

Mass Timber Overview: Systems, Products & Codes

Bruce Lindsey

Regional Director WoodWorks

EDUCATION IN THE REAL PROPERTY OF THE REAL PROPERTY

"The Wood Products Council" is a Registered Provider with The American Institute of Architects Continuing Education Systems (AIA/CES), Provider #G516.

Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request. This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

> Course Description

Due to their high strength, dimensional stability and positive environmental performance, mass timber building products are quickly becoming materials of choice for sustainably-minded designers. This presentation will provide a detailed look at the variety of mass timber products available, including glue-laminated timber (glulam), cross laminated timber (CLT), nail laminated timber (NLT), heavy timber decking, and other engineered and composite systems. Applications for the use of these products under modern building codes will be discussed, and examples of their use in U.S. projects reviewed. Mass timber's ability to act as both structure and exposed finish will also be highlighted, as will its performance as part of an assembly, considering design objectives related to structural performance, fire resistance, acoustics, and energy efficiency. Other topics will include detailing and construction best practices, lessons learned from completed projects and trends for the increased use of mass timber products in the future.

> Learning Objectives

- 1. Identify mass timber products available in North America and consider how they can be used under current building codes and standards.
- 2. Review completed mass timber projects that demonstrate a range of applications and system configurations.
- 3. Discuss benefits of using mass timber products, including structural versatility, prefabrication, lighter carbon footprint, and reduced labor costs.
- 4. Highlight possibilities for the expanded use and application of mass timber in larger and taller buildings.

MASS TIMBER OVERVIEW

OVERVIEW | TIMBER METHODOLOGIES

Heavy Timber Photo: Benjamin Benschneider

Mass Timber Photo: John Stamets

Glue Laminated Timber (GLT)

Cross-Laminated Timber (CLT)

Nail-Laminated Timber (NLT)

Photo: Think Wood

Photo: Ema Peter

Dowel-Laminated Timber (DLT)

Photo: StructureCraft

Mass plywood panels (MPP)

Decking

OVERVIEW | MANUFACTURING

EFFICIENCY FOUND IN UNDERSTANDING SUPPLY CHAIN, DESIGNING ACCORDING TO ITS CAPABILITIES

Photo: DR Johnson

OVERVIEW | MANUFACTURING & SUPPLY CHAIN

STRUCTURAL SOLUTIONS | POST, BEAM + PLATE

STRUCTURAL SOLUTIONS | POST + PLATE

STRUCTURAL SOLUTIONS | HONEYCOMB

STRUCTURAL SOLUTIONS | HYBRID LIGHT-FRAME + MASS TIMBER

STRUCTURAL SOLUTIONS | HYBRID STEEL + MASS TIMBER

STRUCTURAL SOLUTIONS | HYBRID CONCRETE + MASS TIMBER

Concealed Connectors

Self Tapping Screws

Photos: Rothoblaas

Photo: Structurlam

Photo: Alex Schreyer

Panel to Panel & Supports

Photo: Charles Judd

Photo: Alex Schreyer

Mass Timber Projects In Design and Constructed in the US (December 2019)

State	Stage		State	Stage	
AK	In Design	1	MS	In Design	4
AL	Construction Started / Built	3	MT	Construction Started / Built	6
	In Design	8		In Design	5
AR	Construction Started / Built	3	NC	Construction Started / Built	13
	In Design	5		In Design	22
AZ	In Design	3	ND	In Design	1
CA	Construction Started / Built	32	NE	Construction Started / Built	1
	In Design	68		In Design	3
CO	Construction Started / Built	14	NH	Construction Started / Built	1
	In Design	11		In Design	1
СТ	Construction Started / Built	3	NJ	Construction Started / Built	1
	In Desian	6		In Design	6
DC	Construction Started / Built	2	NM NV	Construction Started / Built	1
	In Design	5		In Design	2
DE	In Design	2	NY	Construction Started / Built	6
FL	Construction Started / Built	15	OH	In Design	24
	In Design	18		Construction Started / Built	1
GA	Construction Started / Built	4	OK	In Design	5
	In Design	13		Construction Started / Built	1
HI	In Design	3		In Design	2
IA	Construction Started / Built	1	OR	Construction Started / Built	25
ID	Construction Started / Built	3	PA	In Design	23
	In Design	3		Construction Started / Built	3
IL	Construction Started / Built	5		In Design	5
IL	In Design	11	RI	Construction Started / Built	2
IN	Construction Started / Built	1		In Design	1
IN	In Desian	1	SC	Construction Started / Built	9
KS	In Design	2		In Design	11
KY	Construction Started / Built	1	TN TX	Construction Started / Built	3
	In Design			In Design	4
		2		Construction Started / Built	17
	In Design Construction Started / Built			In Design	37
MA		13	UT	Construction Started / Built	3
	In Design	25		In Design	3
MD	Construction Started / Built	1	VA	Construction Started / Built	6
	In Design	7		In Design	7
ME	Construction Started / Built	1	VT	Construction Started / Built	1
	In Design	14		In Design	8
МІ	Construction Started / Built	2	WA	Construction Started / Built	28
	In Design	6		In Design	44
MN	Construction Started / Built	2	WI	Construction Started / Built	8
	In Design	4		In Design	12
MO	Construction Started / Built	5	WV	Construction Started / Built	2
	In Design	5	WY	Construction Started / Built	1

Considering mass timber for a project? Ask us anything.

For free project support, contact: <u>help@woodworks.org</u> woodworks.org/project-assistance

http://www.woodworks.org/publications-media/building-trends-mass-timber/

Photo: Nordic Structures

PRECEDENT PROJECTS | UMASS AMHERST DESIGN BUILDING

Photo: ©Albert Vecerka/Esto

PRECEDENT PROJECTS | UMASS AMHERST DESIGN BUILDING

Photos: Baumberger Studio/PATH Architecture

PRECEDENT PROJECTS | CARBON 12 | PORTLAND, OR

Photo: Hines

PRECEDENT PROJECTS | T3 MINNEAPOLIS

Photo: Corey Gaffer courtesy Perkins + Will

PRECEDENT PROJECTS | T3 MINNEAPOLIS

Photos: StructureCraft

Photo: Hartshorne Plunkard Architecture

PRECEDENT PROJECTS | T3 ATLANTA

Photos: Flank

Photos: Swinerton | DJC Oregon

PRECEDENT PROJECTS | FIRST TECH CREDIT UNION HILLSBORO, OR

Photos: Michael Elkan | Naturally Wood | UBC

PRECEDENT PROJECTS | BROCK COMMONS

Photos: Daniel Shearin | Waugh Thistleton Architects

PRECEDENT PROJECTS | DALSTON WORKS | LONDON

Photos: Bygg Mesteren | Voll Arkitekter

PRECEDENT PROJECTS | MJOSTARNET | NORWAY

MASS TIMBER PRODUCTS

Glue Laminated Beams & Columns (GLB)

Glue Laminated Timber (GLT)

Photo: Manasc Isaac Architects/Fast + Epp

Cross-Laminated Timber (CLT)

Nail-Laminated Timber (NLT)

Nail-Laminated Timber (NLT)

Dowel-Laminated Timber (NLT)

Photos: Freres Lumber

Other Mass Timber Product Options

Glue Laminated Timber GLT Laminated Veneer Lumber LVL Parallel Strand Lumber PSL Laminated Strand Lumber LSL

Timber-Concrete Composite TCC

MASS TIMBER IN THE CODE

Mass Timber in Low- to Mid-Rise: 1-6 Stories in Construction Types III, IV or V

Credit: WoodWorks

BUILDING CODE APPLICATIONS | CONSTRUCTION TYPE

Tall Mass Timber: Up to 18 Stories in Construction Types IV-A, IV-B or IV-C

*BUILDING FLOOR-TO-FLOOR HEIGHTS ARE SHOWN AT 12'-0" FOR ALL EXAMPLES FOR CLARITY IN COMPARISON BETWEEN 2015 TO 2021 IBC CODES.

WoodWorks Tall Wood Design Resource

- 2021 IBC provisions
- Design Steps
- Free download at woodworks.org

Wood PRODUCTS COUNCIL

Tall Wood Buildings in the 2021 IBC Up to 18 Stories of Mass Timber

Scott Breneman, PhD, SE, WoodWorks – Wood Products Council • Matt Timmers, SE, John A. Martin & Associates • Dennis Richardson, PE, CBO, CASp, American Wood Council

In January 2019, the International Code Council (ICC) approved a set of proposals to allow tall wood buildings as part of the 2021 International Building Code (IBC). Based on these proposals, the 2021 IBC will include three new construction types—Type IV-A, IV-B and IV-C—allowing the use of mass timber or noncombustible materials. These new types are based on the previous Heavy Timber construction type (renamed Type IV-HT) but with additional fire-resistance ratings and levels of required noncombustible protection. The code will include provisions for up to 18 stories of Type IV-A construction for Business and Residential Occupancies.

Based on information first published in the Structural Engineers Association of California (SEAOC) 2018 Conference Proceedings, this paper summarizes the background to these proposals, technical research that supported their adoption, and resulting changes to the IBC and product-specific standards.

Background: ICC Tall Wood Building Ad Hoc Committee

Over the past 10 years, there has been a growing interest in tall buildings constructed from mass timber materials (Breneman 2013, Timmers 2015). Around the world there are now dozens of timber buildings constructed above eight stories tall. Some international examples include:

Building Name	Location	Stories	Completion Date	
------------------	----------	---------	--------------------	--

MASS TIMBER FIRE-RESISTANCE

of the local distance of the second state of t

	TY	PEI	TYF	PE II	TYP	PE III	TYPE IV	TYF	PE V
BUILDING ELEMENT	Α	В	Α	В	Α	В	HT	Α	В
Primary structural frame ^f (see Section 202)	3ª	2ª	1	0	1	0	HT	1	0
Bearing walls Exterior ^{e, f} Interior		2 2ª	1 1	0 0	2 1	2 0	2 1/HT	1 1	0 0
Nonbearing walls and partitions Exterior	See Table 602								
Nonbearing walls and partitions Interior ^d	0	0	0	0	0	0	See Section 602.4.6	0	0
Floor construction and associated secondary members (see Section 202)	2	2	1	0	1	0	HT	1	0
Roof construction and associated secondary members (see Section 202)	1 ¹ / ₂ ^b	1 ^{b,c}	1 ^{b,c}	0°	1 ^{b,c}	0	HT	$1^{b,c}$	0

 TABLE 601

 FIRE-RESISTANCE RATING REQUIREMENTS FOR BUILDING ELEMENTS (HOURS)

For SI: 1 foot = 304.8 mm.

- a. Roof supports: Fire-resistance ratings of primary structural frame and bearing walls are permitted to be reduced by 1 hour where supporting a roof only.
- b. Except in Group F-1, H, M and S-1 occupancies, fire protection of structural members shall not be required, including protection of roof framing and decking where every part of the roof construction is 20 feet or more above any floor immediately below. Fire-retardant-treated wood members shall be allowed to be used for such unprotected members.
- c. In all occupancies, heavy timber shall be allowed where a 1-hour or less fire-resistance rating is required.
- d. Not less than the fire-resistance rating required by other sections of this code.
- e. Not less than the fire-resistance rating based on fire separation distance (see Table 602).
- f. Not less than the fire-resistance rating as referenced in Section 704.10.

Mass Timber's Fire-Resistive Performance is Well-Tested, Documented and Recognized via Code Acceptance

Credit: CLT Handbook

How do you determine Fire Resistance Rating of Mass Timber? 2 Options:

- 1. Calculations in Accordance with IBC 722 \rightarrow NDS
 - Chapter 16
- 2. Tests in Accordance with ASTM E119

MT FRR Calculations Method:

- IBC 703.3 allows several methods of determining FRR. One is calculations per 722.
- 722.1 refers to NDS Chpt 16 for exposed wood FRR

703.3 Methods for determining fire resistance. The application of any of the methods listed in this section shall be based on the fire exposure and acceptance criteria specified in ASTM E119 or UL 263. The required *fire resistance* of a building element, component or assembly shall be permitted to be established by any of the following methods or procedures:

3. Calculations in accordance with Section 722.

Credit: IBC Chapter 7

722.1 General. The provisions of this section contain procedures by which the *fire resistance* of specific materials or combinations of materials is established by calculations. These procedures apply only to the information contained in this section and shall not be otherwise used. The calculated *fire resistance* of concrete, concrete masonry and clay masonry assemblies shall be permitted in accordance with ACI 216.1/TMS 0216. The calculated *fire resistance* of steel assemblies shall be permitted in accordance with Chapter 5 of ASCE 29. The calculated *fire resistance* of exposed wood members and wood decking shall be permitted in accordance with Chapter 16 of ANSI/AF&PA National Design Specification for Wood Construction (NDS).

TECHNICAL DETAILS | DESIGN PRINCIPLES

Code Path for Calculated FRR of Exposed MT

Code Path for Exposed Wood Fire-Resistance Calculations

IBC 703.3

Methods for determining fire resistance

- Prescriptive designs per IBC 721.1
- Calculations in accordance with IBC 722
- Fire-resistance designs documented in sources
- Engineering analysis based on a comparison
- Alternate protection methods as allowed by 104.11

IBC 722 Calculated Fire Resistance

"The calculated *fire resistance* of exposed wood members and wood decking shall be permitted in accordance with **Chapter 16 of ANSI/AWC National Design Specification for Wood Construction (NDS)**

NDS Chapter 16 Fire Design of Wood Members

- Limited to calculating fire resistance up to 2 hours
- Char depth varies based on exposure time (i.e., fire-resistance rating), product type and lamination thickness. Equations and tables are provided.
- TR 10 and NDS commentary are helpful in implementing permitted calculations.

TECHNICAL DETAILS | DESIGN PRINCIPLES

NDS Chapter 16 includes calculation of fire resistance of NLT, CLT, Glulam, Solid Sawn and SCL wood products

Credit: AWC'S NDS

Table 16.2.1B Effective Char Depths (for CLT

with β_n =1.5in./hr.)

Required Fire Endurance	Effective Char Depths, a _{char} (in.) lamination thicknesses, h _{lam} (in.)									
(hr.)	5/8	3/4	7/8	1	1-1/4	1-3/8	1-1/2	1-3/4	2	
1-Hour	2.2	2.2	2.1	2.0	2.0	1.9	1.8	1.8	1.8	
1 ¹ / ₂ -Hour	3.4	3.2	3.1	3.0	2.9	2.8	2.8	2.8	2.6	
2-Hour	4.4	4.3	4.1	4.0	3.9	3.8	3.6	3.6	3.6	

Nominal char rate of 1.5"/HR is recognized in NDS. Effective char depth calculated to account for duration, structural reduction in heat-affected zone

Credit: AWC'S NDS

Table 16.2.1AChar Depth and Effective CharDepth (for $\beta_n = 1.5$ in./hr.)

Required Fire Resistance (hr.)	Char Depth, a _{char} (in.)	Effective Char Depth, a _{eff} (in.)
1-Hour	1.5	1.8
1 ¹ / ₂ -Hour	2.1	2.5
2-Hour	2.6	3.2

Tested Assemblies Method:

 Many successful Mass Timber ASTM E119 fire tests have been completed by industry & manufacturers

WOODWORKS INVENTORY OF FIRE TESTED MT ASSEMBLIES

Table 1: North American Fire Resistance Tests of Mass Timber Floor / Roof Assemblies

									WOOD PRODUCTS COUNCIL
CLT Panel	Manu factu rer	CLT Grade or Major x Minor Grade	Ceiling Protection	Panel Connection in Test	Floor Topping	Load Rating	Fire Resistance Achieved (Hours)	Source	Testing Lab
3-ply CLT (114mm 4.488 in)	Nordic	SPF 1650 Fb 1.5 EMSR x SPF #3	2 layers 1/2" Type X gypsum	Half-Lap	None	Reduced 36% Moment Capacity	1	1 (Test 1)	NRC Fire Laboratory
3-ply CLT (105 mm 4.133 in)	Structurlam	SPF #1/#2 x SPF #1/#2	1 layer 5/8" Type Xgypsum	Half-Lap	None	Reduced 75% Moment Capacity	1	1 (Test 5)	NRC Fire Laboratory
5-ply CLT (175mm6.875*)	Nordic	El	None	Topside Spline	2 staggered layers of 1/2* cement boards	Loaded, See Manufacturer	2	2	NRC Fire Laboratory March 2016
5-ply CLT (175mm6.875*)	Nordic	El	1 layer of 5/8" Type Xgypsum under Z- channels and furring strips with 3 5/8" fiberalase batts	Topside Spline	2 staggered layers of 1/2* cement boards	Loaded, See Manufacturer	2	5	NRC Fire Laboratory Nov 2014
5-ply CLT (175mm6.875*)	Nordic	El	None	Topside Spline	3/4 in. proprietary gypcrete over Maxx on acoust ical mat	Reduced 50% Moment Capactiy	1.5	3	UL
5-ply CLT (175mm6.875*)	Nordic	El	1 lay er 5/8" no rmal g yp sum	Topside Spline	3/4 in. proprietary gypcrete over Maxx on acoustical mat or proprietary sound board 50% Moment Capactiy		2	4	UL
5-ply CLT (175mm6.875*)	Nordic	El	l la yer 5.8" Type X Gyp under Resilient Channel under 7 7/8" I-Joists with 3 1/2" Mineral Wool beween Joists	Half-Lap	None	Loaded, See Manufacturer	2	21	Intertek 8/24/2012
5-ply CLT (175mm6.875*)	Structurlam	E1 M5 MSR 2100 x SPF#2	None	Topside Spline	1-1/2" Maxxon Cyp-Grete 2000 over Maxxon Reinforcing Mesh	Loaded, See Manufacturer	2.5	6	Intertek, 2/22/2016
5-ply CLT (175mm6.875*)	DR Johnson	VI	None	Half-Lap & Topside Spline	2" gypsumtopping	Loaded, See Manufacturer	2	7	SwRI (May 2016)
5-ply CLT (175mm6.875*)	Nordic	SPF 1950 Fb MSR x SPF #3	None	Half-Lap	None	Reduced 59% Moment Capacity	1.5	1 (Test 3)	NRC Fire Laboratory
5-ply CLT (175mm6.875*)	Structurlam	SPF #1/#2 x SPF #1/#2	1 layer 5/8" Type Xgypsum	Half-Lap	None	Unreduced 101% Moment Capacity	2	1 (Test 6)	NRC Fire Laboratory
7-ply CLT (245mm 9.65*)	Structurlam	SPF #1/#2 x SPF #1/#2	None	Half-Lap	None	Unreduced 101% Moment Capacity	2.5	1 (Test 7)	NRC Fire Laboratory
5-ply CLT (175mm6.875*)	SmartLam	SL-V4	None	Half-Lap	nominal 1/2* ply wood with 8d nails.	Loaded, See Manufacturer	2	12 (Test 4)	Western Fire Center 10/26/2016
5-ply CLT (175mm6.875*)	SmartLam	VI	None	Half-Lap		wnload at			rks ora
5-ply CLT (175mm6.875*)	DRJohnson	VI	None	Half-Lap	nominal	See Manufacturer			11/01/2016
5-ply CLT (160mm 6.3*)	КЦН	CV3M1	None	Half-Lap & Tonside spline	None	Loaded, See Manufacturer	1	18	SwRI

TECHNICAL DETAILS | DESIGN PRINCIPLES

Fire-Resistive Design of Mass Timber Members

Code Applications, Construction Types and Fire Ratings

Richard McLain, PE, SE • Senior Technical Director • WoodWorks Scott Breneman, PhD, PE, SE • Senior Technical Director • WoodWorks

For many years, exposed heavy timber framing elements have been permitted in U.S. buildings due to their inherent fire-resistance properties. The predictability of wood's char rate has been well-established for decades and has long been recognized in building codes and standards.

Today, one of the exciting trends in building design is the growing use of mass timber-i.e., large solid wood panel products such as cross-laminated timber (CLT) and naillaminated timber (NLT)-for floor, wall and roof construction. Like heavy timber, mass timber products have inherent fire resistance that allows them to be left exposed and still achieve a fire-resistance rating. Because of their strength and dimensional stability, these products also offer a lowcarbon alternative to steel, concrete, and masonry for many applications. It is this combination of exposed structure and strength that developers and designers across the country

Carbon12 | Portland, Oregon Kaiser Group | Path Architecture Munzing Structural Engineering

are leveraging to create innovative designs with a warm yet modern aesthetic, often for projects that go beyond traditional norms of wood design.

This paper has been written to support architects and engineers exploring the use of mass timber for commercial and multi-family construction. It focuses on how to meet fire-resistance requirements in the International Building Code (IBC), including calculation and testing-based methods. Unless otherwise noted, references refer to the 2018 IBC.

Mass Timber & Construction Type

Before demonstrating fire-resistance ratings of exposed mass timber elements, it's important to understand under what circumstances the code currently allows the use of mass timber in commercial and multi-family construction.

A building's assigned construction type is the main indicator of where and when all wood systems can be used. IBC Section 602 defines five main options (Type I through V) with all but Type IV having subcategories A and B. Types III and V permit the use of wood framing throughout much of the structure and both are used extensively for modern mass timber buildings.

Type III (IBC 602.3) - Timber elements can be used in floors, roofs and interior walls. Fire-retardant-treated wood (FRTW) framing is permitted in exterior walls with a fireresistance rating of 2 hours or less.

Type V (IBC 602.5) - Timber elements can be used throughout the structure, including floors, roofs and both interior and exterior

Type IV (IBC 602.4) - Commonly referred to as 'Heavy Timber' construction, this option

Mass Timber Fire Design Resource

- Code compliance options for demonstrating FRR
- Updated as new tests are completed
- Free download at woodworks.org

FIRE PROTECTION OF CONNECTIONS

hoto: Structurlam

Connections between building elements must be able to maintain fire resistance rating no less than that required of the connected members.

16.3 Wood Connections

Wood connections, including connectors, fasteners, and portions of wood members included in the connection design, shall be protected from fire exposure for the required fire resistance time. Protection shall be provided by wood, fire-rated gypsum board, other approved materials, or a combination thereof.

Multiple ways to demonstrate connection fire protection: calculations, prescriptive NC protection, test results, others as approved by AHJ

2017 Glulam Beam to Column Connection Fire Tests under standard ASTM E119 time-temperature exposure

Softwood Lumber Board Glulam Connection Fire Test Summary Report

Issue | June 5, 2017

Full Report Available:

https://www.thinkwood.com/wp-content/uploads/2018/01/reThink-Wood-Arup-SLB-Connection-Fire-Testing-Summary-web.pdf

SOUTHWEST RESEARCH INSTITUTE

6220 CULEBRA RCAD 78238-5166 + PO DRAWER 28510 78228 0510 + SAN ANTONIO, TEXAS, USA + (210) 684-5111 + WWW SWRI ORG

CHEMISTRY AND CHEMICAL ENGINEERING DIVISION

FIRE TECHNOLOGY DEPARTMENT WWW.FIRE.SWRI.ORG FAX (210) 522-3377

FIRE PERFORMANCE EVALUATION OF A LOAD BEARING GLULAM BEAM TO COLUMN CONNECTION, INCLUDING A CLT PANEL, TESTED IN GENERAL ACCORDANCE WITH ASTM E119-16a, STANDARD TEST METHODS FOR FIRE TESTS OF BUILDING CONSTRUCTION AND MATERIALS

FINAL REPORT Consisting of 32 Pages

FIRE PROTECTION OF PENETRATIONS

Although not a new code requirement, more testing & information is becoming available on firestopping of penetrations through MT assemblies

Most firestopping systems include combination of fire safing (eg. noncombustible materials such as mineral wool insulation) plus fire caulk

Inventory of Fire Tested Penetrations in MT Assemblies

Firestopping System Description

WoodWorks

Testing Lab

WOOD PRODUCTS COU

Stated Test

Source

T Rating

F Rating

Table 3: North American Fire Tests of Penetrations and Fire Stops in CLT Assemblies

Penetrant Centered

Exposed Side

CLT Panel

3-ply

3-ply

3-ply

3-ply

3-ply

Pen etrating

5-ply CLT (131 mm 5.16*)	None	Hilti 6 in drop in device. System No.: F-B-2049	Centered	9.01* diameter hole. Mineral wool was installed in the 1 – 1/4in. an nular space around the drop-in device to a total depth of approximately 1 – 7/64in and the remaining 1 in. annular space from the top of the mineral wool to the top edge of the 9 – 1/64in. hole in the CLT was filled with Hilti FS-One Max caulking.	2 hours	1.5 hours	CANULC S115	26	In tert ek March 30, 2016
5-ply (175mm6.875*)	None	1 " nominal PVC pipe	Cen tere d	4.21 in diameter with a 3/4 in plywood reducer flush with the top of the slab reducing the open in Firestop wrap strip at two locations with a 30 gauge steel sleeve which extended from the top of twith the bottom of the steel sleeve and the second was with of the slab. The void between the steel sleeve and the CLT and between the steel sleeve and pipe a		t wo	bodw	vork	s.org
				leaving a 3/4 in deep void at the top of the assembly. Hilti FS-One Max Intumescent Firestop Sealant was applied to a depth of 3/4 in on the top of the assembly between the plywood and steel sleeve as well as the steel sleeve and pipe.					

ConstructionFireSafetyPractices.com

2021 IBC Construction Fire Safety for Tall Mass Timber

Examples of Protection During Construction For Mass Timber Buildings Greater Than 6 Stories Above Grade Plane

MASS TIMBER: STRUCTURE IS FINISH

Photos: Baumberger Studio/PATH Architecture/Marcus Kauffman | Archi

Architect: PATH Architecture

BY ITSELF, NOT ADEQUATE FOR ACOUSTICS

TABLE 1:

Examples of Acoustically-Tested Mass Timber Panels

Mass Timber Panel	Thickness	STC Rating	IIC Rating
3-ply CLT wall⁴	3.07"	33	N/A
5-ply CLT wall⁴	6.875"	38	N/A
5-ply CLT floor⁵	5.1875"	39	22
5-ply CLT floor⁴	6.875"	41	25
7-ply CLT floor⁴	9.65"	44	30
2x4 NLT wall ⁶	3-1/2" bare NLT 4-1/4" with 3/4" plywood	24 bare NLT 29 with 3/4" plywood	N/A
2x6 NLT wall ⁶	5-1/2" bare NLT 6-1/4" with 3/4" plywood	22 bare NLT 31 with 3/4" plywood	N/A
2x6 NLT floor + 1/2" plywood ²	6" with 1/2" plywood	34	33

Source: Inventory of Acoustically-Tested Mass Timber Assemblies, WoodWorks⁷

TECHNICAL DETAILS | DESIGN PRINCIPLES

Concrete Slab:CLT Slab:6" Thick6-7/8" Thick80 PSF18 PSFSTC 53STC 41

There are three main ways to improve an assembly's acoustical performance:

- 1. Add mass
 - 2. Add noise barriers
- → 3. Add decouplers

Finish Floor if Applicable			 	 	
Concrete/Gypsum Topping					
Acoustical Mat Product					
	2				~
CLT Panel ————			 		
No direct applied or hung ceiling —					

Common mass timber floor assembly:

- Finish floor (if applicable)
- Underlayment (if finish floor)
- 1.5" to 4" thick concrete/gypcrete topping
- Acoustical mat
- WSP (if applicable)
- Mass timber floor panel exposed on ceiling side

TECHNICAL DETAILS | DESIGN PRINCIPLES

Acoustics and Mass Timber: Room-to-Room Noise Control

Richard McLain, PE, SE • Senior Technical Director • WoodWorks

The growing availability and code acceptance of mass timber—i.e., large solid wood panel products such as cross-laminated timber (CLT) and nail-laminated timber (NLT)—for floor, wall and roof construction has given designers a low-carbon alternative to steel, concrete, and masonry for many applications. However, the use of mass timber in multi-family and commercial buildings presents unique acoustic challenges.

MASS-TIMBER-ACOUSTICS.pdf

While laboratory measurements of the impact and airborne sound isolation of traditional building assemblies such as light wood-frame, steel and concrete are widely available, fewer resources exist that quantify the acoustic performance of mass timber assemblies. Additionally, one of the most desired aspects of mass timber construction is the ability to leave a building's structure exposed as finish, which creates the need for asymmetric assemblies. With careful design and detailing, mass timber buildings can meet the acoustic performance expectations of most building types.

http://www.woodworks.org/wp-content/uploads/wood_solution_paper-

MASS TIMBER ACOUSTICS DESIGN RESOURCE

Mass Timber Assembly Options: Walls

Mass timber panels can also be used for interior and exterior walls-both bearing and non-bearing. For interior walls, the need to conceal services such as electrical and plumbing is an added consideration. Common approaches include building a chase wall in front of the mass timber wall or installing gypsum wallboard on resilient channels that are attached to the mass timber wall. As with bare mass timber floor panels, bare mass timber walls don't typically provide adequate noise control, and chase walls also function as acoustical improvements. For example, a 3-ply CLT wall panel with a thickness of 3.07" has an STC rating of 33.4 In contrast, Figure 3 shows an interior CLT partition wall with chase walls on both sides. This assembly achieves an STC rating of 58, exceeding the IBC's acoustical requirements for multi-family construction. Other examples are included in the inventory of tested assemblies noted above.

Acoustical Differences between Mass Timber Panel Options

The majority of acoustically-tested mass timber assemblies include CLT. However, tests have also been done on other mass timber panel options such as NLT and dowel-laminated timber (DLT), as well as traditional heavy timber options such as tongue and groove decking. Most tests have concluded that CLT acoustical performance is slightly better than that of other mass timber options, largely because the crossorientation of laminations in a CLT panel limits sound flanking.

For those interested in comparing similar assemblies and mass timber panel types and thicknesses, the inventory noted above contains tested assemblies using CLT, NLT, glued-laminated timber panels (GLT), and tongue and groove decking.

Improving Performance by Minimizing Flanking

Even when the assemblies in a building are carefully designed and installed for high acoustical performance, consideration of flanking paths—in areas such as assembly intersections, beam-to-column/vall connections, and MEP penetrations—is necessary for a building to meet overall acoustical performance objectives.

One way to minimize flanking paths at these connections and interfaces is to use resilient connection isolation and sealant strips. These products are capable of resisting structural loads in compression between structural members and connections while providing isolation and breaking hard, direct connections between members. In the context of the three methods for improving

acoustical performance noted above, these strips act as decouplers. With airtight connections, interfaces and penetrations, there is a much greater chance that the acoustic performance of a mass timber building will meet expectations.

Acoustical isolation strips

Photos: Rothoblaas

WoodWorks Inventory of Acoustically Tested MT Assemblies

able 1: CL	I FIOOF Assemi	olies with Concrete/G	ypsum iop	ping, ceili	ng Side	Exposed		WOOD PROD	NUCTS COL
	Finish Floor	if Applicable							
	Concrete/G	ypsum Topping							
	Acoustical I	Mat Product							
	CLT Panel -		· · · · ·						
	No direct o	oplied or hung ceiling							
	No direct a	plied of hung ceiling							
CLT Panel	Concrete/Gypsum Topping	Acoustical Mat Prod	luct Between CL	T and Topping	ş	Finish Floor	STC1	IIC ¹	Sou
	. opping					None	47 ² ASTC	47 ² AIIC	
						LVT	47 ASIC	49 ² AIIC	-
						Carpet + Pad	-	- 75 ² AIIC	
		Maxxon Acousti-Mat® 3/4				LVT on Acousti-Top*	-	52 ² AIIC	1
	1-1/2" Gyp-Crete*					Eng Wood on Acous		51 ² AIIC	1
						None	49 ² ASTC	45 ² AIIC	1
	Nore	than 4	00 T	est	tec	d Ass	emb		5
						LVT	48 ⁶	47 ⁶	1
CLT 5-ply		USG SAM N25 Ultra				LVT Plus	48 ⁶	49 ⁶	58
(6.875")		050 54141 1425 010 8				Eng Wood	47 ⁶	47 ⁶	59
				Free	dow	nload at	woodw	orks.o	rg
	1-1/2" Levelrock®		ļ			LVT	486	44 ⁶	10
	Prand 2500					LVT Plue	40	476	

WoodWorks"

WOOD PRODUCTS COUNCIL

woodworks.org | help@woodworks.org

FREE PROJECT SUPPORT | EDUCATION | RESOURCES

WOOD PRODUCTS COUNCIL

WoodWorks can help connect you with: Manufacturers Suppliers Distributors Experienced Designers, Contractors, Installers And Much More

Questions?

This concludes The American Institute of Architects Continuing Education Systems Course Bruce Lindsey Regional Director (704) 877-6255 bruce@woodworks.org

Photo: Structurlam | Seagate Structures

Copyright Materials

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

© The Wood Products Council 2019