Is Wood-Frame Modular the Future of Multi-Family Construction?

Structural Design of Modular Construction Demystified

Presented by Aaron Miller, P.E.

Disclaimer: This presentation was developed by a third party and is not funded by WoodWorks or the Softwood Lumber Board.

Outline

- 1. Define what is volumetric modular construction
- 2. Discuss unique structural design considerations
- 3. Address the interface between site engineer and modular engineer
- 4. Clarify the delineation between Local and State jurisdictions, code review and inspections

Pre-Fab Options

Factory Built Composite Floor Cross-Laminated Panelized Wood Modular Timber (CLT) **Systems** Walls & Floors **Shipping Diversakore Sustainable Living Steel Box Container** Innovations(SLI)

Project Examples

Wood Modular

Wood Modular

Wood Modular

Transform / Driscoll Architects Steel Container CIMC / Panoramic Interests

Steel Container

CIMC / HLW International

ONE Build / Hamilton Urban Wood Modular

Volumetric Wood Modular

OFF-SITE FACTORY BUILT CONSTRUCTION

- More efficient building delivery & higher quality
- Designed & inspected to meet current IBC codes

Modular Vs Conventional I

TIME

Reduces on-site construction duration by shifting work to the factory

QUALITY CONTROL

Factory conditions & repetitive task workers can provide better quality of construction and finishes

COST

Savings in accelerated construction schedule, site labor reductions & faster speed to market

Modular Vs Conventional II

COMMUNITY

Off-site construction shortens neighborhood impact

TEAM COORDINATION

Early collaboration between designers and trades ensures better coordination of final product

ENVIRONMENT

Produces less waste, LEED® credits awarded

Advantageous When . . .

- Speed of delivery to market is valuable
- Project requires prevailing wages for on-site construction
- Local workforce availability is limited
- Construction impact and duration to neighborhood is an issue

Example Structural Details - Mateline

TYPICAL MATELINE AT MODULAR STACK (SITE-INSTALLED)

SCALE: 1' = 1'40'

Example Structural Details - Corridor

TYPICAL CORRIDOR AT MODULAR STACK (FACTORY) SCALE: 1' = 1'-0'

TYPICAL CORRIDOR AT MODULAR STACK (SITE-INSTALLED)

SCALE: 1" = 1'-0"

NOTE:

Structural Design

- Same as site-built stick frame
 - Joists, beams, stud walls for gravity
 - Wood sheathed diaphragms and shear walls for lateral
- The difference is access and timing
- Design within building code to avoid alternate means and methods

Gravity Design

- Double assembly
- Design for conservative repetition
- Continuous engineered lumber floor rim joists
 - Act as beams in the final condition
 - Provides stability during transport/install

Lateral Design I

- Similar to site-built stick frame
 - More focus on access
- Continuous diaphragm at ceiling sheathing
- Chords and collectors
 - Factory aligned framing
 - 2x sleepers and metal straps

GWB AT CEILING NOT SHOWN FOR CLARITY.

TYPICAL MODULAR SLEEPER SPLICE AT BUILDING OFFSET

SCALE: 3/4" = 1"-0"

Lateral Design II

- Corridor left unfinished
- "Belly bands" or "stitch sheathing"
- Hold downs where accessible
- Coordination with crane set sequence
 - Shear Connections
 - Hold downs

TYPICAL EXTERIOR AT MODULAR STACK JOIST PARALLEL (SITE-INSTALLED)

SCALE: 1" = 1'-0"

Mechanical Electrical Plumbing

FACTORY INSTALLED MEP ROUTES

Corridor left unfinished for access

KITCHENS & BATHROOMS

Located adjacent to corridor

SITE CONNECTIONS

Hookups made in corridor

Modular Shipping Parameters

Layout Configuration I

BARBELL CONFIGURATION –

MOST EFFICIENT

- Units must align across the corridor
- Provides workforce access during construction
- Openings can be provided between modules (pass throughs)

Layout Configuration II

SAW BOX CONFIGURATION -

LESS EFFICIENT

- Units do not have to align across corridor
- Still include corridor
- Typically used at building turns
- Solve limited crane maneuverability
- Openings can be provided between modules (pass throughs)

Layout Configuration III

CROSS CUT CONFIGURATION –

LEAST EFFICIENT

- Reduce total number of modules
- Most finish work on-site
- Site installed corridors
- No natural vibration breaks
- Requires more extensive MEP coordination

Exterior Articulation Options

Supporting Structure

DIRECT TO FOUNDATION

- Crawl space on continuous concrete footings
- Concrete mat slab foundation

PODIUM

- Concrete podium transfer slab
- Steel podium with concrete over metal deck
- Precast options such as hollow-core plank are feasible but not typical

Site-Built Structure

SITE BUILT FIRST LEVEL

- Conventional wood framed first floor with modular on top
- Steel, wood, or masonry framing to accommodate local transfer areas

Modular Engineer of Record

SITE EOR RESPONSIBILITIES

- Supporting structure
- Simple scope delineation
- Local Permit

MODULAR EOR RESPONSIBILITIES

- Factory-built portion
- Provide building loads to Site EOR
- State Permit

Design for Delivery

TRANSPORTATION

- 72' Module on 60' truck bed
- Means and methods

INSTALLATION

- Continuous floor rims
- Irregular shape
- Lift from the bottom

Urban Site Challenges

- Crane access and swing
- Temporary mod storage
- Space for Staging
- Transportation logistics
- Zoning height and site width considerations due to double framing assembly

Permitting Approach – Dual Jurisdictions

STATE JURISDICTION

- Code Review: Modular Portions
 - Built/installed in factory
 - On-site connections (load path)
 - Components connected to the modular structure
- Inspections: Modular Portions
 - Built/Installed in Factory
 - Third party in the factory

LOCAL JURISDICTION

- Code Review: Site-Built Portions
 - Fully site-built (e.g. foundations, concrete podium, etc)
- Inspections: Site-Built and Site-installed

 Modular Portions
 - Modular portions inspected based on State approved drawings
 - Local AHJ or third party

California Specific Permitting

- California State Jurisdiction
 - California Department of Housing and Community Development (HCD)
 - Maintains a handbook to educate local AHJs, builders and general public
 - HCD FBH 314
- Mandatory pre-app meeting with local
 jurisdictions required soon (highly recommended)
- Resume of work (highly recommended)

- ***HCD = California Department of Housing and Community Development
- ***LAHJ = Local Authority Having Jurisdiction
- ***FD = Fire Departmen

Discipline/Description	Plan Review			Inspections			Comments
	HCD	LAHJ	FD	HCD	LAHJ	FD	
Structural							
Podium Slab		х			х		Including embedded elements that modular units will attach to (embeds, anchors, etc)
All construciton below poduim slab		х			×		
Factory-Built (FB) Portions (Modules)	х			х			
Interconnections between modules	х				х		Including hold downs and their connections to the embedded podium elements
Site-built elements in the FB Portion	х				х		e.g. partial corridor framing, parapets and parapet braces, misc framing where indicated
Site-installed wood shear wall components	х				х		e.g. corridor sheathing, ATS rods and hardware, where indicated

> QUESTIONS?

This concludes The American Institute of Architects Continuing Education Systems Course

Aaron Miller

DCI Engineers

amiller@dci-engineers.com