Key to Success: Early Design Decisions for Mass Timber

Presented By:

Terry Pattillo, AIA Regional Director WoodWorks

Janelle Leafblad, PE Regional Director WoodWorks Ricky McLain, PE, SE Senior Technical Director WoodWorks

What is the Single Most Important Early Design Decision on a Mass Timber Project? Is it:

Construction Type Fire-Resistance Ratings Member Sizes Grids & Spans MEP Layout

Exposed Timber (where & how much) Acoustics Concealed Spaces Connections Penetrations

The Answer is...They All Need to Be Weighed (Plus Others)

Mass Timber Projects Are Most Efficient When Key Decisions and Coordination are Shifted to Earlier in Design

General geometry and grid finalized All loads validated and finalized Preliminary MEP/FP routing and penetration sizing Section optimization Review and Validation (50% CD)

> Edge of deck/slab finalized MEP openings with reinforcing Review and approval (100% CD)

SHOP DRAWINGS

3D Modeling Connection details and design Coordination Drawings AoR/ EoR coordination review Coordination/approval drawings AoR/ EoR review and approval Fabrication drawings

Grids & Spans

- Consider Efficient Layouts
- Repetition & Scale
- Manufacturer Panel Sizing
- Transportation

Grids & Spans

- Consider Efficient Layouts
- Repetition & Scale
- Manufacturer
 Panel Sizing
- Transportation

Construction Type

	Construction Type (All Sprinklered Values)												
	IV-A	IV-B	IV-C	IV-HT	III-A	III-B	V-A	V-B					
Occupancies	Allowable Building Height above Grade Plane, Feet (IBC Table 504.3)												
A, B, R	270	180	85	85	85	85	70	60					
		Allowabl	e Number o	f Stories abo	ove Grade I	Plane (IBC 7	Cable 505.4)	1					
A-2, A-3, A-4	18	12	6	4	4	3	3	2					
В	18	12	9	6	6	4	4	3					
R-2	18	12	8	5	5	5	4	3					
		Allow	able Area F	actor (At) f	or SM, Feet	² (IBC Tabl	e 506.2)	1					
A-2, A-3, A-4	135,000	90,000	56,250	45,000	42,000	28,500	34,500	18,000					
В	324,000	216,000	135,000	108,000	85,500	57,000	54,000	27,000					
R-2	184,500	123,000	76,875	61,500	72,000	48,000	36,000	21,000					

Fire-Resistance Ratings

- Driven Primarily By Construction Type
- Rated Structure or Not?
- Rating achieved through timber alone or non-com protection required?

BUILDING ELEMENT	TYPE I		TYPE II		TYPE III		TYPE IV				TYPE V	
BUILDING ELEMENT		В	Α	В	A	В	A	В	C	HT	А	В
Primary structural frame ^f (see Section 202)	32,b	2ª, b, c	1 ^{b, c}	0°	1 ^{b, c}	0	3ª	2ª	2ª	HT	1 ^{b, c}	0
Bearing walls		4										
Exterior ^{e, f}	3	2	1	0	2	2	3	2	2	2	1	0
Interior		2ª	1	0	1	0	3	2	2	1/HT ^g	1	0
Nonbearing walls and partitions Exterior						See 7	Fable 70)5.5				
Nonbearing walls and partitions Interior ^d	0	0	0	0	0	0	0	0	0	See Section 2304.11.2	0	0
Floor construction and associated secondary structural members (see Section 202)	2	2	1	0	1	0	2	2	2	HT	1	0
Roof construction and associated secondary structural members (see Section 202)		1 ^{b,c}	1 ^{b,c}	0°	1 ^{b,c}	0	11/2	1	1	HT	1 ^{b,c}	0

TABLE 601 FIRE-RESISTANCE RATING REQUIREMENTS FOR BUILDING ELEMENTS (HOURS)

Penetrations & Connections

- Impact of FRR
- Size & Configuration
- Exposed or Not (Aesthetics)

MEP Integration: Set Realistic Owner Expectations About Aesthetics

MEP Integration

- Consider Level of Exposure & Owner Expectations
- Floor to Floor, Structure Depth & Desired Head Height
- Need for Future Tenant Reconfiguration
- Concealed Spaces, Penetrations

MEP Integration: Smaller Bay at Central Core, Branches in Exterior Bays

MEP Integration: Dropped Below MT Framing

MEP Integration: Penetrations Through MT Framing

MEP Integration: Under Slab, Through Chases

MEP Integration: In RAF Above MT Panels

Member Sizes

- Impact of FRR on Sizing
- Impact of Sizing on Efficient Spans
- Consider connections can drive member sizing

0 HR FRR: Consider 3-ply Panel

- Efficient Spans of 10-12 ft
- Grids of 20x20 (1 purlin) to 30x30 (2 purlins) may be efficient

Albina Yard, Portland, OR 20x20 Grid, 1 purlin per bay 3-ply CLT Image: Lever Architecture

Member Sizes

- Impact of FRR on Sizing
- Impact of Sizing on Efficient Spans
- Consider connections can drive member sizing

0 HR FRR: Consider 3-ply Panel

- Efficient Spans of 10-12 ft
- Grids of 20x20 (1 purlin) to 30x30 (2 purlins) may be efficient

Platte Fifteen, Denver, CO 30x30 Grid, 2 purlins per bay 5-ply CLT Image: JC Buck

Member Sizes

- Impact of FRR on Sizing
- Impact of Sizing on Efficient Spans
- Consider connections can drive member sizing
- 1 or 2 HR FRR: Likely 5-ply Panel
- Efficient spans of 14-17 ft
- Grids of 15x30 (no purlins) to 30x30 (1 purlin) may be efficient

First Tech Credit Union, Hillsboro, OR 12x32 Grid, One-Way Beams 5-ply (5.5") CLT Image: Swinerton

Member Sizes

- Impact of FRR on Sizing
- Impact of Sizing on Efficient Spans
- Consider connections can drive member sizing
- 1 or 2 HR FRR: Likely 5-ply Panel
- Efficient spans of 14-17 ft
- Grids of 15x30 (no purlins) to 30x30 (1 purlin) may be efficient

Clay Creative, Portland, OR 30x30 Grid, 1 purlin per bay 2x6 NLT Image: Mackenzie

Fire-Resistive Design of Mass Timber Members

Code Applications, Construction Types and Fire Ratings

Richard McLain, PE, SE • Senior Technical Director • WoodWorks Scott Bieneman, PhD, PE, SE • Senior Technical Director • WoodWorks

For many years, exposed heavy timber framing elements have been permitted in U.S. buildings due to their inherent fire-resistance properties. The predictability of wood's char rate has been well-established for decades and has long been recognized in building codes and standards.

Today, one of the exciting trends in building design is the growing use of mass timber—i.e., large sold wood panel products such as cross-laminated timber (CLT) and naillaminated timber (NLT)—for floor, wall and roof construction. Like heavy timber, mass timber products have inherent fire resistance that allows them to be left exposed and still achieve a fire-resistance rating. Because of their strength and dimensional stability, these products also offer a lowcarbon alternative to steel, concrete, and masonry for many applications. It is this combination of exposed structure and strength that developers and designers across the country are leveraging to create innovative designs with a warm yet modern aesthetic, often for projects that go beyond traditional norms of wood design.

This paper has been written to support architects and engineers exploring the use of mass timber for commercial and multi-family construction. It focuses on how to meet fire-resistance requirements in the International Building Code (IBC), including calculation and testing-based methods. Unless otherwise noted, references refer to the 2018 IBC.

Mass Timber & Construction Type

Before demonstrating fire-resistance ratings of exposed mass timber elements, it's important to understand under what circumstances the code currently allows the use of mass timber in commercial and multi-family construction.

> A building's assigned construction type is the main indicator of where and when all wood systems can be used. IBC Section 602 defines five main options (Type I through V) with all but Type IV having subcategories A and B. Types III and V permit the use of wood framing throughout much of the structure and both are used extensively for modern mass timber buildings.

> > Type III (IBC 602.3) – Timber elements can be used in floors, roofs and interior walls. Fire-retardant-treated wood (FRTW) framing is permitted in exterior walls with a fireresistance rating of 2 hours or less.

> > Type V (IBC 602.5) – Timber elements can be used throughout the structure, including floors, roofs and both interior and exterior

Type IV (IBC 602.4) – Commonly referred to as 'Heavy Timber' construction, this option

Mass Timber Fire Design Resource

- Code compliance options for demonstrating FRR
- Updated as new tests are completed
- Free download at woodworks.org

Inventory of Fire Tested MT Assemblies

Table 1: North American Fire Resistance Tests of Mass Timber Floor / Roof Assemblies

CLT Panel	Manu factu rer	CLT Grade or Major x Minor Grade	Ceiling Protection	Panel Connection in Test	Floor Topping	Load Rating	Fire Resistance Achieved (Hours)	Source	Testing Lab
3-ply CLT (114mm 4.488 in)	Nordic	SPF 1650 Fb 1.5 E MSR x SPF #3	2 layers 1/2" Type X gypsum	Half-Lap	None	Reduced 36% Moment Capacity	1	1 (Test 1)	NRC Fire Laboratory
3-ply CLT (105 mm 4.133 in)	Structurlam	SPF #1/#2 x SPF #1/#2	1 layer 5/8" Type Xgypsam	Half-Lap	None	Reduced 75% Moment Capacity	I	1 (Test 5)	NRC Fire Laboratory
5-ply CLT (175mm6.875*)	Nordic	El	None	Topside Spline	2 stagg ered layers of 1/2* cement boards	Lo aded, See Manufacturer	2	2	NRC Fire Laboratory March 2016
5-ply CLT (175mm6.875*)	Nordic	Е	1 layer of 5/8" Type Xgyp sum under Z- channels and furring strips with 3 5/8" fibernlase batts	Topside Spline	2 stagg cred layers of 1/2* cement boards	Loaded, See Manufacturer	2	5	NRC Fire Laboratory Nov 2014
5-ply CLT (175mm6.875*)	Nordic	El	None	Topside Spline	3/4 in. proprietary gyperete over Maxx on acoust ical mat	Reduced 50% Moment Capacity	1.5	3	UL
5-ply CLT (175mm6.\$75*)	Nordic	Б	1 layer 5/8" normal gypsum	Topside Spline	3/4 in. proprietary gyperete over Maxxon acoustical mat or proprietary sound board	Reduced 50% Moment Capacity	2	4	UL
5-ply CLT (175mm6.875*)	Nordic	El	1 layer 5%" Type X Gyp under Resilient Channel under 7 7%" 1-Joints with 3 1/2" Mine ral Wool beween Joints	Half-Lap	None	Loaded, See Manufacturer	2	21	Intertek 8/24/2012
5-ply CLT (175mm6.\$75*)	Structurlam	E1 M5 MSR 2100 x SPF#2	None	Topside Spline	1-1/2° Maxx on Cyp-Gret e 2 000 ov er Maxx on Reinforcing Mesh	Loaded, See Manufacturer	2.5	6	Intertek, 2/22/2016
5-ply CLT (175mm6.875*)	DR Johnson	vi	None	Half-Lap & Topside Spline	2* gypsumtopping	Lo aded, See Manufacturer	2	7	SwRI (May 2016)
5-ply CLT (175mm6.\$75*)	Nordic	SPF 1950 Fb MSR x SPF #3	None	Half-Lap	None	Reduced 5.9% Moment Capacity	1.5	1 (Test 3)	NRC Fire Laboratory
5-ply CLT (175mm6.\$75*)	Structurlam	SPF #1/#2 x SPF #1/#2	1 layer 5/8" Type Xgypsam	Half-Lap	None	Unreduced 101% Moment Capacity	2	1 (Test 6)	NRC Fire Laboratory
7-ply CLT (245mm 9.65*)	Structurlam	SPF #1/#2 x SPF #1/#2	None	Half-Lap	None	Unreduced 101% Moment Capacity	2.5	1 (Test 7)	NRC Fire Laboratory
5-ply CLT (175mm6.#75*)	SmartLam	SL-V4	None	Half-Lap	nominal 1/2* ply wood with 8d nails.	Loaded, See Manufacturer	2	12 (Test 4)	Western Fire Center 10/26/2016
5-ply CLT (175mm6.\$75*)	SmartLam	vi	None	Half-Lap	nominal 1/2" ply wood with 8d nails.	Loaded, See Manufacturer	2	12 (Test 5)	Western Fire Center 10/28/2016
5-ply CLT (175mm6.875*)	DRJohnson	VI	None	Half-Lap	nominal 1/2 ° ply wood with 8 d nails.	Lo aded, See Manufacturer	2	12 (Test 6)	Western Fire Center 11/01/2016
5-ply CLT (160mm 6.3*)	KLH	CV3M1	None	Half-Lap & Topside reline	None	Loaded, See Menufacturer	1	18	SwRI

NEW MASS TIMBER FLOOR VIBRATION DESIGN GUIDE

U.S. Mass Timber Floor Vibration

Design Guide

Worked office, lab and residential Examples

Covers simple and complex methods for bearing wall and frame supported floor systems

ARCHITECTURE URBAN DESIGN INTERIOR DESIGN

MASS TIMBER CONNECTIONS INDEX

A library of commonly used mass timber connections with designer notes and information on fire resistance, relative cost and load-carrying capacity.

WoodWorks Index of Mass Timber Connections

Mass Timber Acoustics

Solutions Paper

Acoustics and Mass Timber: Room-to-Room Noise Control

Rehard McLain, PE, SE + Senior Technical Dractor + WoodWarks

The growing availability and code acceptance of mass timber—i.e., large solid wood panel products such as crosslaminated timber (CLT) and nal-laminated timber (NLT) for floor, well and root construction has given designers a low-carbon alternative to steel, concrete, and masorry for many applications. However, the use of mass timber in multi-family and commercial buildings presents unique acoustic challenges. While laboratory measurements of the impact and airborne sound isolation of traditional building assemblies such as light wood-frame, strel and concrete are widely available, fewer resources exist that quantify the acoustic performance of mass timber assemblies. Additionally, one of the most desired aspects of mass timber construction is the ability to leave a building's structure exposed as finish, which creates the need for asymmetric assemblies. Whit careful design and detailing, mass timber buildings can meet the acoustic performance expectations of most building types.

http://www.woodworks.org/wp-content/uploads/wood_solution_paper-MASS-TIMBER-ACOUSTICS.pdf

Mass Timber Assembly Options: Walls

Mass timber panels can also be used for interior and exterior walls-both bearing and non-bearing. For interior walls, the need to conceal services such as electrical and plumbing is an added consideration. Common approaches include building a chase wall in front of the mass timber wall or installing gypsum wallboard on resilient channels that are attached to the mass timber wall. As with bare mass timber floor panels, bare mass timber walls don't typically provide adequate noise control, and chase walls also function as acoustical improvements. For example, a 3-ply CLT well panel with a thickness of 3.07" has an STC rating of 33.4 In contrast, Figure 3 shows an interior CLT partition wall with chase walls on both sides. This assembly achieves an STC rating of 58, exceeding the IBC's acoustical requirements for multi-family construction. Other examples are included in the inventory of tested assemblies noted above.

Acoustical Differences between Mass Timber Panel Options

The majority of acoustically-tested mass timber assemblies include CLT. However, tests have also been done on other mass timber panel options such as NLT and dowel-terminated timber (DLT), as well as traditional heavy timber options such as tongue and groove decking. Most tests have concluded that CLT acoustical performance is slightly better than that of other mass timber options, largely because the crossorientation of laminations in a CLT panel limits sound flanking.

For those interested in comparing similar assemblies and mass timber panel types and thicknesses, the inventory noted above contains tested assemblies using CLT, NLT, glued-laminated timber panels (GLT), and tongue and groove decking.

Improving Performance by Minimizing Flanking

Even when the assemblies in a building are carefully designed and installed for high acoustical performance, consideration of flanking paths—in areas such as assembly intersections, beam-to-column/wall connections, and MEP penetrations—is necessary for a building to meet overall acoustical performance objectives.

One way to minimize flanking paths at these connections and interfaces is to use resilent connection isolation and sealert strips. These products are capable of resisting structural loads in compression between structural members and connections while providing isolation and breaking hald, direct connectors between members. In the context of the three methods for improving

acoustical performance noted above, these strips act as decouplers. With artight connections, interfaces and penetrations, there is a much greater chance that the acoustic performance of a mass imber building will meet expectations.

Acoustical isolation strips

hatas, mariatas

Mass Timber Acoustics

Inventory of Tested Assemblies

Acoustically-Tested Mass Timber Assemblies

Following is a list of mass timber assemblies that have been acoustically tested as of January 23, 2019. Sources are noted at the end of this document. For free technical assistance on any questions related to the acoustical design of mass timber assemblies, or free technical assistance related to any aspect of the design, engineering or construction of a commercial or multi-family wood building in the U.S., email help@woodworks.org or contact the WoodWorks Regional Director nearest you: http://www.woodworks.org/project-assistance

Contents:

Table 1: CLT Floor Assemblies with Concrete/Gypsum Topping, Ceiling Side Exposed	2
Table 2: CLT Floor Assemblies without Concrete/Gypsum Topping, Ceiling Side Exposed	7
Table 3: CLT Floor Assemblies without Concrete/Gypsum Topping, with Wood Sleepers, Ceiling Side Exposed	9
Table 4: NLT, GLT & T&G Decking Floor Assemblies, Ceiling Side Exposed	11
Table 5: Mass Timber Floor Assemblies with Ceiling Side Concealed	14
Table 6: Single CLT Wall	
Table 7: Single NLT Wall	26
Table 8: Double CLT Wall	29
Sources	32
Disclaimer	
	1

http://bit.ly/mass-timber-assemblies

Table 1: CLT Floor Assemblies with Concrete/Gypsum Topping, Ceiling Side Exposed

	Finish Floor	if Applicable		200				
	Concrete/G	ypsum Topping						
	Acoustical	Mat Product		TITIT				
	recoustical							
	070			-				
	CLT Panel -			-				
	No direct ap	oplied or hung ceiling						
			1					
CLT Panel	Concrete/Gypsum Topping	Acoustical Mat Product Between CLT and Topping	Finish Floor	STC ¹	IIC ¹	Sourc		
			None	47 ² ASTC	47 ² AIIC	-		
			LVT	-	49 ² AIIC			
		Manuan Acquisti Mate 2/4	Carpet + Pad		75 ² AIIC	1		
	1-1/2" Gyp-Crete*	Maxxon Acousti-Mat® 3/4	LVT on Acousti-Top®		52 ² AIIC			
			Eng Wood on Acousti- Top®	-	51 ² AIIC			
			None	49 ² ASTC	45 ² AIIC			
		Maxxon Acousti-Mat® ¾ Premium	LVT		47 ² AIIC			
			LVT on Acousti-Top*		49 ² AIIC			
	2		None	45 ⁶	39 ⁶	15		
			LVT	486	47 ⁶	16		
CLT 5-ply		USG SAM N25 Ultra	LVT Plus	486	49 ⁶	58		
(6.875")		USO SHIYI NZO UTU d	Eng Wood	47 ⁶	47 ⁶	59		
			Carpet + Pad	45 ⁶	67 ⁶	60		
	25		Ceramic Tile	50 ⁶	46 ⁶	61		
			None	456	426	15		
	1-1/2" Levelrock [®] Brand 2500		LVT	486	44 ⁶	16		
		Soprema® Insonomat	LVT Plus	486	476	58		
		somering machiganer	Eng Wood	476	45 ⁶	59		
			Carpet + Pad	456	716	60		
			Ceramic Tile	50 ⁶	466	61		
	3		None	45 ⁶	386	15		
		USG SAM N75 Ultra	LVT	48 ⁶	47 ⁶	16		
		000 SHIVI N/S UILIA	LVT Plus	48 ⁶	49 ⁶	58		
			Eng Wood	476	49 ⁶	59		

Janelle Leafblad, PE Janelle.leafblad@woodworks.org

(415)310-8549

Copyright Materials

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

© The Wood Products Council 2021

Disclaimer: The information in this presentation, including, without limitation, references to information contained in other publications or made available by other sources (collectively "information") should not be used or relied upon for any application without competent professional examination and verification of its accuracy, suitability, code compliance and applicability by a licensed engineer, architect or other professional. Neither the Wood Products Council nor its employees, consultants, nor any other individuals or entities who contributed to the information make any warranty, representative or guarantee, expressed or implied, that the information is suitable for any general or particular use, that it is compliant with applicable law, codes or ordinances, or that it is free from infringement of any patent(s), nor do they assume any legal liability or responsibility for the use, application of and/or reference to the information. Anyone making use of the information in any manner assumes all liability arising from such use.