

Sarah FitzMaurice, PE fast + epp

June 3, 2020

- + Vancouver | Canada
- + Frankfurt | Germany
- + New York | USA
- + Seattle | USA
- + Edmonton | Canada

Client Harbor Bay Real Estate Architect
Hartshorne Plunkard Architecture Engineers
Forefront Structural Engineers
Fast + Epp Contractor Seagate Structures Supplier Binderholz 512,000 sq. ft. 9 Story on 2 Story **Type IV-B on Type I-A**

Project Information

Building Type BC 2015

TABLE 504.3
ALLOWABLE BUILDING HEIGHT IN FEET ABOVE GRADE PLANE®

		TYPE OF CONSTRUCTION										
OCCUPANCY CLASSIFICATION	SEE FOOTNOTES	TYPE I		TYPE II		TYPE III		TYPE IV	TYP	EV		
		Α	В	Α	В	Α	В	нт	Α	В		
	NSd	UL	160	65	55	65	55	65	50	40		
R ^h	S13D	60	60	60	60	60	60	60	50	40		
S1 S1	S13R	60	60	60	60	60	60	60	60	60		
	S	UL	180	85	75	85	75	85	70	60		

TABLE 504.4—continued ALLOWABLE NUMBER OF STORIES ABOVE GRADE PLANE*, b

	TYPE OF CONSTRUCTION										
OCCUPANCY CLASSIFICATION	SEE FOOTNOTES	TYPE I		TYPE II		TYPE III		TYPE IV	TYPE V		
	SEETOOTHOTES	Α	В	Α	В	Α	В	HT	Α	В	
R-1 ^h	NS ^d	UL	11	4	4	4	4	4	3	2	
	S13R	4	4						4	3	
	S	UL	12	5	5	5	5	5	4	3	
	NS ^d	UL	11	4	4 4	4	4	3	2		
R-2 ^h	S13R	4	4	4	7	7 7		4	4	3	
	S	UL	12	5	5	5	5	5	4	3	
	3.704	***							- 2	2	

Building TypeBuilding Type

TABLE 506.2—continued ALLOWABLE AREA FACTOR (A, = NS, S1, S13R, S13D or SM, as applicable) IN SQUARE FEET^{a, b}

		TYPE OF CONSTRUCTION										
OCCUPANCY CLASSIFICATION	I SEE FOOTNOTES	TYP	ΕI	TYF	E II	TYP	E III	TYPE IV	TYF	E V		
		Α	В	Α	В	Α	В	HT	Α	В		
	NS ^d	III	UL UL	L 24,000	16,000	24,000	16,000	20,500	12,000	7,000		
R-2 ^h	S13R	CL										
K-2	S1	UL	UL	96,000	64,000	96,000	64,000	82,000	48,000	28,000		
	SM	UL	UL	72,000	48,000	72,000	48,000	61,500	36,000	21,000		

506.2.4 Mixed-occupancy, multistory buildings. Each story of a mixed-occupancy building with more than one *story above grade plane* shall individually comply with the applicable requirements of Section 508.1. For buildings with more than three *stories above grade plane*, the total building area shall be such that the aggregate sum of the ratios of the actual area of each *story* divided by the allowable area of such stories, determined in accordance with Equation 5-3 based on the applicable provisions of Section 508.1, shall not exceed three.

$$A_{\sigma} = [A_{\tau} + (NS \times I_{\tau})]$$
 (Equation 5-3)

where:

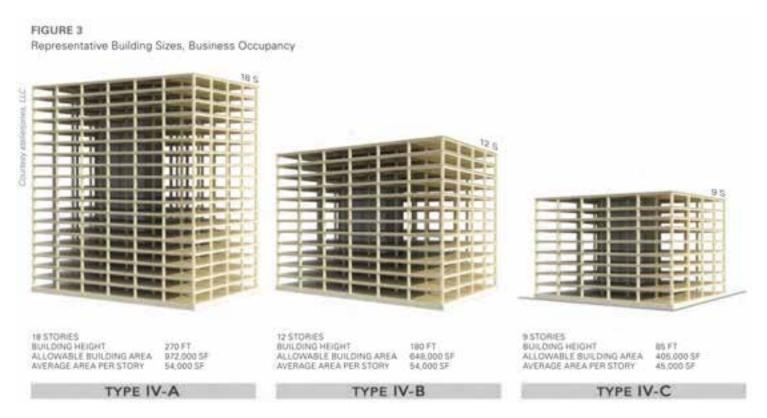
 A_{α} = Allowable area (square feet).

A_t = Tabular allowable area factor (NS, S13R, S13D or SM value, as applicable) in accordance with Table 506.2.

NS = Tabular allowable area factor in accordance with Table 506.2 for a nonsprinklered building (regardless of whether the building is sprinklered).

 I_f = Area factor increase due to frontage (percent) as calculated in accordance with Section 506.3.

Building TypeIBC 2021

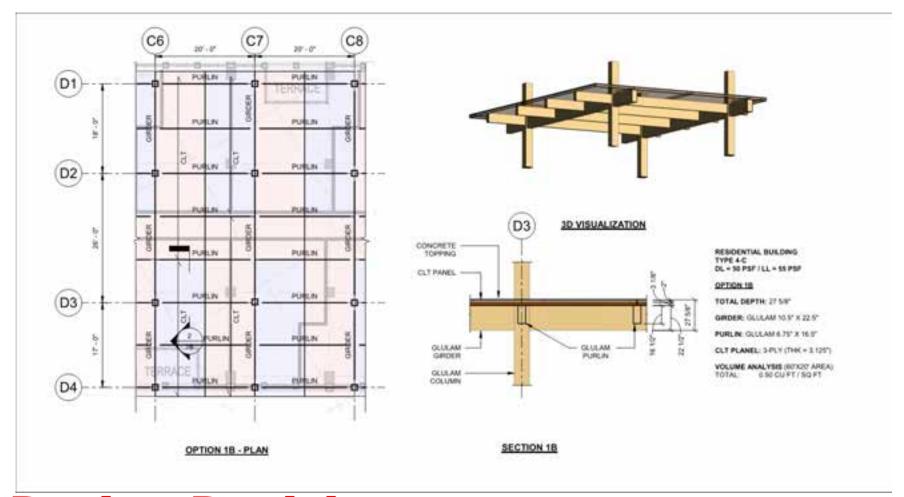

Select Height and Area Limits by Construction Type

		I-A	I-B	IV-A	IV-B	IV-C	IV-HT				
Occupancies	Value		Allowable Building Height above Grade Plane, Feet (IBC Table 504.3)								
A, B, R	s	Unlimited	180	270	180	85	85				
			Allowable Num	ber of Stories abo	ove Grade Plane (IBC Table 505.4)					
A-2, A-3, A-4	s	Unlimited	12	18	12	6	4				
В	S	Unlimited	12	18	12	9	6				
R-2	s	Unlimited	12	18	12	8	5				
			Allowal	ole Area Factor (A	t), Feet ^z (IBC Tabl	e 506.2)	No.				
A-2, A-3, A-4	SM	Unlimited	Unlimited	135.000	90,000	56,250	45,000				
В	SM	Unlimited	Unlimited	324,000	216,000	135,000	108,000				
R-2	SM	Unlimited	Unlimited	184,500	123,000	76,875	61,500				

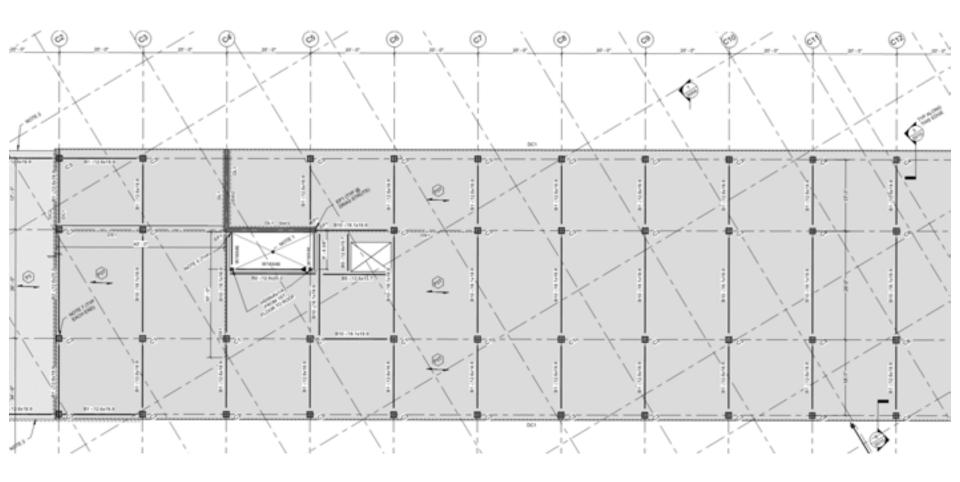
S is sprinklered with NFPA 13 sprinklers. SM is the multi-story allowable area factor. Underlined entries are the new additions.

Breneman, S; Timmers, M; Richardson, D; Tall Wood Buildings in the 2021 IBC Up to 18 Stories of Mass Timber; 2019; Woodworks Wood Products Council

Building TypeBC 2021



Breneman, S; Timmers, M; Richardson, D; Tall Wood Buildings in the 2021 IBC Up to 18 Stories of Mass Timber; 2019; Woodworks Wood Products Council Image Courtesy atelierjones, LLC


Grids


Grids

Grids

Suppliers

Procurement

Suppliers

Wood Species and Aesthetics DF, SPF, SP, Cedar, Spruce Glulam vs. CLT, Coloring

Supply 1 supplier for Glulam + CLT

Shipping Ship, Truck, Material Size

Approvals PRG320

Procurement

Suppliers Binderholz

Wood Species
European Spruce
Fb= 1550psi

Shipping
Barge
4ft x 60ft long CLT panels

Approvals PRG 320

Glulam Design

Wood Species	spruce
Quality	visible quality, non-visible quality
Strength classes	GL 24c, GL 24h, GL 28c, GL 28h, GL 30c, GL 30h*, GL 32c*, GL 32h*
Layer and finger joint gluing	modified melamine resin, for categories 1-3, UV-proof and weatherproof, light
Width	60 - 280** mm (in 20 mm steps)
Height	up to 1,280 mm (in 40 mm steps)
Length	6 - 18 m
Cut to length	3.5 - 18 m

^{*} only visible quality

^{**} Width 60 mm is split; only in GL 24 available width 280 mm only in GL 24 available

CLT Design Table 12 Reference Design Values on LFRD level for BBS CLT Panels in SI units

CLT	Layup	M	ajor Strength	Direction		М	inor Strength	n Direction	
Grade	Designation	f _b S _{eff,0} ·10 ⁶ [Nmm/m]	El _{eff,0} ·10 ⁹ [Nmm ² /m]	GA _{eff,0} ·10 ⁶ [N/m]	V _{s,0} ·10 ³ [N/m]	f _b S _{eff,90} ·10 ⁶ [Nmm/m]	El _{eff,90} ·10 ⁹ [Nmm ² /m]	GA _{eff,90} ·10 ³ [N/m]	V _{s,90} ·10 ³ [N/m]
	60-3s	10	208	3,7	43,3	1,1	5,3	3,6	42,7
	80-3s	17	448	4,3	62,2	4,3	43	7,5	85,3
	90-3s	23	702	5,6	65,0	2,4	18	5,5	64,0
	100-3s	29	973	6,5	71,3	2,4	18	5,6	64,0
	120-3s	42	1664	7,5	86,7	4,3	43	7,3	85,3
İ	100-5s	24	792	7,5	82,5	9,2	139	7,3	43,3
	120-5s	31	1224	7,9	102,0	17	336	11	56,0
	140-5s	54	2536	11	105,7	9,2	139	7,8	43,3
	150-5s	61	3059	13	115,9	12	211	8,2	52,7
BBS 125	160-5s	68	3648	16	126,7	15	299	8,6	62,2
	180-5s	82	4896	15	145,7	25	624	11	74,3
	200-5s	95	6336	15	165,0	37	1109	15	86,7
	220-5s	132	9712	19	168,6	25	624	12	74,3
	240-5s	152	12160	19	187,7	37	1109	15	86,7
	260-5s	10	208	3,7	43,3	1,1	5,3	3,6	42,7
	280-5s	10	208	3,7	43,3	1,1	5,3	3,6	42,7
	300-5s	248	24768	34	234,5	43	1488	15	112,7
	320-5s	274	29184	31	253,3	60	2389	17	124,4
	340-7s	304	34408	26	250,4	73	3264	22	145,7

Considerations

Fire

Required Rating Means of Protection

Vibration User Comfort

Required Fire-Resistance Ratings by Construction Type (IBC Table 601)

Building Element	I-A	I-B	IV-A	IV-B	IV-C	IV-HT
Primary Structural Frame	3*	2*	3	2	2	нт
Ext. Bearing Walls	3*	2*	3	2	2	2
Int. Bearing Walls	3*	2*	3	2	2	1/HT
Floor Construction	2	2*	2	2	2	HT
Roof Construction	11/2*	1*	135	1	1	HT

^{*}These values can be reduced based on certain conditions in IBC 403.2.1, which do not apply to Type IV buildings.

Breneman, S; Timmers, M; Richardson, D; Tall Wood Buildings in the 2021 IBC Up to 18 Stories of Mass Timber; 2019; Woodworks Wood Products Council

TABLE 722.7.1(1)

PROTECTION REQUIRED FROM NONCOMBUSTIBLE COVERING MATERIAL

Required Fire Resistance Rating of Building	Minimum Protection Required from
Element per Tables 601 and 602 (hours)	Noncombustible Protection (minutes)
<u>1</u>	<u>40</u>
<u>2</u>	<u>80</u>
3 or more	<u>120</u>

TABLE 722.7.1(2)

PROTECTION PROVIDED BY NONCOMBUSTIBLE COVERING MATERIAL

Noncombustible Protection	Protection Contribution (minutes)
1/2 inch Type X Gypsum Board	<u>25</u>
5/8 inch Type X Gypsum Board	<u>40</u>

Table 16.2.1A Char Depth and Effective Char Depth (for $\beta_n = 1.5$ in./hr.)

Required Fire Resistance (hr.)	Char Depth, a _{char} (in.)	Effective Char Depth, a _{eff} (in.)
1-Hour	1.5	1.8
11/2-Hour	2.1	2.5
2-Hour	2.6	3.2

Table 16.2.1B Effective Char Depths (for CLT with $\beta_n = 1.5$ in./hr.)

Required Fire Resistance		Effective Char Depths, a _{eff} (in.) lamination thicknesses, h _{law} (in.)										
(hr.)	5/8	3/4	7/8	1	1-1/4	1-3/8	1-1/2	1-3/4	2			
1-Hour	2.2	2.2	2.1	2.0	2.0	1.9	1.8	1.8	1.8			
1½-Hour	3.4	3.2	3.1	3.0	2.9	2.8	2.8	2.8	2.6			
2-Hour	4.4	4.3	4.1	4.0	3.9	3.8	3.6	3.6	3.6			

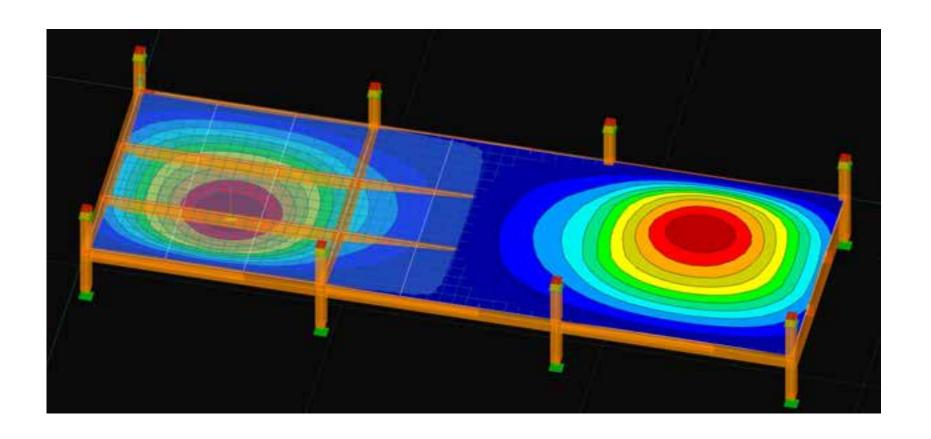


Table 16.2.2 Adjustment Factors for Fire Design¹

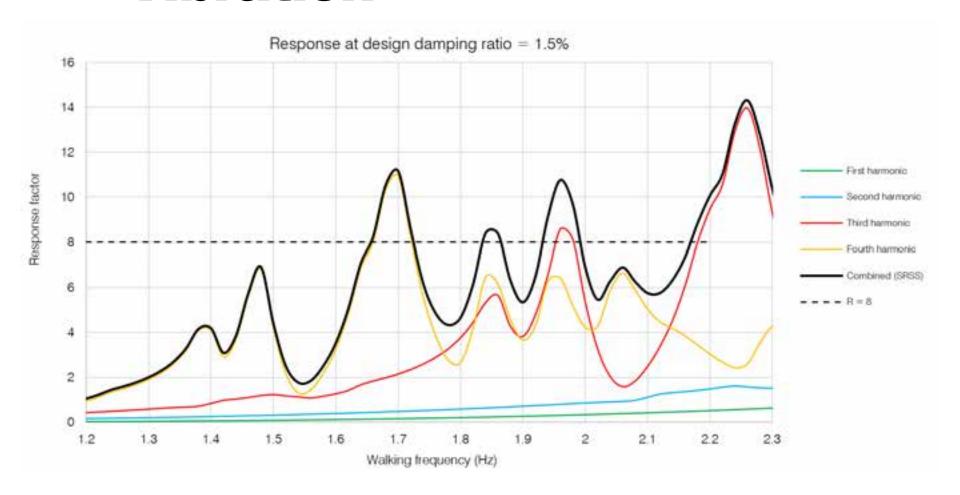
					AS	SD		
			Design Stress to Member Strength Factor	Size Factor ²	Volume Factor 2	Flat Use Factor ²	Beam Stability Factor 3	Column Stability Factor 3
Bending Strength	F_b	х	2.85	C_F	C_{V}	C_{fu}	C_L	-
Beam Buckling Strength	F_{bE}	x	2.03	-	-	-	-	-
Tensile Strength	Ft	x	2.85	C_F	-	-	-	-
Compressive Strength	Fc	x	2.58	C_{F}		-		C_P
Column Buckling Strength	F_{cE}	x	2.03	-		-		-

- 1. See 4.3, 5.3, 8.3, and 10.3 for applicability of adjustment factors for specific products.
- 2. Factor shall be based on initial cross-section dimensions.
- 3. Factor shall be based on reduced cross-section dimensions.

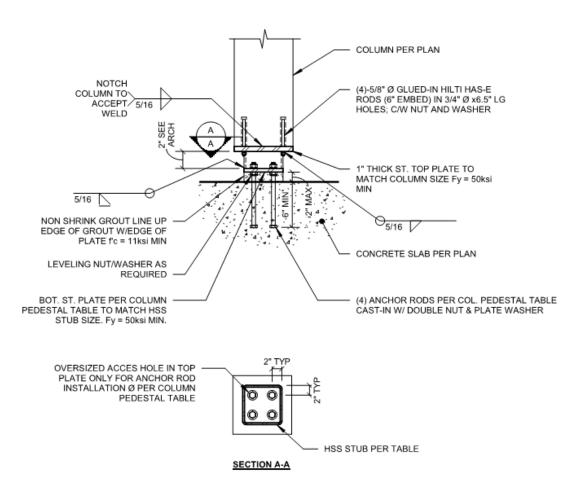
FIRE: βn (in/hr): 1.5


Beam Label	Beam Width, in	Beam Depth, in	Volume Factor	THE RESERVE OF THE PARTY OF THE	Effective Char	Charred Width	Charred Depth	LRFD Moment	ASD Fire, Moment	LRFD Shear	Moment of Inertia	Beam Width, mm	Beam Depth, mm
8	3	E 37		8 3	37	2	1 1	k-ft	k-ft	kip	()	A CONTRACTOR OF THE PARTY OF TH	- 00 W
B00	12.6	23.6	1	2	3.2	6.3	20.5	261	161	62	13838	320	600
801	12.6	18.9	1	2	3.2	6.3	15.7	167	95	50	7085	320	480
802	12.6	25.2	1	2	3.2	6.3	22.0	297	187	66	16795	320	640

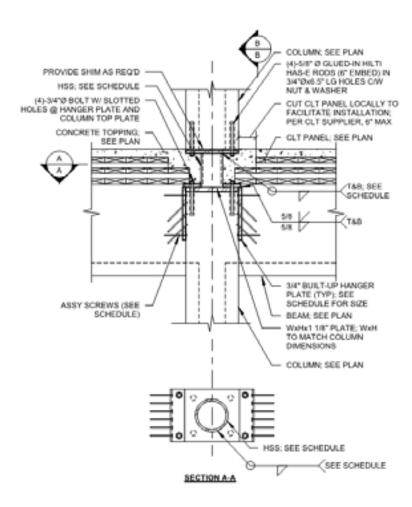
HAR DEPT	H CALCULATIO	<u>N</u>						
	Nominal char rate, β_n Non-linear char rate, β_t			in./hr. in./hr. ^{0.813}	βt = βn, NDS 16.2-1			
F	ire-Resistance	Rating (FRR):	2	hr hr				
Layer	t_chared off (mm)	t_char (in.)	$t_{gi} = (h_{lam}/\beta_t)^{1.23}$	n _{lam} =(t/t _{gi})	$a_{char} = n_{lam}h_{lam} + \beta_t(t - (n_{lam}t_{gi}))^{0.813}$	a _{eff} =1.2a _{char}	h _{lam} /a _{eff}	t_fire - what's left (mm)
1	. 0	0	1.061685948	1	2.999132298	3.598958758	0	40
2	0	0	1.061685948	1	2.999132298	3.598958758	0	40
3	0	0	0.745283357	2	3.229073277	3.874887932	0	30
4	0	0	1.061685948	1	2.999132298	3.598958758	0	40
5	15	0.59055118	0.745283357	2	3.229073277	3.874887932	0.152405	15
6	40	1.57480315	1.061685948	1	2.999132298	3.598958758	0.437572	0
7	40	1.57480315	1.061685948	1	2.999132298	3.598958758	0.437572	0

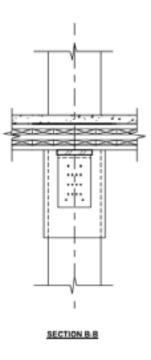


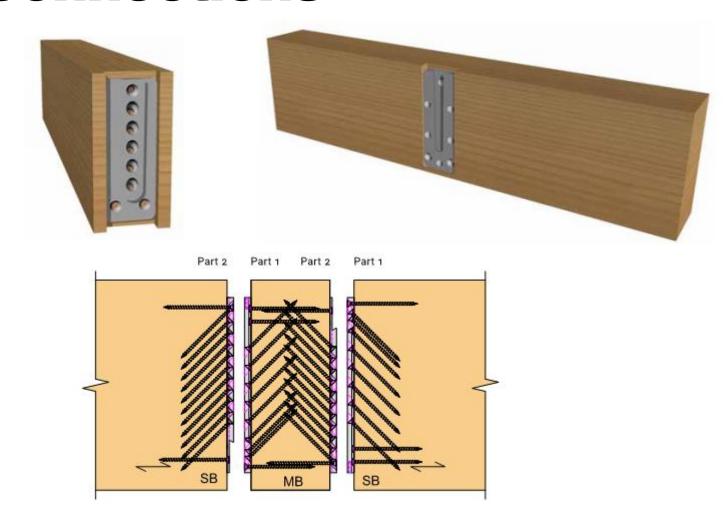
Vibration



Vibration




Connections


Connections

Connections

