Is Wood-Frame Modular the Future of Multi-Family Construction?

Structural Design: What’s Different and What’s the Same

Presented by Aaron Miller, P.E.
June 2020

Disclaimer: This presentation was developed by a third party and is not funded by WoodWorks or the Softwood Lumber Board.
Outline

1. Define what is volumetric modular construction
2. Discuss unique structural design considerations
3. Address the interface between site engineer and modular engineer
4. Clarify the delineation between Local and State jurisdictions, code review and inspections
Project Examples

- Steel Container / CIMC / HLW International
- Wood Modular / Guerdon / Pyatok
- Wood Modular / Guerdon / David Baker
- Wood Modular / Champion / Schematic Workshop
- Wood Modular / Guerdon / Lowney Architecture
- Steel Container / CIMC / Panoramic Interests
- Wood Modular / ONE Build / Hamilton Urban
- Wood Modular / Transform / Driscoll Architects
- Steel Container / CIMC / Panoramic Interests
Volumetric Wood Modular

OFF-SITE FACTORY BUILT CONSTRUCTION

• More efficient building delivery & higher quality
• Designed & inspected to meet current IBC codes
• Can incorporate:
 - Waterproofing
 - Exterior Finishes
 - Interior Finishes / Appliances & Fixtures or FFE
 - MEP Systems / Sprinkler
Modular Vs Conventional I

TIME
- Reduces on-site construction duration by shifting work to the factory

QUALITY CONTROL
- Factory conditions & repetitive task workers can provide better quality of construction and finishes

COST
- Savings in accelerated construction schedule, site labor reductions & faster speed to market
Modular Vs Conventional II

COMMUNITY
Off-site construction shortens neighborhood impact

TEAM COORDINATION
Early collaboration between designers and trades ensures better coordination of final product

ENVIRONMENT
Produces less waste, LEED® credits awarded
Structural Design

• Same as site-built stick frame
 • Joists, beams, stud walls for gravity
 • Wood sheathed diaphragms and shear walls for lateral
• The difference is access and timing
• Design within building code to avoid alternate means and methods
Gravity Design

- Double assembly
- Design for conservative repetition
- Continuous engineered lumber floor rim joists
 - Act as beams in the final condition
 - Provides stability during transport/install
Lateral Design I

- Similar to site-built stick frame
 - More focus on access
- Continuous diaphragm at ceiling sheathing
- Chords and collectors
 - Factory aligned framing
- 2x sleepers and metal straps
Lateral Design II

- Corridor left unfinished
- “Belly bands” or “stitch sheathing”
- Hold downs where accessible
- Coordination with crane set sequence
 - Shear Connections
 - Hold downs
Mechanical Electrical Plumbing

FACTORY INSTALLED MEP ROUTES
Corridor left unfinished for access

KITCHENS & BATHROOMS
Located adjacent to corridor

SITE CONNECTIONS
Hookups made in corridor
BARBELL CONFIGURATION – MOST EFFICIENT

- Units must align across the corridor
- Provides workforce access during construction
- Openings can be provided between modules (pass throughs)
SAW BOX CONFIGURATION – LESS EFFICIENT

- Units do not have to align across corridor
- Still include corridor
- Typically used at building turns
- Solve limited crane maneuverability
- Openings can be provided between modules (pass throughs)
CROSS CUT CONFIGURATION – LEAST EFFICIENT

- Reduce total number of modules
- Most finish work on-site
- Site installed corridors
- No natural vibration breaks
- Requires more extensive MEP coordination
Design for Delivery

TRANSPORTATION

• 72’ Module on 60’ truck bed
• Means and methods

INSTALLATION

• Continuous floor rims
• Irregular shape
• Lift from the bottom
Urban Site Challenges

• Crane access and swing
• Temporary mod storage
• Space for Staging
• Transportation logistics
• Zoning height and site width considerations due to double framing assembly
Permitting Approach – Dual Jurisdictions

<table>
<thead>
<tr>
<th>STATE JURISDICTION</th>
<th>LOCAL JURISDICTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Code Review: Modular Portions</td>
<td>• Code Review: Site-Built Portions</td>
</tr>
<tr>
<td>• Built/installed in factory</td>
<td>• Fully site-built (e.g. foundations, concrete podium, etc)</td>
</tr>
<tr>
<td>• On-site connections (load path)</td>
<td>• Inspections: Site-Built and Site-installed Modular Portions</td>
</tr>
<tr>
<td>• Components connected to the modular structure</td>
<td>• Modular portions inspected based on State approved drawings</td>
</tr>
<tr>
<td>• Inspections: Modular Portions</td>
<td>• Local AHJ or third party</td>
</tr>
<tr>
<td>• Built/Installed in Factory</td>
<td></td>
</tr>
</tbody>
</table>
Modular Engineer of Record

SITE EOR RESPONSIBILITIES

• Supporting structure
• Simple scope delineation
• Local Permit

MODULAR EOR RESPONSIBILITIES

• Factory-built portion
• Provide building loads to Site EOR
• State Permit
California Specific Permitting

• California State Jurisdiction
 • California Department of Housing and Community Development (HCD)
 • Maintains a handbook to educate local AHJs, builders and general public
 • HCD FBH 314
 • Recommended pre-app meeting with local jurisdiction
 • Resume of work (highly recommended)
This concludes The American Institute of Architects Continuing Education Systems Course

Aaron Miller
DCI Engineers
amiller@dci-engineers.com