Mass Timber Construction Management: Design through Project Close Out

Structural Mass Timber Design

The Engineer's Role in Optimization

Presented by Greg Kingsley, PhD, PE

Disclaimer: This presentation was developed by a third party and is not funded by WoodWorks or the Softwood Lumber Board.

OUTLINE

Dollar Cost of:

1. Elements

2. Bays

(Panels, beams, and columns)

d b

(Timber, and steel/timber hybrid)

3. Timber Building Types (III-A, III-B, IV-HT, IV-C, IV-B, IV-A)

4. Building Archetypes

(Timber, steel, and concrete)

MASS TIMBER ELEMENTS

NLT

CLT COST DEPENDS ON THE PRICE OF LUMBER

CLT COST DEPENDS ON SUPPLY

... and North American supply is increasing

North American Mass Timber Panel Manufacturing Capacity Source: 2019 State of the Industry: North American Mass Timber

CLT COST DEPENDS ON WOOD VOLUME!

3-ply 3-layer (3.43"- 4.14")

5-ply 5-layer (5.47"- 6.90")

7-ply 7-layer (7.52"- 9.66")

7-ply 5-layer

9-ply 9-layer (9.57"- 12.42")

CLT COST DEPENDS ON WOOD VOLUME!

CLT COST DEPENDS ON THE MANUFACTURER Mass timber panels are not a commodity!

- Panel width
- Panel length
- Lamination thickness
- E-rated and V-rated
- Species
- Special finishes

CLT COST DEPENDS ON NUMBER OF PLIES AND DROP

Conceptual cost of Dr K's Generic CLT is intended to include:

- CLT
- Shop fab
- Sanding
- Delivered
- Screws

but does **not** include:

• Finishes

Glulam Beam and Column Cost

Glulam Beam and Column Cost as a function of width

MASS TIMBER BAYS

MASS TIMBER BAYS

20 ft timber bents, no beams, CLT of varying span

Square bay, CLT with 2 equal (varying) spans

Wood Bay Study: 15x15 up to 30x30

Wood Bay Study: 15x15 up to 30x30

Wood Bay Study

Steel beams and columns: Labor dominates cost

Timber beams and columns: Material volume dominates cost

WHAT DO MASS TIMBER CONNECTIONS COST?

Slide credit: WoodWorks

Simple connections are economical

Photo Credit: myticon

Connection Cost – Different Connection "Classes"

Connection Cost based on "Connection Class"

Cost for each class is based on ...

- Connection material
- Screws and bolts
- Beam end fabrication
- Girder fabrication
- Field Installation

Cost increases with ...

- Connection "Class"
 - Simple screws

- Complex hidden custom connector
- Reaction carried

PLATTE FIFTEEN

Office / Retail Type III-B over IA Construction 2 floors concrete below grade 1 floor concrete above grade 3 floors + roof in mass timber Concrete cores

30' x 30' grid

OZ Architecture

Adolfson & Peterson Construction

KL&A & Nordic

Office / Retail Type III-B Construction 30' x 30' grid

STATISTICS.

•

Platte Fifteen Bay Study

23

• DIFFERENT MATERIAL

• DIFFERENT TOLERANCE

• <u>DESIGN</u> FOR IT

CONNECTION MATERIAL

• CONSIDERATION OF MATERIAL INTERFACE

• TIME IS MONEY

50+ ft panels span five 10 ft bays

MASS TIMBER BUILDING TYPES

Adolfson

III-B III-A IV-HT IV-C IV-B IV-B

Fire Resistance Requirements for Mass Timber Buildings

	FRR (hours)					
Construction Type	Primary Structural Frame	Floor	Roof	Non- combustible Protection	Story Limit	Maximum Height (ft)
III-A	1	1	1	Not Required	6	85
III-B	0	0	0	Not Required	4	75
IV-A	3	2	1.5	Fully Covered	18	270
IV-B	2	2	1	Partially Covered	12	180
IV-C	2	2	1	Not Required	9	85
IV-HT	HTª	ΗTª	HTª	Not Required	6	85

From: Chaggaris, Pei, Kingsley, Kinder, Sensitivity on Cost of Mass Timber Beam-Column Gravity Systems, Journal of Architectural Engineering

Effect of grid on cost/sf – Type IV-B

From: Chaggaris, Pei, Kingsley, Kinder, Sensitivity on Cost of Mass Timber Beam-Column Gravity Systems, Journal of Architectural Engineering

Longer spans = higher connection cost

From: Chaggaris, Pei, Kingsley, Kinder, Sensitivity on Cost of Mass Timber Beam-Column Gravity Systems, Journal of Architectural Engineering

CLT press length efficiency affects cost

From: Chaggaris, Pei, Kingsley, Kinder, Sensitivity on Cost of Mass Timber Beam-Column Gravity Systems, Journal of Architectural Engineering

		Building Type						
Stories		III-B	III-A (Gyp)	III-A (No Gyp)	IV-HT	IV-C	IV-B	IV-A
4	Grid	21 x 20.5	30 x 27	24 x 22	20.5 x 20	24'x20'	24 x 24	24 x 22.5
	Cost	\$25.53	\$32.70	\$32.10	\$30.14	\$36.97	\$45.49	\$45.04
6	Grid		24 x 23.5	20 x 20	20.5 x 20	24 x 24.5	24 x 24	24 x 22
	Cost		\$32.56	\$33.33	\$31.50	\$38.47	\$46.68	\$46.72
9	Grid					24 x 24.5	24 x 24	24 x 22.5
	Cost					\$39.16	\$47.37	\$47.64
12	Grid						24 x 24	24 x 22
	Cost						\$49.44	\$49.93
18	Grid							24 x 22
	Cost							\$52.81

The most economical option for each building type for each number of stories. Bay size in feet. Most economical system at each heigh shaded in blue

From: Chaggaris, Pei, Kingsley, Kinder, Sensitivity on Cost of Mass Timber Beam-Column Gravity Systems, Journal of Architectural Engineering

The cost of the most economical bay option for each viable building type for a given number of stories

From: Chaggaris, Pei, Kingsley, Kinder, Sensitivity on Cost of Mass Timber Beam-Column Gravity Systems, Journal of Architectural Engineering

BUILDING ARCHETYPES

Photo Credit: KL&A

7

Superstructure Construction Time (months)

Superstructure Cost Premium Over Concrete (%)

WOOD

WOOD

Some conclusions

- Don't hammer square pegs into round holes
 - When establish grid, remember:
 - Timber: Wood volume is key
 Cost usually goes up with span
 - Steel: Number of pieces is key
 Cost usually goes down with span
- Collaboration and coordination is critical
 - Engage fabricators early!
 - Architects, engineers, contractors, fabricators, erectors all have a part to play in optimizing systems
- After grids are set, don't forget other factors
 - Connection cost
 - Constructability
 - Interface with other materials

QUESTIONS?

This concludes The American Institute of Architects Continuing Education Systems Course

Greg Kingsley gkingsley@klaa.com Photo Credit: JC Buck