BUSINESS OCCUPANCY (B)

BASED ON IBC 2012 TABLE 503 W/ ALLOWABLE INCREASES

HEIGHT AND AREA (WITH ALLOWABLE INCREASES)	IIB	IIIB	VA	VB
STORIES ¹	4	4	4	3
HEIGHT ¹ (FT)	75	75	70	60
MAX STORY AREA ² (FT ²)	69K	57K	54K	27K
TOTAL BUILDING AREA ³ (FT ²)	207K	171K	162K	81K

¹ ASSUMES NFPA 13 SPRINKLERS THROUGHOUT (IBC 504.2) ² ASSUMES NEPA 12 SPRINKLERS THROUGHOUT (IBC 506.2)

² ASSUMES NFPA 13 SPRINKLERS THROUGHOUT (IBC 506.3)

³ ASSUMES 3 OR MORE NUMBER OF STORIES (IBC 506.4)

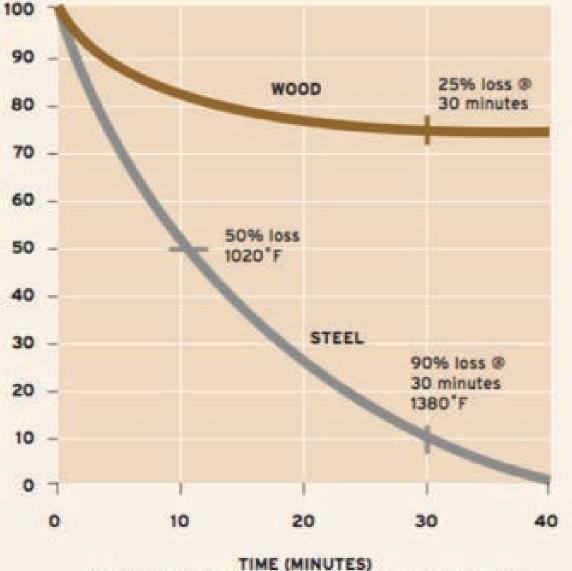
IBC 503

ALLOWABLE BUILDING SIZE

IBC 503

MULTI STORY BUSINESS OCCUPANCY (B)

BASED ON IBC 2012 TABLE 503 W/ ALLOWABLE INCREASES

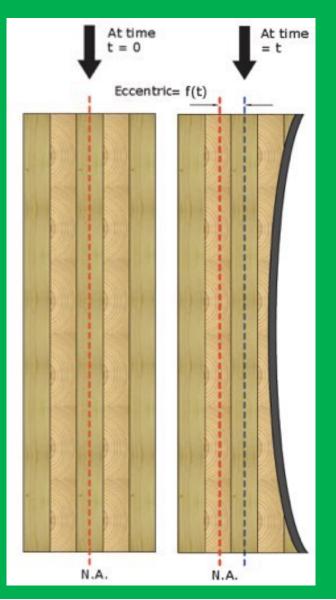

CONSTRUCTION TYPE	IIA	IIIA	IV
STORIES ¹	6	6	6
HEIGHT ¹ (FT)	85	85	85
STORY AREA ² (FT ²)	112.5K	85.5K	108K
TOTAL BUILDING AREA ³ (FT ²)	337.5K	256.5K	324K

¹ ASSUMES NFPA 13 SPRINKLERS THROUGHOUT (IBC 504.2) ² ASSUMES NFPA 13 SPRINKLERS THROUGHOUT (IBC 506.3) ³ ASSUMES 3 OR MORE NUMBER OF STORIES (IBC 506.4)

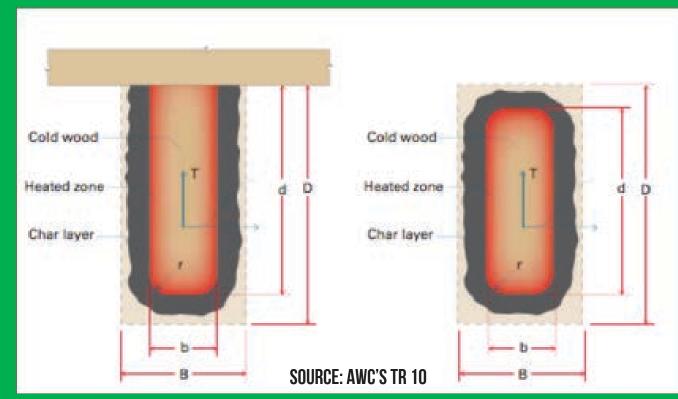
FIRE RESISTANCE

PHOTO CREDIT: FPINNOVATIONS

COMPARATIVE STRENGTH LOSS OF WOOD VERSUS STEEL


Results from test sponsored by National Forest Products Association at the Southwest Research Institute SOURCE: AITC

MASS TIMBER DESIGN


FIRE RESISTANCE

FIRE RESISTANCE

SIMILAR TO HEAVY TIMBER, MASS TIMBER PRODUCTS HAVE INHERENT FIRE RESISTANCE PROPERTIES

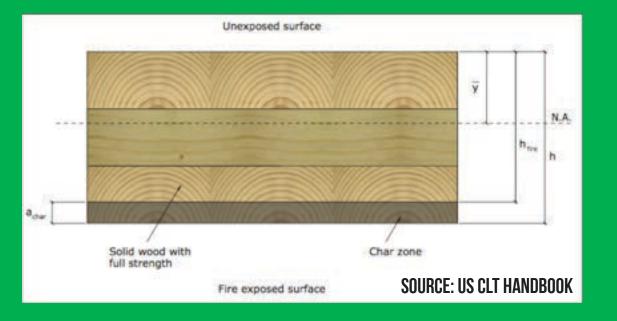
FIRE RESISTANCE

BUILDING ELEMENT	TYP	TY	PER	TYPEII		TYPEN	TYP	Ψ.V.	
BOILDING ELEMENT	A	B	A	B	A	8	HT	A	8
Primary structural frame ⁴ (see Section 202)	¥	2	- 34	0	1	0	HT	1	0
Bearing walls Extenor ^{et} Interior	3 3*	41.74	1	0 0	2	2 0	2 1/HT	1	0
Nonbearing walls and partitions Exterior	Ser Table 602								
Nonbearing walls and partitions Intenior	0	0	0	0	0	3. 0 3	See Section 602.4.6	0	0
Floor construction and associated secondary members (see Section 202)	2	2	34	0.0	1	6	HT	11	0
Roof construction and associated secondary members (see Section 202)	$1^{l_{f}^{l_{1}}}$	$\mathbb{T}^{(n)}$	1990	0	L _{pr}	0	HT	$\mathbf{I}^{ha^{(1)}}$	0

For SI: 1 foot = 304.8 mm.

a. Roof supports: Fire-resistance ratings of primary structural frame and bearing walls are permitted to be reduced by 1 hour where supporting a roof only .

b. Except in Group F-1, H, M and S-1 occupancies, fire protection of structural members shall not be required, including protection of roof framing and decking where every part of the roof construction is 20 feet or more above any floor immediately below. Fire-retardant-treated wood members shall be allowed to be used for such improtected members.


c. In all occupancies, heavy timber shall be allowed where a 1 hour or less fire resistance rating is required.

d. Not less than the fire resistance rating required by other sections of this code.

e. Not less than the fire-resistance rating based on fire separation distance (see Table 602).

f. Not less than the fire-resistance rating as referenced in Section 704.10.

SOURCE: IBC 2015 TABLE 601

FIRE RESISTANCE

Construction type selection dictates prescriptive fire resistance requirements:

- Type IV Construction (minimum sizes)
- Other than type IV: Demonstrated fire resistance:
 - IBC 703.3 allows several options, including:
 - ASTM E119 assembly test
 - Calculations per IBC 722 \longrightarrow NDS Chapter 16

Mass timber in **other than** Type IV Construction:

- IBC 703.3 allows several options, including:
 - ASTM E119 assembly test (none currently exist for NLT)
 - Calculations per IBC 722 \longrightarrow NDS Chapter 16

703.3 Methods for determining fire resistance. The application of any of the methods listed in this section shall be based on the fire exposure and acceptance criteria specified in ASTM E119 or UL 263. The required *fire resistance* of a building element, component or assembly shall be permitted to be established by any of the following methods or procedures:

3. Calculations in accordance with Section 722.

722.1 General. The provisions of this section contain procedures by which the *fire resistance* of specific materials or combinations of materials is established by calculations. These procedures apply only to the information contained in this section and shall not be otherwise used. The calculated *fire resistance* of concrete, concrete masonry and clay masonry assemblies shall be permitted in accordance with ACI 216.1/TMS 0216. The calculated *fire resistance* of steel assemblies shall be permitted in accordance of steel assemblies shall be permitted in accordance with Chapter 5 of ASCE 29. The calculated *fire resistance* of exposed wood members and wood decking shall be permitted in accordance with Chapter 16 of ANSI/AF&PA National Design Specification for Wood Construction (NDS).

FIRE RESISTANCE

FOR EXPOSED WOOD MEMBERS: IBC 722.1 REFERENCES AWC'S NDS Chapter 16 (AWC'S TR 10 IS A design aid to NDS Chapter 16)

	Automal behavior specification Fox wood constituction 548	
	FIRE DESIGN OF WOOD MEMBERS	NDS
NDS® Material Design Specification* for Wood Construction 2015 EDITION	16.1 General 150 16.2 Design Procedures for Exposed Wood Members 150 16.3 Wood Connections 151 16.4 Horite Char Rates and Char Layer Textures for 2, * 1.5 in. In:	Calculating the Resistance of Wood Members and Assemblies Invariantes to the
Atta and Antareas Apparent for Research of B. 1995		

2015 NDS CHAPTER 16 INCLUDES Calculation of fire resistance of NLT, CLT, Glulam, Solid Sawn AND SCL WOOD PRODUCTS

MASS TIMBER DESIGN

Table 16.2.1B	Effective Char	Depths (for CLT
---------------	-----------------------	-----------------

with $\beta_n = 1.5 in./hr.$)

Required Fire Endurance (hr.)	Effective Char Depths, a _{char} (in.) lamination thicknesses, h _{lam} (in.)									
	5/8	3/4	7/8	1	1-1/4	1-3/8	1-1/2	1-3/4	2	
1-Hour	2.2	2.2	2.1	2.0	2.0	1.9	1.8	1.8	1.8	
11/2-Hour	3.4	3.2	3.1	3.0	2.9	2.8	2.8	2.8	2.6	
2-Hour	4.4	4.3	4.1	4.0	3.9	3.8	3.6	3.6	3.6	

SOURCE: AWC'S NDS

FIRE RESISTANCE

NDS Table 16.2.2 Design stress adjustment factors applied to adjust to average ultimate strength under fire design conditions

			ASD						
			Design Stress to Member Strength Factor	Size Factor [±]	Volume Factor ¹	Fint Use Factor?	Beam Stability Factor	Column Sublity Factor	
Bending Strength	F.	x	2.85	CF	Cv	Cfs	CL	25	
Beam Buckling Strength	Free	x	2.03	æ		- 53	8	10	
Tensile Strength	\mathbf{F}_{t}	x	2.85	CF	3 9 12		÷	1	
Compressive Strength	Fe	x	2.58	\mathbf{C}_{F}	(0)			$C_{\rm F}$	
Column Buckling Strength	\mathbf{F}_{eE}	x	2.03	34	1963	83	8	19	

3. Factor shall be based on reduced cross-section dimensions

And the second sec	and the second second second

Q.,

COLUMN THE OWNER GALLEY & AWARDS DESIGN & TOOLS PUBLICATIONS & MICRA

WHIT INCODE

ABCRIT

Hume - All Expert Fox f facebook - Street ALC: Notified an Linterfite

How do you demonstrate the fire resistance of exposed wood members using char methods in lieu of gypsum?

Per IBC Sections 763,2 and 763.3, there are multiple was to demonstrate fireresistance ratings of ethodural members and assemblies. One method noted in Section 703.3 is to calculate the native in accordance with IEC Section 722.

For calculated fire resistance of exposed wood members and decking. (BC Section 722.1 references Chapter 16) of the American Wood Enuncity National Design Reprintment (NDRE) for Wood Languagem, Day

chapter gives a nominal char rate of 1.5 inches of wood thickness per hour of fire resistance. Using the calculations and information contained in 50%. Chapter 16, a fire cating of up to 2 how an an be calculated.

The 2015 MDE allows calculated fire. relatance of a number of wood

products, including solid sawn kumber (this includes nail laminated finder), gius laminated timber (glulam), laminated veneer lumber XXL3, parallel strand lumber (PSL), laninated strand lumber (LSL), and cross laninated timber XLTI. For structural members using this method of exposed five-resistance salculations, the effective char rate, which is slightly higher than the nominal char

rate and includes a heat-affected zone, is used. For nonwoodworks.org/ask-an-expert NDS Chapter 16. Adjustment factors applied to the alies resistance are also presented in this chapter.

A loose to pheastriped in. tel for finit

Project Advistance

Our technical experts offer free project. support from design through construction, an issues ranging from allowable heights and areas to structural design, lateral systems and fire-or ecountrical ented econolities.

Ant an Lapart

Q: Get expand wood framing be used in huildings such as aquatic contents and postal Are there durability concerns?

A: The male datability consideration. encodeted with the use of woost inanti-inproments such as points and arguetts cardiers is high monture. content in the wood. Buildings such as this may have high relative humidity. and, as such, it is important to understand how reliable humbling of a condition goars affects exposed wood within that you p

Feature Project.

Philipper's Elements Insuring Plant, survival and in fernance

FIRE RESISTANCE

GLULAM BEAM FIRE DESIGN: FOR UNBALANCED BEAMS, **SUBSTITUTE 1 CORE LAM FOR 1 TENSION LAM FOR 1 HOUR RATING, 2 CORE LAMS FOR 2 TENSION LAMS FOR 1.5 & 2 HOUR** RATING FOR BALANCED BEAMS, MATCH

ON COMPRESSION SIDE

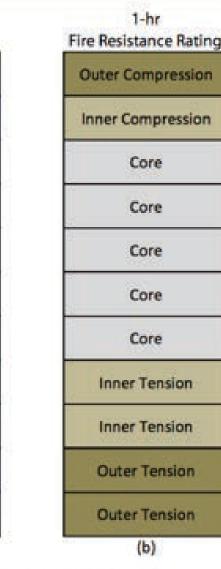


Figure 3-1 Typical glulam unbalanced beam layups

Unrated

Outer Compression

Inner Compression

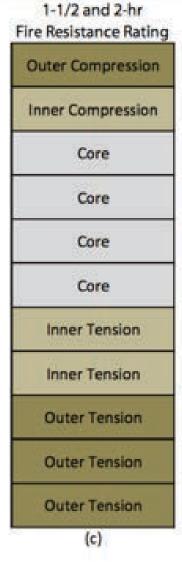
Core

Core

Core

Core

Core


Core

Inner Tension

Inner Tension

Outer Tension

(a)

SOURCE: AWC'S TR 10

<u>GLULAM BEAM FIRE DESIGN EXAMPLE:</u> SPAN = 18', TRIB WIDTH = 6' LL = 100 PSF, DL = 25 PSF

$$w_{load} = s (q_{dead} + q_{live}) = (6)(25 + 100) = 750 \text{ plf}$$

 $M_{max} = w_{load} L^2 / 8 = (750)(18^2)/8 = 30,375 \text{ ft-lb}$

TRY 6-3/4"X13-1/2" DF 24F GLULAM

 $S_s = bd^2/6 = (6.75)(13.5)^2/6 = 205 \text{ in}^3$

 $F'_b = F_b (C_D)(C_M)(C_t)$ (lesser of C_L or C_V)

FIRE RESISTANCE

FIRE RESISTANCE

GLULAM BEAM FIRE DESIGN EXAMPLE: SOURCE: AWC'S TR 10 $M'_{s} = F'_{b} S_{s} = (2343)(205.0)/12 = 40,032 \text{ ft-lb}$ Structural Check: $M'_s \ge M_{max}$ 40,032 ft-lb > 30,375 ft-lb $\sqrt{}$ 6' o.c. 18' **CHECK FOR 1 HOUR FIRE RATING – EXPOSED 3 SIDES Table 16.2.1A Effective Char Rates and Char** Depths (for $\beta_n = 1.5$ in./hr.) Effective **Effective Char Required Fire** Char Rate, Depth, Endurance Beff achar (hr.) (in.) (in./hr.) 1.8 1.8 1-Hour 1.67 2.5 11/2-Hour SOURCE: WOODWORKS 1.58 3.2 2-Hour SOURCE: AWC'S NDS

FIRE RESISTANCE

SOURCE: WOODWORKS

6' o.c.

GLULAM BEAM FIRE DESIGN EXAMPLE:


SOURCE: AWC'S TR 10

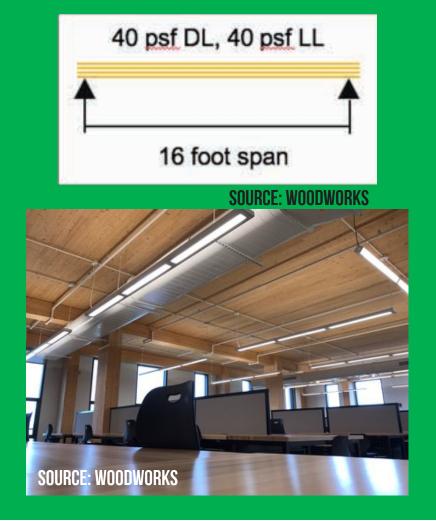
 $S_f = (b-2a)(d-a)^2/6 = (6.75-3.6)(13.5-1.8)^2/6 = 71.9 \text{ in}^3 \text{ (NDS 16.2.1)}$

 $F'_{b,f} = (2.85) F_{b,f} (lesser of C_L or C_V)$ = 2.85(2400)(0.98) = 6703 psi (NDS 16.2.2) $M'_f = F'_{b,f} S_f = (6703)(71.9)/12 = 40,145 \text{ ft-lb} (NDS 16.2.2)$ Fire Check: $M'_f \ge M_{max}$ 40,145 ft-lb > 30,375 ft-lb \checkmark

6-3/4"X13-1/2" DF 24F GLULAM ADEQUATE FOR 1 HOUR RATING, EXPOSED 3 SIDES

<u>CLT FIRE DESIGN:</u>

- LAM THICKNESS AFFECTS CHAR DEPTH
 - PARTIALLY CHARRED CROSS
 LAYERS ARE TYPICALLY
 NEGLECTED FOR STRUCTURAL
 CHECKS


FIRE RESISTANCE

<u>CLT FIRE DESIGN EXAMPLE:</u> SPAN = 16', LL = 40 PSF, DL = 40 PSF

TRY 5-PLY, V1 CLT W/1-3/8" THICK LAMS CHECK FOR 1 HOUR FIRE EXPOSURE

 $M_b = w L^2 / 8 = (40+40 psf) (16 ft)^2 / 8 = 2560 lb-ft/ft$

 $(F_b S_{eff})' = C_D (1.0) (F_b S_{eff}) = 4800 \text{ lb-ft/ft PER PRG 320}$

FIRE RESISTANCE

<u>CLT FIRE DESIGN EXAMPLE:</u>

Table 16.2.1B Effective Char Depths (for CLT with βn=1.5in./hr.)								LT	
Required Fire Endurance	-				(in.)	Depths,) esses h	1999		
(hr.)	5/8	3/4	7/8	1	1-1/4	1-3/8	1-1/2	1-3/4	2
1-Hour	2.2	2.2	2.1	2.0	2.0	1.9	1.8	1.8	1.8
1½-Hour	3.4	3.2	3.1	3.0	2.9	2.8	2.8	2.8	2.6
2-Hour	4.4	4.3	4.1	4.0	3.9	3.8	3.6	3.6	3.6

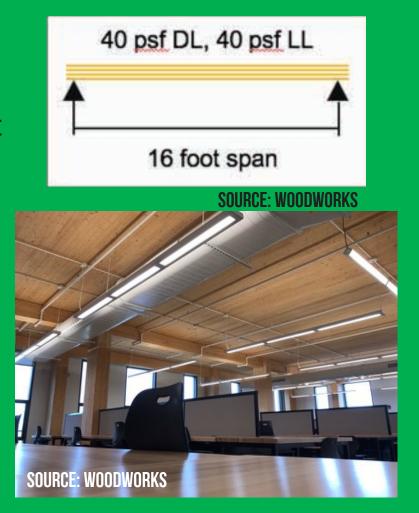
40 psf DL, 40 psf LL 16 foot span **SOURCE: WOODWORKS SOURCE: WOODWORKS**

SOURCE: AWC'S NDS

FIRE RESISTANCE

<u>CLT FIRE DESIGN EXAMPLE:</u>

		EXERCISE AND
araya		
	1.9″	

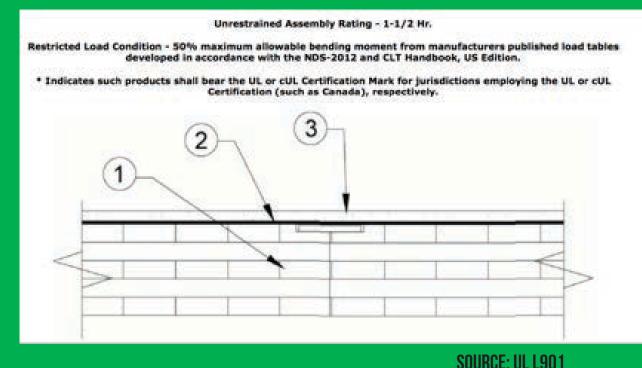

		Lami	ination	n Thick	ness ((in.) in	CLT L	ayup	Major	Strength D	irection	Minor	Strength D	irection
CLT Grade	CLT t (in.)	=	Ţ	=	1	=	Ţ	=	F _b S _{eff,0} (lbf-ft/ft)	El _{eff,0} (10 ⁶ lbf- in. ² /ft)	GA _{eff,0} (10* lbf/ft)	F _b S _{eff,90} (lbf-ft/ft)	El _{eff,90} (10 ⁴ lbf- in. ² /ft)	GA _{eff,90} (10° lbf/ft)
	4 1/8	1 3/8	1 3/8	1 3/8					2,090	108	0.53	165	3.6	0.59
V1	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1		4,800	415	1.1	1,430	95	1.2
1.000	9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	8,500	1,027	1.6	3,275	360	1.8
	4 1/8	1 3/8	1 3/8	1 3/8					2,030	95	0.46	160	3.1	0.52
V2	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8			4,675	363	0.91	1,370	81	1.0
	9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	8,275	898	1.4	3,125	309	1.6

SOURCE: ANSI/APA PRG 320

<u>CLT FIRE DESIGN EXAMPLE:</u>

 $M_{f}' = (2.85)(F_{b}S_{eff})(C_{L}) = (2.85)(2090)(1.0) = 5957 lb-ft/ft$ Fire Check: $M_{f}' > M_{b}$ $M_{f}' = 5957 lb-ft/ft > M_{b} = 2560 lb-ft/ft$

5-PLY V1 CLT adequate for 1 Hour Fire Exposure


FIRE RESISTANCE

FIRE RESISTANCE

MASS TIMBER FIRE DESIGN METHODS:

NDS Chapter 16 Char Calculations vs. ASTM E119 Tested Assembly

- NDS Chpt 16 calcs check structural integrity
- E119 checks structural integrity, thermal separation (elevated temp. on unexposed side) and burn through (ignition of cotton waste at gaps)
- Reasonable to assume other assembly components such as concrete topping aid in other 2 criteria

FIRE RESISTANCE

AWC'S TECHNICAL REPORT 10 INCLUDES DISCUSSION OF FIRE TESTS AND DESIGN EXAMPLES

4.5 Exposed CLT Floor Example (Allowable Stress Design)

Simply-supported cross-laminated timber (CLT) floor spanning L=18 ft in the strong-axis direction. The design loads are q_{live} = 80 psf and q_{dead} = 30 psf including estimated self-weight of the CLT panel. Floor decking, nailed to the unexposed face of CLT panel, is spaced to restrict hot gases from venting through half-lap joints at edges of CLT panel sections. Calculate the required section dimensions for a one-hour fire resistance time.

For the structural design of the CLT panel, calculate the maximum induced moment. Calculate panel load (per foot of width):

 $W_{load} = (q_{dead} + q_{live}) = (30 \text{ psf} + 80 \text{ psf})(1\text{ft width}) = 110 \text{ plf/ft of width})$

Calculate maximum induced moment (per foot of width):

 $M_{max} = w_{load} L^2 / 8 = (110)(18^2)/8 = 4,455$ ft-lb/ft of width

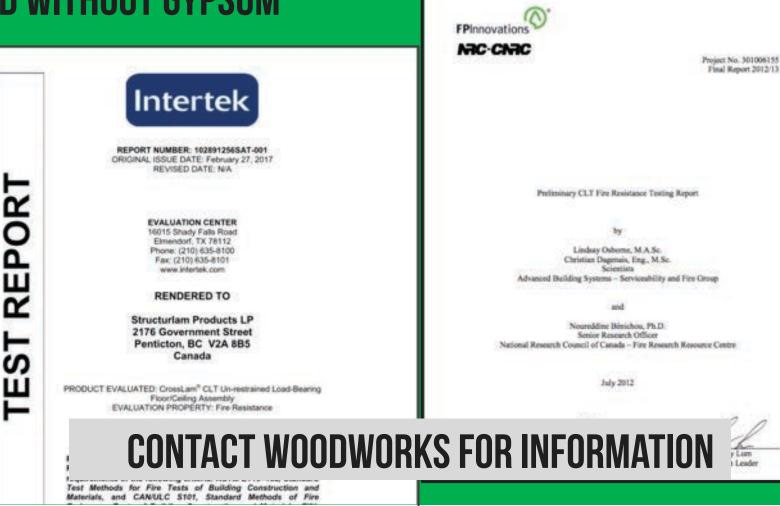
From PRG 320, select a 5-ply CLT floor panel made from 1% in x 3% inch lumber boards (CLT thickness of 6% inches). For CLT grade V2, tabulated properties are:

Bending moment, FbSeff,0 = 4,675 ft-lb/ft of width

(PRG 320 Annex A, Table A2)

SOURCE: AWC'S TR 10

Calculating the Fee Resistance of WoodMember and Assemblies independent Australia


FREE DOWNLOAD AT AWC.ORG

FIRE RESISTANCE

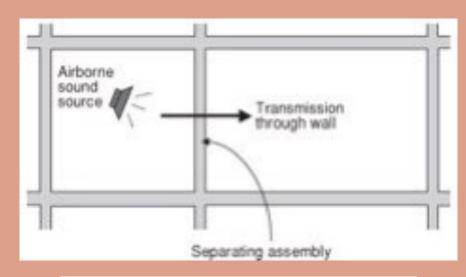
MANY SUCCESSFUL CLT FIRE TESTS HAVE BEEN CONDUCTED, BOTH WITH AND WITHOUT GYPSUM BOARD PROTECTION

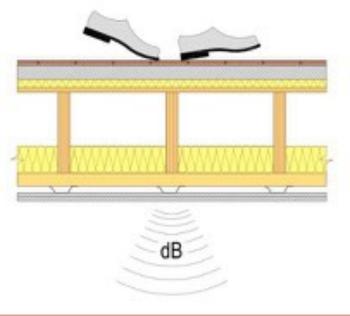
110 **Fire Testing** ACCREDITED Laboratory Twalling Laboratory NGC TL-218 TEST REPORT Page 1 of 53 American Wood Council 222 Catoctin Circle SE, Suite 201 Leesburg, VA 20175 Standard Mathods of Fire Tests of Building Construction and Materials ASTM E 119-11a Text Peptert No: 397-1950 Assignment No. 1009 Sultient Material: Cross-Laminated Timber and Digmum Board Wall Assembly Load-Bearing Test Date: October 4, 2012 Report Date: October 15, 2012 Prepared by Michael J. Rulas Text Engineer Reviewed by:

Robert J. Manche

MASS TIMBER PRODUCTS ACOUSTICS

50 60


0


AIR-BORNE SOUND:

• SOUND TRANSMISSION CLASS (STC) MEASURES HOW EFFECTIVELY AN ASSEMBLY ISOLATES AIR-BORNE SOUND AND REDUCES THE LEVEL THAT PASSES FROM ONE SIDE TO THE OTHER

STRUCTURE-BORNE SOUND:

• IMPACT INSULATION CLASS (IIC) Evaluates how effectively an Assembly blocks impact sound from Passing through it

ACOUSTICS

ACOUSTICS – IBC 1207

NO ACOUSTICAL CODE REQUIREMENTS FOR MANY MASS TIMBER BUILDING TYPES SUCH AS OFFICES AND ASSEMBLY. HOWEVER, MANY OWNERS REQUIRE A MINIMUM LEVEL OF PERFORMANCE

CODE REQUIREMENTS FOR RESIDENTIAL OCCUPANCIES:

MIN. STC OF 50 (45 IF FIELD TESTED):

• WALLS, PARTITIONS, AND FLOOR/CEILING ASSEMBLIES

MIN. IIC OF 50 (45 IF FIELD TESTED) FOR:

• FLOOR/CEILING ASSEMBLIES

ACOUSTICS

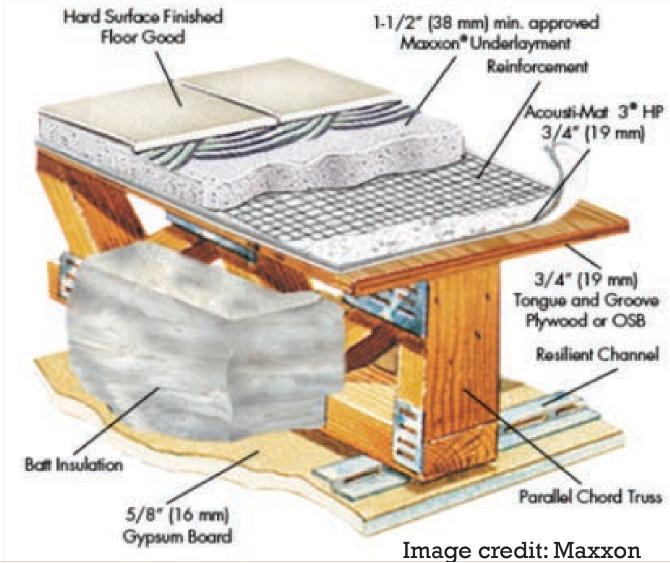
Sound Insulation of Bare CLT Floors and Walls

Number of layers	Thickness (in.)	Wall or Floor	STC	IIC				
3	3-3/4 to 4-1/2	Wall	32-34	N.A.				
5	5-1/3	Floor	39	23				
5	5-3/4	Floor	39	24				
	Measured on field bare CLT wall and floor							
Number of layers	Thickness in.	Assembly type	FSTC	FIIC				
3	4-1/8	Wall	28	N.A.				
7	8-1/5	Floor	N.A	25-30				

Credit: US CLT Handbook

Design Examples for >45 FSTC Walls

ACOUSTICS


Plan view of cross-section	Wall detail	FSTC
	1 = 3-layer CLT ~ 4-1/8" 2 = 1/2" air gap 3 = 2" by 3" wood studs at 16" o.c. 4 = 2-1/2" mineral wool 5 = 5/8" gypsum board	47
	1 & 9 = 5/8" gypsum board 2 & 7 = 2" by 3" wood studs at 16" o.c. 4 & 6 = 1/2" air gap 5 = 3-layer CLT of 4-1/8"	50

Lightweight concrete topping or other similar materials can provide improved acoustical performance, increased durability

MASS TIMBER DESIGN

ACOUSTICS

MASS TIMBER DESIGN ACOUSTICS

Acoustical mat - typically installed between subfloor and topping or flooring

ACOUSTICS

Common mass timber floor assembly:

- Finish floor (if applicable)
- Underlayment (if finish floor)
- 1.5" to 3" thick concrete/gypcrete topping
- Acoustical mat
- WSP (if applicable)
- Mass timber floor panels

ACOUSTICS

Options without concrete topping:

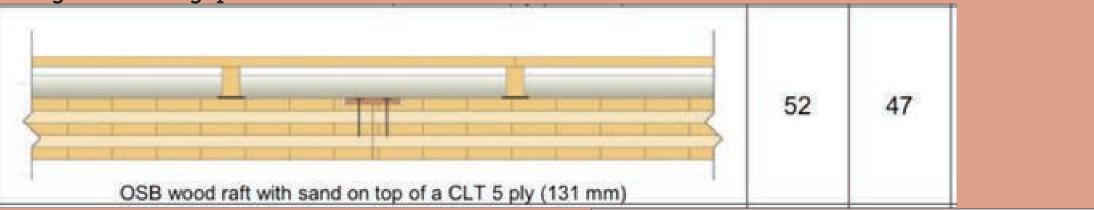

- Gypsum/cement board (Fermacell, Permabase, etc.)
- Proprietary products

Image credit: AcoustiTECH

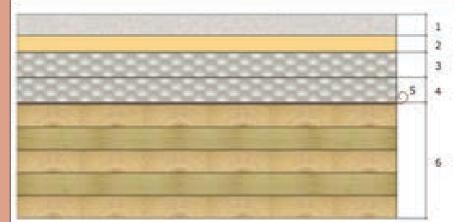
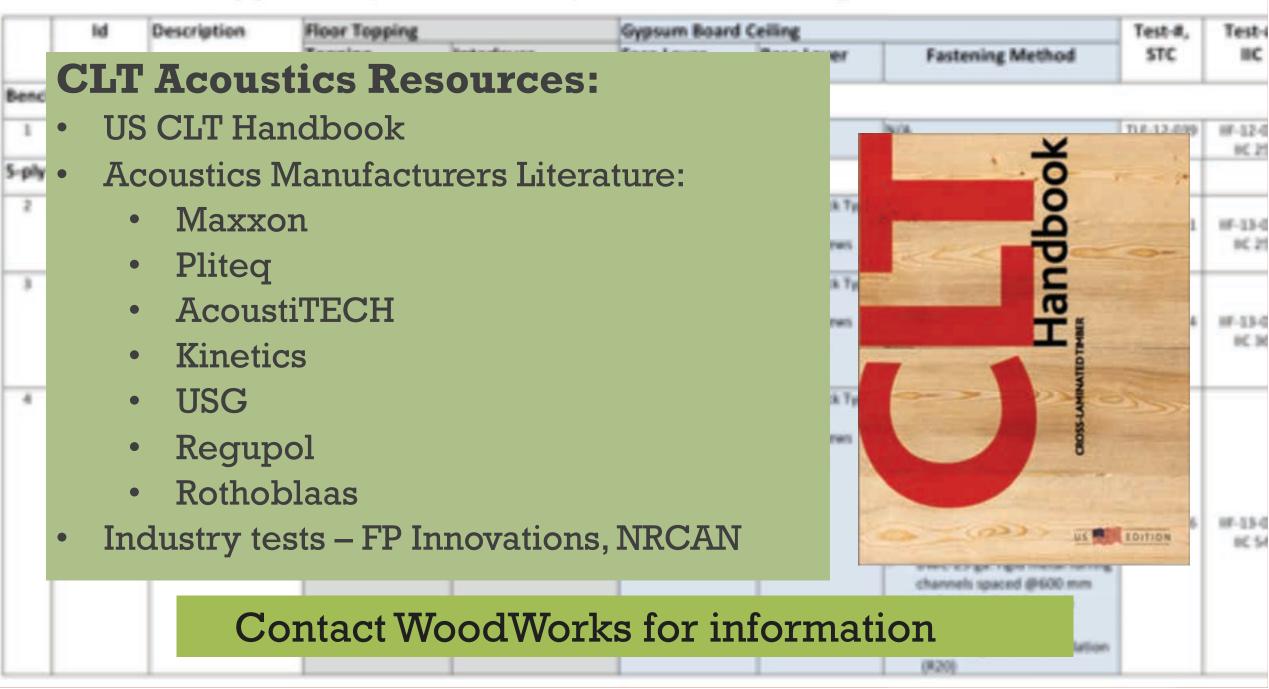

ACOUSTICS

Image credit: Regupol


Options without concrete topping:

- Wood sleepers
- Honeycombs
- Sand fill
- Mineral wool insulation

	Assembly Description from Top to Botto	m (7.1)	STC	IIC
1	Gypsum fiberboard FERMACELL of 1.0 in. (25	mm)		
2	Sub-floor ISOVER EP3 of 0.79 in. (20 mm)			
3	Honeycomb acoustic infill FERMACELL of 1.18	in. (30 mm)	62	59
4	Honeycomb acoustic infill FERMACELL of 1.18	in. (30 mm)	02	28
5	Kraft paper underlayment		CIMILAND	la a la
6	S-layer CLT panel of 5 5/16 in. (135 mm)	Credit: US	CLI Hand	DOOK

Table A.2 - 13: Tested 5-ply CLT floor specimens with descriptions and STC and IIC-ratings

NLT Acoustics

GUIDE VI

Credit: NLT Design & Construction Guide

Architect

esting m

TABLE 2.2 STC AND IIC TESTING DATA COMPLETED FOR NLT FLOORS

	FLOOR ASSEMBLY (TOP TO BOTTOM)	STC	IIC
1	1/2 in. plywood + 2x6 NLT (baseline measurement)	34	32
2	Bare CLT (5-ply, 6-7/8 in. thick)	39	25
3	4 in. normal weight concrete topping + Pliteq GenieMat FF06 acoustical mat + 1/2 in. plywood + 2x6 NLT	51	44
4	Carpet + 4 in. normal weight concrete topping + Pliteq GenieMat FF06 acoustical mat + 1/2 in. plywood + 2x6 NLT	51	58
5	4 in. normal weight concrete topping + Pliteq GenieMat FF25 acoustical mat + 1/2 in. plywood + 2x6 NLT	54	50
6	4 in. normal weight concrete topping + Pliteq GenieMat FF50 acoustical mat + 1/2 in. plywood + 2x6 NLT	56	52
7	4 in. normal weight concrete topping + Pliteq GenieMat FF06 acoustical mat + 1/2 in. plywood + 2x6 NLT + RC + 5/8 in. Type C Gypsum	55	49
8	4 in. normal weight concrete topping + Pliteq GenieMat FF06 acoustical mat + 1/2 in. plywood + 2x6 NLT + Pliteq GenieClip RST Clip + R8 Fiberglass batts + 5/8 in. Type C Gypsum	60	59

PHOTO CREDIT: ALEX SCHREYER

PHOTO CREDIT: ALEX SCHREYER

PHOTO CREDIT: WILL PRYCE

MASS TIMBER SHAFT WALL CONSIDERATIONS:

- COST
- CONSTRUCTION SCHEDULE
- MATERIAL COMPATIBILITY (MOVEMENT & LATERAL LOAD RESISTANCE)
- CAN DOUBLE AS ARCHITECTURAL FEATURE
- SIMILAR TO TILT UP OR CONTINUOUS WALL
 APPLICATIONS
- SUCCESSFUL FIRE TESTS FOR 2 HR MASS TIMBER SHAFT WALLS EXIST (EXPOSED AND PROTECTED)

MEP DETAILING

PHOTO CREDIT: ALEX SCHREYER

MASS TIMBER PRODUCTS Accommodating mep

DUE TO EXPOSED MASS TIMBER STRUCTURE AND FINISH, UNIQUE MEP ACCOMMODATION SOLUTIONS ARE REQUIRED

IF USING TYPE IV CONSTRUCTION, NO CONCEALED SPACES ARE ALLOWED

PHOTO CREDIT: WOODWORKS

MASS TIMBER PRODUCTS Accommodating mep

EXPOSED MEP MEP ITEMS LEFT EXPOSED, USUALLY ON CEILING SIDE OF FLOOR ASSEMBLY

MASS TIMBER PRODUCTS

ACCOMMODATING MEP

Photo Credit: KK Law, Courtesy: naturally:wood

RAISED ACCESS FLOOR Installed on top of floor structure provides 2" to 18" of plenum space for mep

PHOTO CREDIT: WOODWORKS

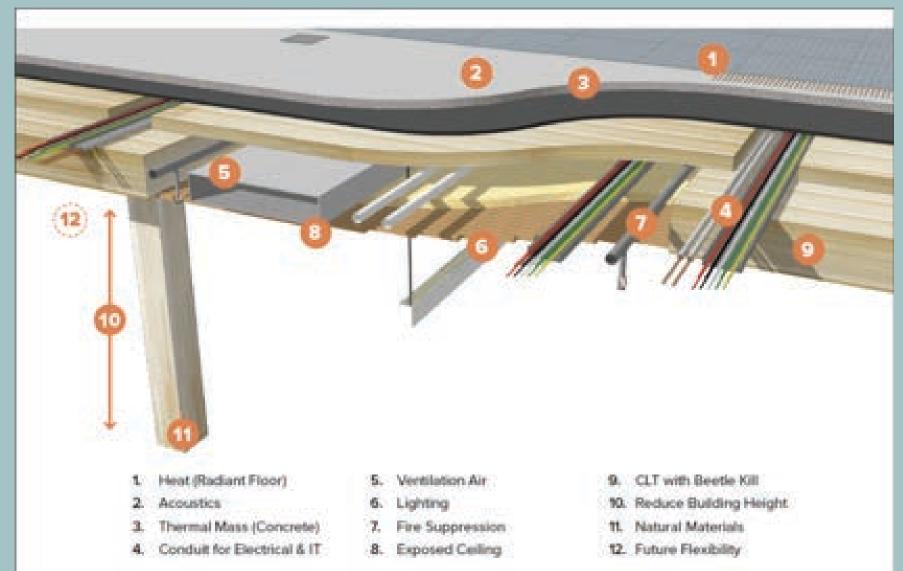
WOOD INNOVATION DESIGN CENTER

PRINCE GEORGE, BC

PHOTO CREDIT: ED WHITE

INLAID WOOD CEILING PAN ELS Cover mep between CLT Panels

WIDC MEP ACCOMMODATION


PHOTO CREDIT: MGA

ROCKY MOUNTAIN INSTITUTE INNOVATION CENTER Basalt, co

PHOTO CREDIT: ROCKY MOUNTAIN INSTITUTE, TIM GRIFFITH

ROCKY MOUNTAIN INSTITUTE INNOVATION CENTER

BASALT, CO

IMAGE CREDIT: ZGF ARCHITECTS

MASS TIMBER PRODUCTS Accommodating mep

EMBEDDED CONDUIT IN CONCRETE TOPPING SLAB

PHOTO CREDIT: ALEX SCHREYER

MASS TIMBER PRODUCTS ACCOMMODATING MEP

EMBEDDED Conduit in Wall Panels

PHOTO CREDIT: CHARLES JUDD

How is MEP accommodated in exposed mass timber buildings-e.g., CLT and NLT wall and floor/roof panels?

Mass timber panel products such as cross-laminated timber (EU), nal-laminated timber (NU) and dowel-laminated timber (D.7) are used in many applications in multi-family and commercial construction - e.g., floors, mofe, sheft walls, bearing walls and partition. walls, in many instances, the panels are left exposed on one side to take advantage of the aesthetic appeal of the timber. For these buildings, accommodation of mechanical, electrical and plumbing (MEP) services is an important design consideration.

Options for Incorporating MEP in Exposed Mass Timber Structures.

Accommodating MEP on mass timber walk

- + Fur out a wainacoting wall on the lower half of the mass timber wall to accommodate electrical outlets and plunding pipes.
- · Add light-frame partition walls on one or both odes of the must timber wall panel to accorumodate MIP herris, completely sovering the mass timber wait parent inote that this can also Nave annymical advantaged:
- + Bun the conduit, pipes, etc. on the face of the mass timber well. pariety, leaving them explosed and using them as arithiteittatal standards.
- Appl and bore the panels to take the electrical conduct. plumbing pipes and mechanical chases. This can be done on site with traditional carpentry took or in the factory using CNC technology, Structural effects related to panel cross-section reduction should be taken into account, (see Figure 1.)

Accommodating MIP on mass timber foor panels:

Figure 1 - Oredit: Charles Judd

Run the constant, pipes, etc. on the face of the mass timber floor panels, leaving them exposed and using them as architectural vienterits, Ger Figure 23.

- woodworks.org/ask-an-expert
- Gap the mass timber panels, running the MEP stams between the panels and adding wood ceiling inlay panels between the And include the descent of a light when the set of

Ast on Expert. Q: Can exposed wood framing be used

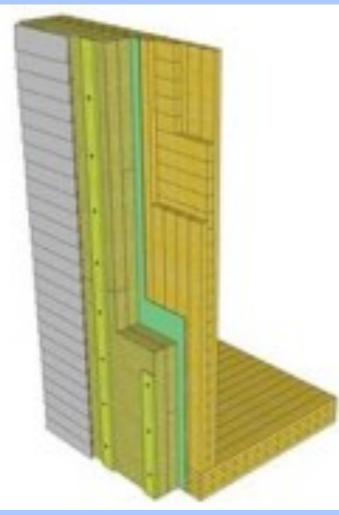
Request Room design Chronigh

allowable beights and areas to structural design, lateral systems and

construction, on house langing from

Fire-up accounting of matters assemblings

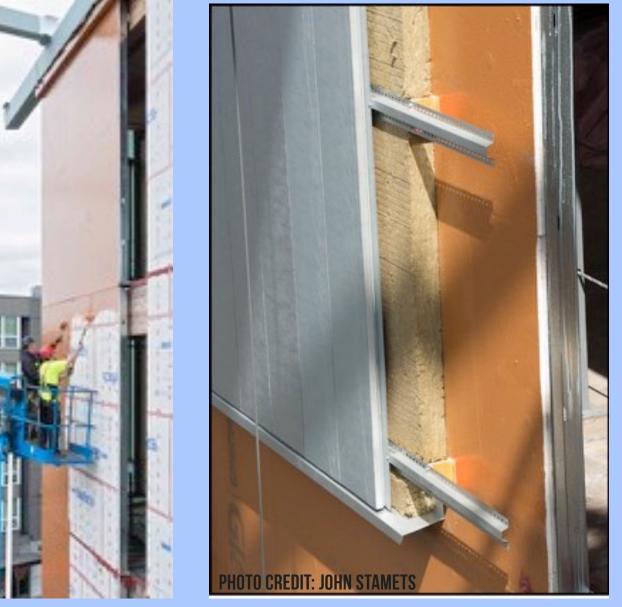
in buildings such as aqualic centers and pools? Are there durability concerned


A: The main durability consideration emoleted with the use of according environments such as pools and aquatic conters is high moisture. content in the wood. Buildings such as this may have high relative hornidity. and, as such, it is important to understand how relative humidity of a condition space affects exposed wood within that goots.

Feature Project

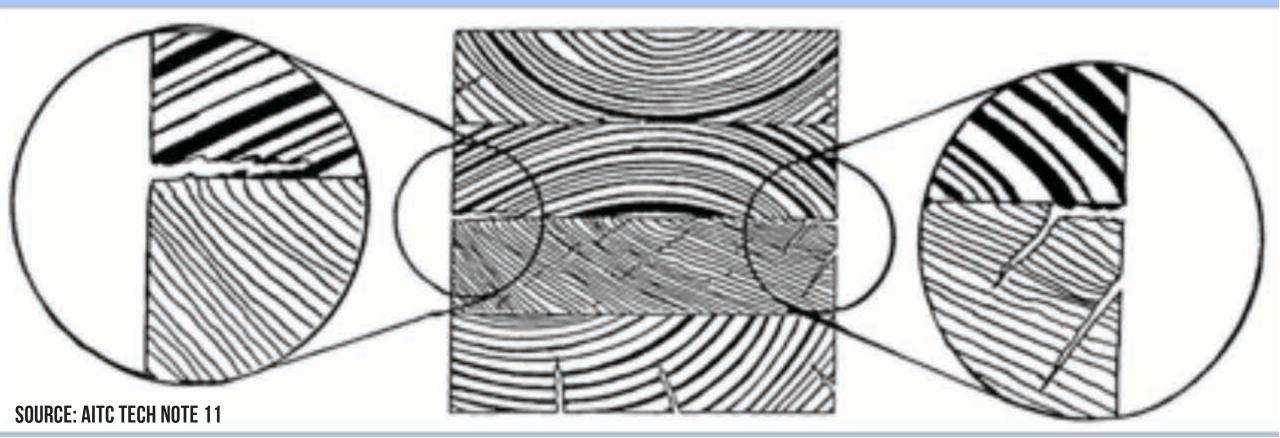
BUILDING ENCLOSURE

MASS TIMBER BUILDING ENVELOPES



SIMILAR TO OTHER WALL ASSEMBLIES: Continuous insulation and other control layers installed on outside of wall panels

BUILDING ENCLOSURE

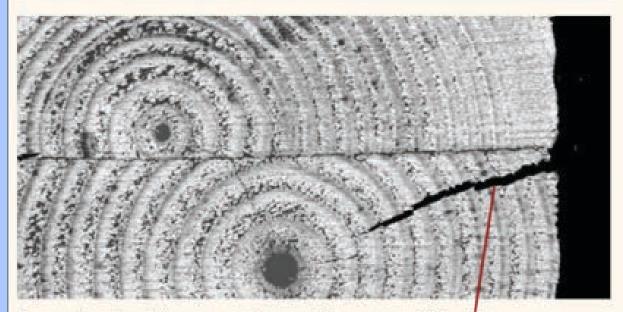


1.774

SPLITTING AND CHECKING

ARE SPLITS AND CHECKS IN MASS TIMBER Elements a structural concern?

WHAT CAUSES SPLITS AND CHECKS?

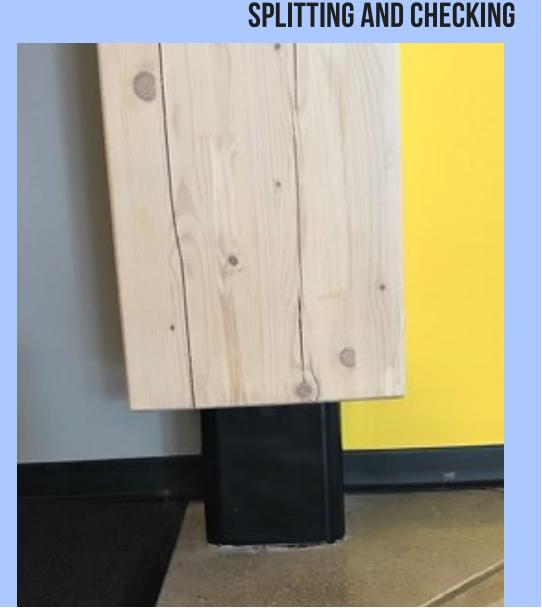

CHECKING AND SPLITTING IS A RESULT OF LOSS OF MOISTURE. AS OUT FIBERS IN WOOD MEMBER TRY TO SHRINK, THEY ARE RESTRAINED BY INNER PORTION OF MEMBER WHICH HAS A HIGHER MOISTURE CONTENT.

WHAT CAUSES SPLITS AND CHECKS?

THE MORE RAPID THE RATE OF DRYING, THE GREATER THE DIFFERENTIAL IN **SHRINKAGE BETWEEN THE OUTER AND INNER FIBERS RESULTING IN HIGHER** SHRINKAGE STRESSES. THESE **RESULTANT STRESSES PERPENDICULAR TO GRAIN CAN CAUSE CHARACTERISTIC SEASONING CHECKS.**

Seasoning check (uneven surfaces with torn wood fiber)

SOURCE: APA TECH NOTE R475


WHEN DOES CHECKING OCCUR?

CHECKING IN MEMBERS IN ENCLOSED BUILDINGS IS USUALLY COMPLETED WITHIN THE FIRST FULL CYCLE OF ENVIRONMENTAL CONDITIONING OF THE SPACE. HOWEVER, CHANGES IN THE END **USE OF THE STRUCTURE MAY EFFECT FUTURE CHECKING.**

ARE SPLITS AND CHECKS IN MASS TIMBER Elements a structural concern?

THE INFLUENCE OF CHECKS ON THE **STRUCTURAL PERFORMANCE OF GLUED** LAMINATED TIMBER MEMBERS IS GENERALLY **MINOR. CHECKING CAN BE MINIMIZED BY CAREFUL INSTALLATION PRACTICES THAT AVOID PROLONGED EXPOSURE OF THE MEMBERS DURING CONSTRUCTION.**


EVALUATING SPLITS AND CHECKS IN MASS TIMBER ELEMENTS

RESOURCES:

- AITC TECH NOTE 11
- APA TECH NOTE R475
- APA FORM F450

IS MY GLULAM OK?

MASS TIMBER DESIGN

SPLITTING AND CHECKING


EVALUATING SPLITS AND CHECKS IN GLULAM

TABLE 2

ALLOWABLE CHECK SIZE OUTSIDE THE SHEAR-CRITICAL ZONE

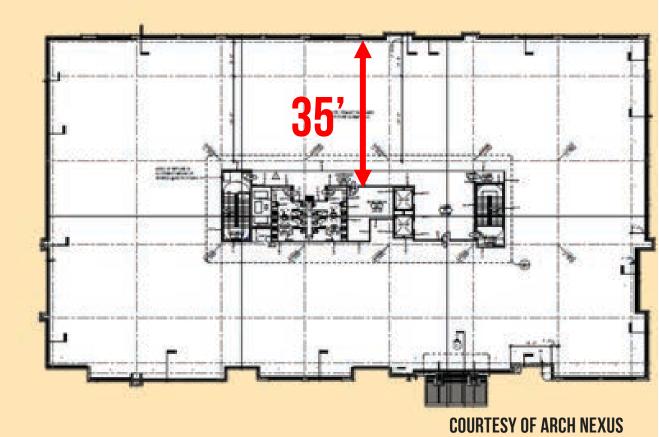
Beam Width in Inches	Allowable Side Checks (Depth) in Inches				Allowable End Checks (Length) in Inches			
	y/h							
	0.30	0.35	0.40	0.45	0.30	0.35	0.40	0.45
2-1/2	3/4	1-1/4	1-5/8	2	2-3/8	3-5/8	5	6
3, 3-1/8	1	1.1/2	2	2.3/8	2.7/8	4-3/8	6	7-1/4
3-1/2	1-1/8	1-3/4	2-1/4	2-3/4	3-3/8	5-1/8	6-7/8	8-3/8
5, 5-1/8	1-5/8	2.1/2	3-1/4	4	4-3/4	7-3/8	9-7/8	12
5-1/2	1-3/4	2.3/4	3-5/8	4.3/8	5-1/4	8-1/8	10-7/8	13-1/4
6-3/4	2-1/8	3-1/4	4-1/2	5-3/8	6-1/2	9-7/8	13-3/8	16-1/4
8-1/2, 8-3/4	2-3/4	4-1/8	5-5/8	6-3/4	8-1/8	12-1/2	16-7/8	20-3/8
0-1/2, 10-3/4	3-3/8	5-1/8	6-7/8	8-3/8	10-1/8	15-3/8	20-3/4	25-1/4

SOURCE: APA TECH NOTE R475

LATERAL CORE RESISTING SYSTEM:

- COMMONLY USED WITH GLAZING/CURTAIN WALLS
- MAY USE RIGID OR SEMI-RIGID (IF USED WITH Frames at exterior) analysis

MASS TIMBER DESIGN LATERAL FRAMING SYSTEMS



LIGHT FRAME SHEARWALLS:

- TYPICAL FOR 1-5 STORIES
- TYPICALLY ASSUME FLEXIBLE DIAPHRAGM
- NEED AMPLE WALL AT PERIMETER

DIAPHRAGM DESIGN OPTIONS FOR CENTRAL CORE:

- AWC'S 2015 SPECIAL DESIGN PROVISIONS FOR WIND AND SEISMIC (SDPWS) 4.2.5.2 Permits a semi-rigid or rigid, Cantilever Diaphragm up to 35 ft
- IF MORE THAN 35FT, CONSIDER PERIMETER LATERAL RESISTANCE SUCH AS MOMENT FRAME

CENTRAL CORE: CONCRETE SHEARWALLS

PHOTO CREDIT: STRUCTURECRAFT BUILDERS

CENTRAL CORE: MASS TIMBER SHEARWALLS

PHOTO CREDIT: ALEX SCHREYER

EXTERIOR STEEL MOMENT FRAME

THE REAL PROPERTY AND ADDRESS OF

PHOTO CREDIT: WOODWORKS

INTERIOR STEEL MOMENT FRAME

PHOTO CREDIT: WOODWORKS

STEEL BRACED FRAME

PHOTO CREDIT: JOHN STAMETS

SHEATHED WOOD SHEARWALLS

PHOTO CREDIT: WOODWORKS

PHOTO: ANDREAS SAUTER, TIM CLAY PHOTOGRAPHY

PROPRIETARY RIGID/SEMI-RIGID FRAMES

LATERAL FRAMING SYSTEMS

TIMBER BRACED FRAME

PHOTO CREDIT: ALEX SCHREYER

CONNECTIONS

CONNECTIONS

CONNECTION DESIGN CONSIDERATIONS:

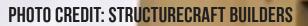
- STRUCTURAL CAPACITY
- SHRINKAGE
- FIRE
- CONSTRUCTABILITY
- AESTHETICS
- COST

PHOTO CREDIT: ALEX SCHREYER

LONG SELF TAPPING SCREWS USED EXTENSIVELY THROUGHOUT MASS TIMBER CONSTRUCTION

CONNECTIONS

PHOTO CREDIT: MYTICON


BEAM TO BEAM CONNECTIONS

CONNECTIONS

PHOTO CREDIT: ALEX SCHREYER

MASS TIMBER DESIGN CONNECTIONS

PHOTO CREDIT: ALEX SCHREYER

BEAM TO COLUMN CONNECTIONS

PHOTO CREDIT: STRUCTURECRAFT BUILDERS

CONNECTIONS

BEAM TO COLUMN & Column to column Connections

PHOTO CREDIT: JOHN STAMETS

CONNECTION

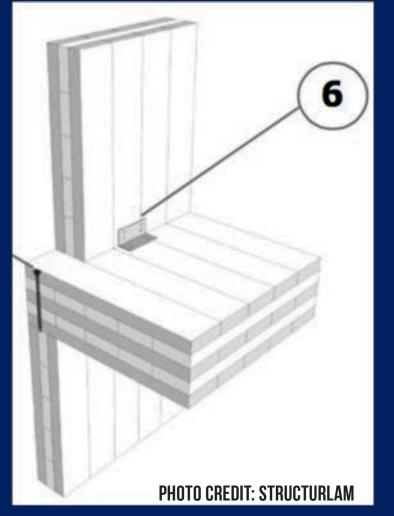
COLUMN TO FOUNDATION CONNECTIONS

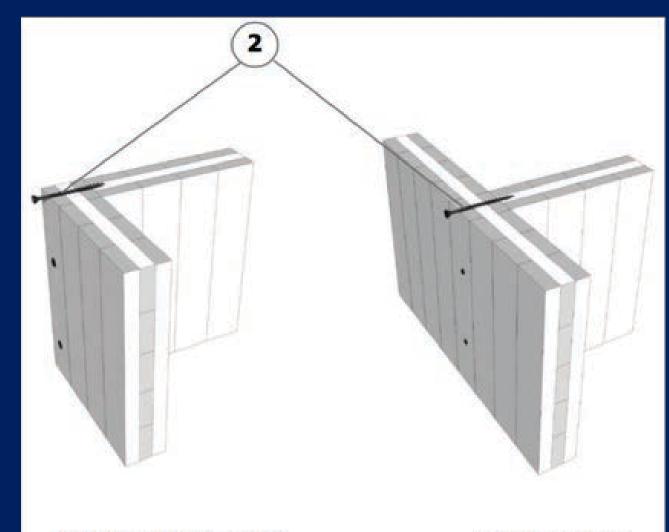
PHOTO CREDIT: ALEX SCHREYER

PHOTO CREDIT: STRUCTURECRAFT BUILDERS

MASS TIMBER DESIGN CONNECTIONS

PHOTO CREDIT: CHARLES JUDD


PANEL TO PANEL CONNECTIONS – SURFACE SPLINE


PHOTO CREDIT: ALEX SCHREYER

CONNECTIONS

CONNECTIONS

PANEL TO PANEL CONNECTIONS

CORNER WALL JOINT

T-WALL JOINT

MASS TIMBER DESIGN CONNECTIONS

MASS TIMBER DESIGN CONNECTIONS

HYBRID WOOD/STEEL CONNECTIONS: LOTS OF VARIATION POSSIBLE

MASS TIMBER

SOURCING, CONSTRUCTION & COST CONSIDERATIONS

CLT Manufactures for use in the US - PRG-320 Certified

- SmartLam, Columbia Fall, Montana
- DR Johnson Lumber, Oregon
- Nordic Structures, Quebec, Canada
- Structurlam, British Columbia, Canada
- KLH USA, Subsidiary of KLH Massivholz, Austria

Certified CLT:

- **Nordic** (Chibougamau , QC, Canada)
- **SmartLam** (Whitefish, MT, US)
- **Structurlam** (Penticton, BC, Canada)
- **DR Johnson Lumber** (Riddle, OR, US)

Certified CLT:

- **Nordic** (Chibougamau , QC, Canada)
- **SmartLam** (Whitefish, MT, US)
- **Structurlam** (Penticton, BC, Canada)
- **DR Johnson Lumber** (Riddle, OR, US)

Not Yet Certified:

- Guardian Structures (St. Marys, ON, Canada)
- Element 5 (Ripon, QC, Canada)
- **LEAF EWP** (ON, Canada)

Certified CLT:

- Nordic (Chibougamau , QC, Canada)
- SmartLam (Whitefish, MT, US)
- **Structurlam** (Penticton, BC, Canada)
- **DR Johnson Lumber** (Riddle, OR, US)

Not Yet Certified:

- Guardian Structures (St. Marys, ON, Canada)
- Element 5 (Ripon, QC, Canada)
- **LEAF EWP** (ON, Canada)

Coming Soon:

- International Beams (Dothan, AL)
- Katerra (Spokane, WA)
- Vaagen Timbers (Colville, WA)
- SmartLam (TBD)
- **Texas CLT** (Magnolia, AR)

CLT Distributer w/ US Certification:

• KLH US

CLT Distributer w/ European Certification:

- Stora Enso Wood Products
- Metsa Wood
- Merk
- BinderHolz
- Hasslacher Norica Timber

US Distribution (sourced from Various European Suppliers):

- Innovative Timber
 Systems/Smartwoods
- StructureCraft
- Structure Fusion
- Cross Lam Timber Solutions
- Holzpack
- Sauter Timber

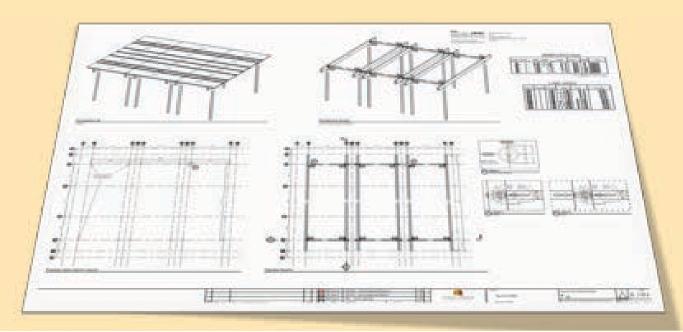
* CLT imports may have more restrictions on panel sizes due to shipping, longer lead times and less access to design assist services.

MASS TIMBER PRODUCTS

CONSTRUCTION

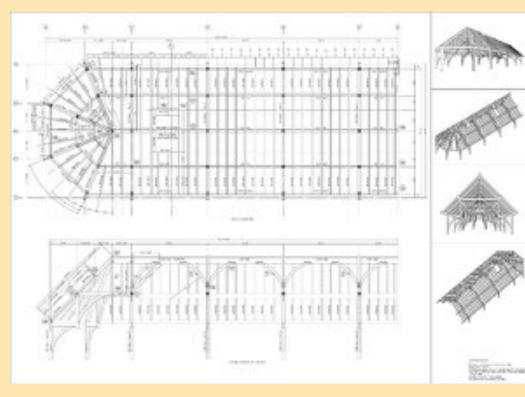
WORKING WITH MASS TIMBER: KNOW YOUR SUPPLY CHAIN

- MANUFACTURERS DIFFERENT SPECIES, GRADES AND MAXIMUM PANEL/BEAM SIZES
- TRUCKING LOGISTICS AND COST
- MANUFACTURERS HAVE SPECIFIC CNC CAPABILITIES
- 3RD PARTY FABRICATORS CAN HAVE ADDITIONAL CNC CAPABILITIES



MASS TIMBER PRODUCTS

CONSTRUCTION


DEFINE & COMMUNICATE THE DELIVERABLES YOU NEED FROM THE SUPPLIER:

- SHOP DRAWINGS
- SHOP DRAWINGS WITH ENGINEERING STAMP
- ENGINEERED DRAWINGS AND CALCULATIONS (E.G. AS A DEFERRED SUBMITTAL)

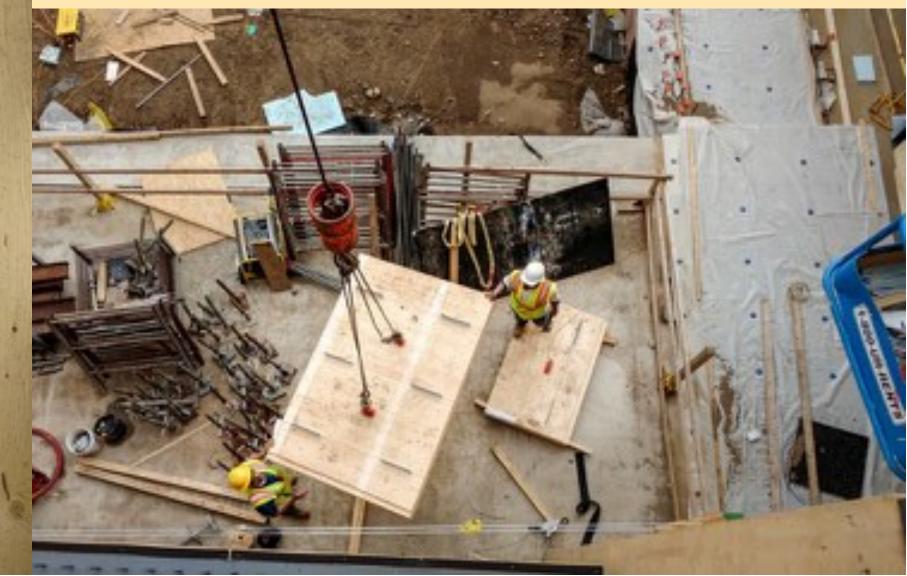
WHAT DOES A MASS TIMBER Construction process look like?

VERY SIMILAR TO A PRECAST CONCRETE Or structural steel project

MASS TIMBER PRODUCTS

SHOP DRAWINGS
ERECTION DRAWINGS
PREFABRICATED MEMBERS AND CONNECTIONS

MASS TIMBER PRODUCTS


PHOTO CREDIT: ALEX SCHREYER

- **STAGING AREAS**
- CRANES

RIGGING HOOKS ARE REMOVED AFTER PANEL PLACEMENT

MASS TIMBER PRODUCTS

PHOTO CREDIT: ALEX SCHREYER

PRODUCT MANUFACTURERS ARE THE BEST SOURCE OF PRICING INFORMATION

MASS TIMBER CONSTRUCTION COSTS VARY WITH PROJECT Location, Size, Spans, Finish Level and Many Other Variables

MASS TIMBER COSTS

MASS TIMBER COSTS

PHOTO CREDIT: STRUCTURLAM

FACTORS RELEVANT TO THE COST CONVERSATION:

- CURE TIME: MASS TIMBER HAS NONE. CAN BE WORKED ON IMMEDIATELY AFTER BEING PLACED
- LIGHT-WEIGHT:
- CRANE SIZE: MASS TIMBER IS LIGHTER THAN TRADITIONAL MATERIALS⁷. SMALLER CRANE = POTENTIAL SAVINGS
- SMALLER SEISMIC FORCES & FOUNDATIONS = POTENTIAL SAVINGS
- CONSTRUCTION SPEED: ESTIMATED TO BE 25% FASTER¹¹. SOONER COMPLETION = SOONER OCCUPANCY = SOONER REVENUE
- OTHERS: LESS CONSTRUCTION TRAFFIC¹¹, PREFABRICATED & PRECISE GOES TOGETHER Smoothly
- OTHER ITEMS THAT AFFECT COST: SHIPPING DISTANCE, SEALERS/SANDING REQUIREMENTS, Source 7: Structurlam Source 11: FAST + EPP

RADIATOR BUILDING

PORTLAND, OR

PHOTO CREDIT: JOSH PARTEE

RADIATOR BUILDING

BUILDING INFO: OFFICE BUILDING 5 STORIES 36,000 SF COMPLETED 2015

ONE NORTH

PORTLAND, OR

EXPOSED STEEL CONNECTIONS GLULAM GIRDER & PURLIN FRAME

-

PHOTO CREDIT: JOSH PARTEE

U OF ARKANSAS STUDENT DORMS Fayetville, Ar

IMAGE CREDIT: MODUS STUDIO

(2) – 5 STORY BUILDINGS TOTAL OVER 200,000 SF 368 RESIDENTIAL ROOMS

IMAGE CREDIT: MODUS STUDIO/LEERS WEINZAPFEL ARCHITECTS

U OF ARKANSAS STUDENT DORMS Fayetville, Ar

COMMON GROUND HIGH SCHOOL

NEW HAVEN, CT

PHOTO CREDIT: DAVID SUNDBERG AND GRAY ORGANSCHI ARCHITECTURE

COMMON GROUND HIGH SCHOOL

NEW HAVEN, CT

- 15,000 SF CLASSROOM & MULTI-PURPOSE SPACE ADDITION CLT & GLULAM FRAMING SCHEME
- **TYPE VB CONSTRUCTION**

PHOTO CREDIT: DAVID SUNDBERG AND GRAY ORGANSCHI ARCHITECTURE

COMMON GROUND HIGH SCHOOL

NEW HAVEN, CT

PHOTO CREDIT: DAVID SUNDBERG AND GRAY ORGANSCHI ARCHITECTURE

MCDONALD'S CHICAGO, IL

PHOTO CREDIT: WOODWORKING NETWORK AND ROSS BARNEY ARCHITECTS

19,000 SF CLT, GLULAM AND STEEL STRUCTURE

MCDONALD'S

CHICAGO, IL

PHOTO CREDIT: WOODWORKING NETWORK AND ROSS BARNEY ARCHITECTS

CLAY CREATIVE

PORTLAND, OR

IMAGE CREDIT: CHRISTIAN COLUMBRES

CLAY CREATIVE Portland, or

IMAGE CREDIT: CHRISTIAN COLUMBRES

5 STORIES MOSTLY OFFICE, SOME RETAIL AND AMENITY 72,000 SF

CLAY CREATIVE

PORTLAND, OR

- ~8' FINISHED FLOOR TO BOTTOM OF BEAM
- 25'X30' AT PERIMETER
- 30'X30' BAYS AT CENTER
- 1.5" GYPSUM, WSP, 2X6 NLT FLOOR PANELS
- RAISED FLOOR SYSTEM FOR MECHANICAL, Data and acoustics
- EXTERIOR STEEL MOMENT FRAME KEEPS CORE AREA MORE VERSATILE

THE BUILDINGS -

THE MEMORENCE

FOR TAXABLE

STRAIL ABOLITY 11.404

CONTACT

WYTHE

THE FIRST BRICK AND BEAM BUILDINGS TO BE CONSTRUCTED IN NEW YORK CITY IN NEARLY A CENTURY.

IMAGE CREDIT: FLANK

320 & 360 WYTHE AVE.

NEW YORK, NY

3 STORY & 5 STORY BUILDINGS MOSTLY OFFICE, SOME APARTMENTS NLT & GLULAM

IMAGE CREDIT: FIELD CONDITION/FLANK

320 & 360 WYTHE AVE. New York, Ny

111

FRANKLIN ELEMENTARY SCHOOL FRANKLIN, WV

FRANKLIN ELEMENTARY SCHOOL

- 45,200 SF, 2 STORY SCHOOL
 CLT UTILIZED FOR WALLS, ROOF PANELS, AND FLOOR PANELS
 CLT CHOSEN FOR ITS CONSTRUCTION SCHEDULE BENEFITS
- COMPLETED JANUARY 2015

FRANKLIN ELEMENTARY SCHOOL

FRANKLIN, WV

PHOTO CREDIT: PAM WEAN, MSES ARCHITECTS

BULLITT CENTER

SEATTLE, WA

PHOTO CREDIT: BULLITT CENTER

BULLITT CENTER Seattle, wa

250 YEAR STRUCTURE HEALT THEFT CONCRETE A STEEL PHOTO CREDIT: MILLER HULL PARTNERSHIP

BUILDING INFO:OFFICE BUILDING4 STORIES MASS TIMBER OVER 2 STORIES CONCRETE52,000 SFNET ZEROLIVING BUILDING CHALLENGE CERTIFIED

TYPE IV CONSTRUCTION 250 YR DESIGN LIFE COMPLETED 2013

2X6 NLT FLOOR DECK 2X4 NLT ROOF DECK FLOOR ASSEMBLY TOP TO BOTTOM: 3" CONCRETE TOPPING, ACOUSTICAL MAT, WSP, 2X6 NLT

PHOTO CREDIT: JOHN STAMETS

BULLITT CENTER

SEATTLE, WA

BULLITT CENTER

SEATTLE, WA

NAIL-LAMINATED TIMBER DECKS PROVIDE: MAXIMIZED SPANS, REDUCED NUMBER OF COLUMNS, MORE OPEN SPACE Flexibility, Minimized Structure Depth

PHOTO CREDIT: JOHN STAMETS

PLUMAS COUNTY BIOMASS BOILER

PHOTO CREDIT: HOLMES STRUCTURES/SIERRA INSTITUTE FOR COMMUNITY

QUINCY, CA

• 2,000 SF

- 1st full clt structure in California
- COMPLETED 2018

CHICAGO HORIZON PAVILION

TH.

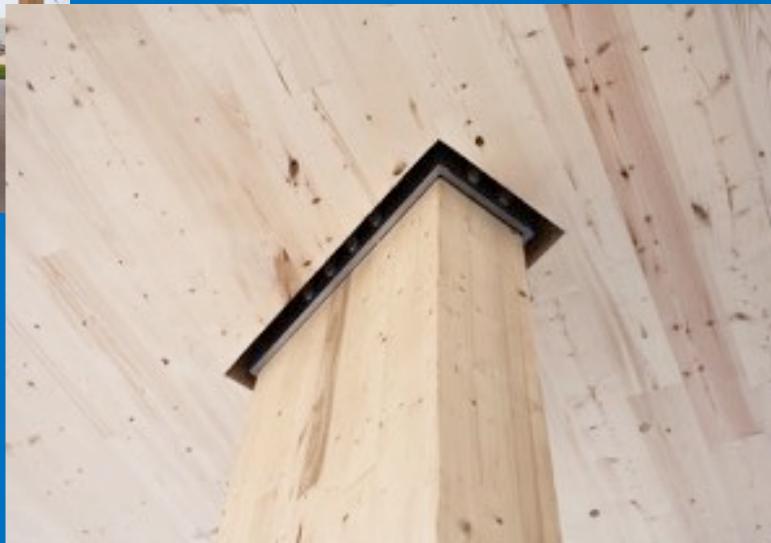
CHICAGO, IL

CHICAGO HORIZON PAVILION

CHICAGO, IL

56' SQUARE KIOSK 2 LAYERS OF 3-PLY, 4-1/8" CLT ROOF PANELS IN OPPOSITE Directions, Each Panel 8' X 56', Creating 2 Way spanning plate

PHOTO CREDIT: TOM HARRIS



TOTAL ROOF STRUCTURE THICKNESS 8-1/4" Spans up to 30 feet between Columns at isolated points

PHOTO CREDIT: AARON FORREST

CHICAGO HORIZON PAVILION

FRAMEWORK Portland, or

PHOTO: JOSHUA JAY ELLIOT

FRAMEWORK

PORTLAND, OR

4 STORIES OF WOOD (OFFICE) OVER 1 STORY OF Concrete (Retail & Parking) 6,800 SF Completed 2015

PHOTO: JOSHUA JAY ELLIOT

FRAMEWORK Portland, or

NEW ENERGY WORKS TOM<mark>orrowland</mark>

FARMINGTON, NY

PHOTO CREDIT: NESEA/NEW ENERGY WORKS

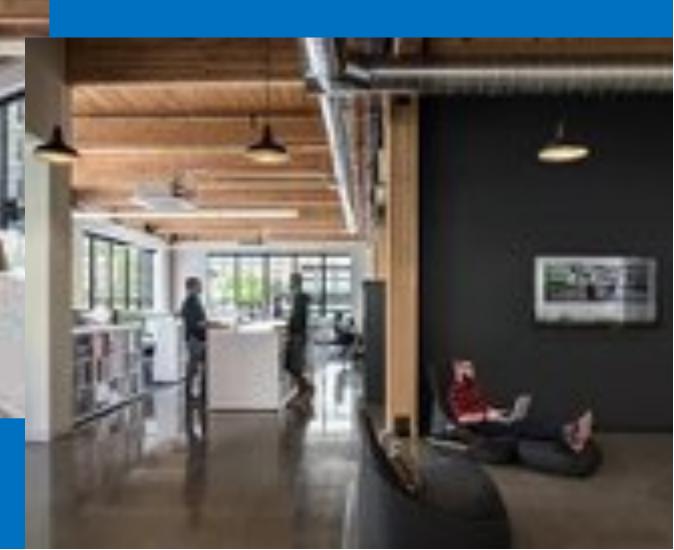
- 21,000 SF FACILITY
- **3-PLY CLT WALL AND ROOF PANELS**

- FIRST CLT BUILDING IN NEW YORK STATE
- COMPLETED 2017

3 STORIES 45,000 SF TYPE VA CONSTRUCTION

DEVELOPER: KILLIAN PACIFIC AND MACKENZIE Photo credit: Christian Columbres

HUDSON BUILDING



HUDSON BUILDING

VANCOUVER, WA

 25'X25' GRID
 15'-18' FLOOR TO FLOOR HEIGHTS
 COMPOSITE FLOOR: 2X4 AND 2X6 NLT FLOOR PANELS WITH 3 ½" REINFORCED CONCRETE TOPPING
 ALL MEP EXPOSED

WASHINGTON LATIN PUBLIC CHARTER SCHOOL GYM

WASHINGTON, DC

- 11,266 SF GYM ADDITION
- 3-PLY CLT WALL AND ROOF PANELS
- 75 FT SPAN GLULAM ROOF BEAMS
- COMPLETED 2016

BOISE, ID

CLT USED FOR ROOF PANELS IN LIBRARY ADDITION

• COMPLETED 2017

BRELSFORD WSU VISITOR CENTER PULLMAN, WA

PHOTO CREDIT: WASHINGTON STATE UNIVERSITY

BRELSFORD WSU VISITOR CENTER

4,277 SF, 1 STORY VISITOR CENTER CLT UTILIZED FOR ROOF PANELS WITH LARGE, EXPRESSED OVERHANGS COMPLETED LATE 2013

UMASS DESIGN BUILDING

AMHERST, MA

IMAGE CREDIT: ALEX SCHREYER

4 STORY, 87,500 SF FACILITY WITH: CLASSROOMS, LOUNGES, MEETING ROOMS, MATERIALS-TESTING LAB, GREEN-BUILDING LAB, WOOD SHOP, DIGITAL FABRICATION LAB, CAFE, EXHIBIT SPACE, AND LIBRARY

IMAGE: ALEX SCHREYER

UMASS DESIGN BUILDING

AMHERST, MA

COMPLETED SPRING 2017

PHOTO CREDIT: ALEX SCHREYER

UMASS DESIGN BUILDING

AMHERST, MA

PHOTO CREDIT: ALEX SCHREYER

MASS TIMBER CONSTRUCTION THE FUTURE'S LOOKING UP

TALL WOOD IN THE U.S.

03011 NATLAROL PORNIALNUMKT WWW.FIVEOCLOCKSTUDIO.COM

» Current Prescriptive Code Limit - 6 stories or 85 feet

» Over 6 Stories - Alternate Means and Methods Request (AMMR) through performance based design

» Based on the 1910 Heights and Areas Act

MODERN TALL WOOD 7 STORIES IN 2016

T3 Office Building – 230,000 sf – Minneapolis, MN

MODERN TALL WOOD 8 STORIES IN 2017

Photos: Baumberger Studio/PATH Architecture/Marcus Kauffman Architect: PATH Architecture

Carbon12 – 32,000 sf – Portland, OR

U.S. BUILDING CODE STATUS

U.S. BUILDING CODES

Tall Wood Ad Hoc Committee

Balanced Committee: 2016-2018 Development of code change proposals for prescriptive code allowances of tall wood buildings.

Mass Timber Fire Testing at ATF Lab

Mass Timber Shake Table Test at UCSD

U.S. BUILDING CODES Tall Wood Ad Hoc Committee

Three Main Categories:

Noncombustible (Types I and II)
 Light-Frame (Types III and V)
 Mass Timber (Type IV)

IBC TABLE 601

BUILDING	TYPE	I .	TYPE	E II TYPE III TYPE IV		IV	V			TYPE V		
ELEMENT	Α	В	Α	В	Α	В	Α	В	С	HT	Α	В

New Building Types

Feature	Type IVA	Type IVB	Type IVC		
Description of new Type IV Types	100 % Noncombustible (NC) protection on all surfaces of Mass Timber (MT).	NC protection on all surfaces of mass timber (MT) except for limited exposed areas.	Exposed mass timber (MT), except shafts, concealed spaces, and outside of exterior walls.		
	Permi	tted Materials			
Structural Building Elements	MT or NC	MT or NC	MT or NC		
onloadbearing Ext Walls MT or NC		MT or NC	MT or NC		
Nonloadbearing Int Walls	MT or NC	MT or NC	MT or NC		
former different i	Exit and H	oistway Enclosures	alasses and a second		
Highrise* to 12 stories or 180 feet: NC or MT protected with 2 (or 3 when 3 hr FRR) layers of 5/8" Type X.		NC or MT protected with 2 layers of 5/8" Type X gypsum or equiv each side of enclosure.	NC or MT protected with one layer of 5/8" Type X gypsum each side of shaft or enclosure		
Above 12 stories or 180 ft: See INC defense of lightens	NC	Not Permitted	Not Permitted		

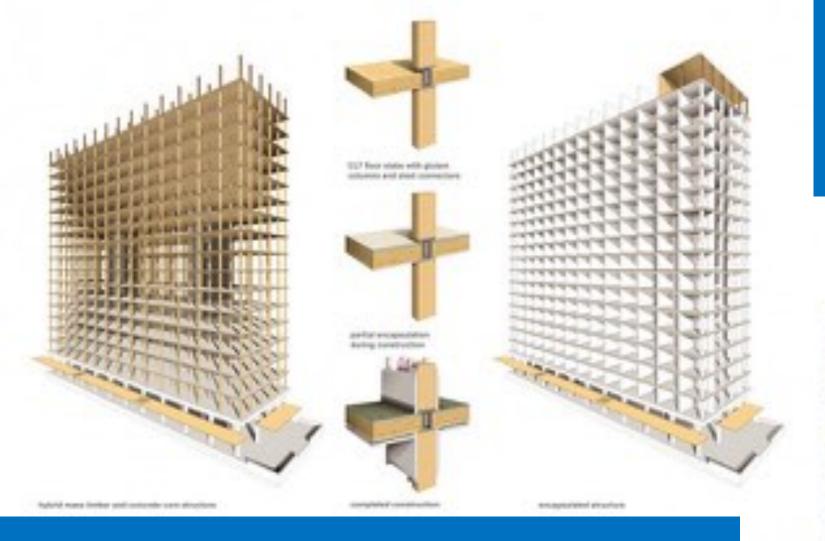
Source: AWC https://www.awc.org/tallmasstimber

Feature	Type IVA	Type IVB	Type IVC	
	Noncomb	sustible Protection		
Interior Protection Req'd 3 hr FRR Req'd for 2 hr or less FRR	3 layers of 5/8" Type X gypsum 2 layers of 5/8" Type X gypsum	Same as Type IV-A for protected MT. Limited exposed MT elements must have same FRR, but may be calculated.	All MT is allowed to be exposed except for 1 layer of 5/8" Type X on outside surfaces of exterior walls, inside and outside of shafts and exit enclosures, and in concealed spaces.	
Exterior Protection	Minimum of 1 layer of 5/8" Type X gypsum	Minimum of 1 layer of 5/8" Type X gypsum	Minimum of 1 layer of 5/8" Type X gypsum	
Floor Surface	1 inch of NC protection	1 inch of NC protection	No protection required	
Roof	No NC protection on exterior roof surface, 2 layers of 5/8" Type X gypsum on inside of roof deck.	No NC protection on exterior roof surface, 2 layers of 5/8" Type X gypsum on inside of roof deck.	No protection on roof surface or inside of roof deck is required (unless concealed space).	
Concealed Spaces	No exposed MT in concealed spaces. NC protection in concealed spaces.	No exposed MT in concealed spaces. NC protection in concealed spaces.	No exposed MT in concealed spaces. One layer of 5/8" Type X gypsum NC protection in concealed spaces.	
	Table 601 Fire I	Resistance Rating (FRR)		
Yimary Frame or Jearing Wall: 3 hr FRR (2 hr at roof) 2 hr FRR Loors: 1.5 hr FRR		2 hr FRR (1 hr at roof) 2 hr FRR 1 hr FRR	2 hr FRR (1 hr at roof) 2 hr FRR 1 hr FRR	
Fire Resistance Rating Trade-off No FRR reduction for sprinkler in 403.2.1		No FRR reduction for sprinkler in 403.2.1	No FRR reduction for sprinkler in 403.2.1	

Source: AWC https://www.awc.org/tallmasstimber

Tall Mass Timber Building Code Changes Pass First Hurdle

The highly-anticipated International Code Council (ICC) Tall Mass Timber Building code changes passed a first hurdle in April with approval by the ICC code changes committee responsible for this part of the process. By wide margins a series of 14 proposals was each approved. The Hearings brought together code and fire officials, along with engineers, architects, builders, and other construction professionals as part of the first public step in approving code change proposals for the 2021 set of ICC codes. The proposals submitted by the ICC Ad Hoc Committee on Tall Wood Buildings (TWB), once officially approved by year-end, would allow mass timber buildings to be constructed up to 18 stories in height. AWC had a significant number of staff in attendance at the Hearings who spoke in support of the Ad Hoc Committee proposals. For more information see <u>www.awc.org/tallmasstimber</u>.



BROCK COMMONS

VANCOUVER, BC

BROCK COMMONS Vancouver, BC

pergentative prior electron of hybrid law.

constant discolute and the solution of take

5 PLY CLT PANELS, 2-WAY SPAN ~9'X13' GRID OF COLUMNS

PHOTO CREDIT: ACTON OSTRY ARCHITECTS

BROCK COMMONS

BROCK COMMONS

VANCOUVER, BC

17 STORIES OF TIMBER INSTALLATION STARTED JUNE 6, 2016 FINIS HED AUGUST 10, 2016

SOURCE: CANADIAN DESIGN & CONSTRUCTION REPORT¹²

Sources & Works Cited

- 1. LEVER Architecture: <u>https://leverarchitecture.com/projects/albina_yard</u>
- 2. Lendlease: <u>http://www.woodworks.org/wp-content/uploads/4-Story-CLT-Hotel-WoodWorks-Case-Study-Redstone-Arsenal-01-05-16.pdf</u>
- 3. Architect Magazine: https://www.architectmagazine.com/technology/detail/murray-grove-wood-framed-high-rise_o
- 4. City Construction, WW case study: <u>http://www.woodworks.org/wp-content/uploads/FranklinElementarySchool_CaseStudy.pdf</u>
- naturally:wood: <u>https://www.naturallywood.com/sites/default/files/documents/resources/brockcommons_constructionoverview_web.pdf</u>
- 6. Solid Timber Construction: <u>http://itac.utah.edu/ITAC/ST_Perform_files/STC%20PPP%20V1.1.pdf</u>
- 7. Structurlam: <u>https://www.structurlam.com/whats-new/uncategorized/concrete-vs-cross-laminated-timber/</u>
- 8. Lendlease: <u>https://www.thinkwood.com/wp-content/uploads/2018/02/Think-Wood-CEU-Cross-Laminated-Timber-2013.pdf</u>
- 9. Naturally: Wood: https://www.naturallywood.com/sites/default/files/documents/resources/brock_commons_tallwood_house_apr_2018_web_003.pdf
- 10. CLT Handbook: <u>https://www.thinkwood.com/clthandbook</u>
- 11. Fast + Epp: <u>http://www.woodworks.org/wp-content/uploads/GAFNER-Mass-Timber-Building-Systems-Understanding-the-Options-</u> Webinar-160511.pdf
- 12. Canadian Design & Construction Report: <u>https://www.cadcr.com/topping-off-of-the-worlds-tallest-timber-structure-celebrated-in-vancouver/</u>

Questions?

This concludes The American Institute of Architects Continuing Education Systems Course

Speaker Name Contact info

Copyright Materials

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

© The Wood Products Council 2018