Building Enclosures for Mass Timber Buildings

WOODWORKS – MINNEAPOLIS, MN – FEBRUARY 13, 2019
GRAHAM FINCH, MASC, P.ENG – PRINCIPAL, SENIOR BUILDING SCIENCE SPECIALIST

Disclaimer: This presentation was developed by a third party and is not funded by WoodWorks or the Softwood Lumber Board.
The Building Enclosure

Mass Timber Structure
Mass Timber Integrated into Building Enclosures

→ Mass timber elements often a part of the building enclosure
 → Above Grade Walls & Roofs
 → Wood or parts of wood desired to be left exposed – serves both functional and aesthetic purpose
→ Requires protection from moisture during construction & in-service
→ Assemblies with wood, membranes, insulation & accessories control heat, air, and moisture transfer along with noise and fire
→ Designed to accommodate building movement, structural loads, initial & seasonal wood movement
What Makes Mass Timber Buildings Unique?

- Use of engineered mass timber components
 - Alternate structural systems (post/beam, engineered panels, infill components)
 - Unique & new connections, interfaces & details
 - Hybrid steel-wood-concrete components & connections
- Longer & heightened exposure of large wood components to rain and weathering during construction
- Is not the same as stick built mid-rise wood-frame, but is also different from high-rise steel or concrete structures
Mass Timber Structures

→ Potentially fast
→ Sensitive to moisture
→ Greater movement (shrinkage & drift)
→ Fire code challenges
→ Mixed steel, concrete & wood components & connections
Tall Wood Building Enclosures

→ **Need for Speed**
 → Erect and seal as fast as possible to protect the wood structure
 → Preference for offsite prefabrication & minimal site preparation
 → Be accommodating of inclement weather

→ **Ensure Durability**
 → Robust materials – high-rise appropriate
 → Be more tolerant of movement
 → Thermally efficient
 → Non-combustible
Building Enclosures for Mass Timber Structures

→ Tall Structures
 → More repetitive, more exposed, need for more speed – *ideal for prefabrication*
 → Less focus on roof and more on walls for weather protection

→ Low-rise structures
 → Less repetitive? Less exposed
 → Greater focus on roof for weather protection than walls
Facades for Mass Timber Buildings?
Load Bearing versus Hung “Curtain-wood” Exterior Enclosure Walls
Good vs Bad Use of Mass Timber

Good – Warm, dry and protected by the building enclosure 😊

Bad – exposed to weathering 😞
CLT Wall Considerations

Best Placement & Insulation Type? – It Depends!
CLT Walls – Exterior Insulated Is Better in the North
CLT Wall Considerations - Movement
Strategies to Address Differential Movement

→ Relative Humidity & Moisture changes in wood cause swelling/shrinkage of tangential & radial grain

→ Dimensional lumber within CLT and Glulam are prone to movement

→ Not so much a building height issue, but a differential movement issue between components that don’t move as much (like curtainwall or infill walls)

Plywood over end grain

Larger movement joint at curtainwall & SIPs panel head

Horizontal wood kept relatively dry during construction to minimize swelling
CLT Panel Interface Air Tightness?
CLT Interface Air Barrier Detailing Considerations
Air Barrier/WRB Membranes for CLT Panels

Liquids

Vapor permeable self-adhered sheets

Liquids
Roofs – Exterior Insulated (Conventional or PMR)
CLT Roof Considerations

Roof Assembly:
- Roof Membrane
- Protection Board
- Exterior Insulation
- Air Barrier Membrane
- Plywood
- Furring/ Vented Space
- CLT Roof Structure
Venting Above Mass Timber Panels in Roofs
Why Prefabrication & Mass Timber Fit
UBC Tall Wood House – Façade Challenge
UBC Tall Wood House - Façade Design Criteria

- Fast installation – 1 floor/day & water tight to protect structure
- Durable & high-performance
- Thermally efficient, >R-16 effective walls
- Inexpensive, <$50/sqft installed & finished
- Installed without access to exterior – no sealing or finishing
- Resistant to water & able to install in rain
- Pre-installed cladding & windows
Façade Prefabrication - Small Panel with Separate Windows
Façade Prefabrication - Large Panel with Pre-installed Windows
UBC Tall Wood - Prefabricated Panel Competition
Wall Panel Laboratory Mockup & Physical Testing
Wall Panel Prefabrication
Site Installation
Site Installation – at Pace with Structure – 2 floors/week
Where Next? “Curtainwood”
Mass Timber Building Lessons Learned
Nuances of Different Mass Timber Products
CLT is Not Airtight - Don’t Forget the Membrane
CLT is Not Airtight - Don’t Forget the Membrane
NLT Panel Shrinkage Considerations

Lamination expansion due to swelling

Lamination position after NLT has returned to lower moisture
NLT Considerations – Design for Movement
The Biggest Challenge with NLT - Overhangs
NLT Panel Air Sealing in Factory
Managing Water Effectively During Construction
Keep Wood Dry & Use Appropriate Materials in Contact with Damp Wood
Take Care with Impermeable Roof Membranes – Can Be Double Edged Sword
Protect NLT from Excessive Wetting But Not Too Late
…Or Just Plan Ahead & Take Advantage of the Protection

Finland – use of climbing roof and overhead cranes – high degree of modular moisture sensitive components
Mass Timber Can Be Dried Out… Albeit Slowly
Protection of Mass Timber Panels During Construction

→ Pre-applied torch applied roofing membranes applied to horizontal panels in factory

→ Laps torched onsite immediately after installation
Lots of Protection Options for Mass Timber Panels During Construction – Just Pick One!
Just Don’t Pick None..
Coating Lessons - CLT

→ Primary purpose for temporary moisture protection to reduce wetting to avoid drying and keep construction on schedule

→ Factory Coatings
 → CLT end grain/panel edge coatings are effective
 → CLT surface coatings are useful though not always needed

→ CLT will benefit with a coating below wet concrete floor toppings
Site Moisture Management Fundamentals

→ Divert
 → Keep mass timber as dry as possible during shipping and construction
 → Use site tarping and other means to keep wood dry during inclement weather
 → Have a moisture management plan!

→ Deflect
 → Protect mass timber with appropriate temporary moisture management system

→ Drain
 → Keep water from ponding on mass timber panels, drain or squeegee/vacuum standing water from panels onsite

→ Dry
 → Promote drying with natural or mechanical means when wood does get wet
 → When covered with impermeable materials – may need to remove to accelerate drying
Moisture Management Planning for Mass Timber

→ Step 1: Risk Evaluation - Consider Climate, Rainfall, Construction Schedule, Length of exposure of all mass timber floors/roof etc. Type of mass timber

→ Step 2: Factory applied coatings to wood?

→ Step 3: Pre-applied or field applied temporary or permanent membrane protection?

→ Step 4: Active water management team onsite to reduce uptake (small tarps, squeegees/vacuums etc.)

→ Step 5: Whole building tarping & protection systems

→ Step 6: Environmental drying

→ Step 7: Mechanical drying contingency
How-to: Moisture Management Plans

→ Start planning early – starts with design and assemblies
 → Impact to architecture, structural design, building enclosure design, possibly fire separation and acoustics
 → Consider multi-function materials (ie temporary roof later becomes functioning air barrier/vapor barrier or acoustic underlayment)
 → Consider schedule impacts of wet wood on design
→ Include requirement in specifications for GC/mass timber sub-contractor to provide & follow written a Moisture Management Plan
 → Responsibility of contractor or sub-trade
 → Plan for regular reviews of implementation by (3rd party and/or BE Consultant, Architect, Structural Engineer)
 → Ask for mock-ups
Some Considerations
The Future of Tall Wood Facades/Enclosures

→ Facades/enclosures erected at same pace as structural systems for tall wood buildings – build fast & dry

→ Growing local market opportunities for various prefabricated wall & window assemblies
 → Will see a combination of steel, concrete, wood framing or wood panel structural systems used
 → Systems will borrow technology from precast concrete and aluminum curtainwall industry, evolve and adapt for mass timber structures
 → Use of hung “curtainwall” facades instead of load-bearing exterior walls
Discussion & Questions

Graham Finch – gfinch@rdh.com – 250-479-1110