

Designing and Constructing Mid-Rise and Taller Mass Timber Buildings

Presented on: 6/15/2021

Presented by: Mike Romanowski, SE Chelsea Drenick, SE

WHAT WOODWORKS DOES

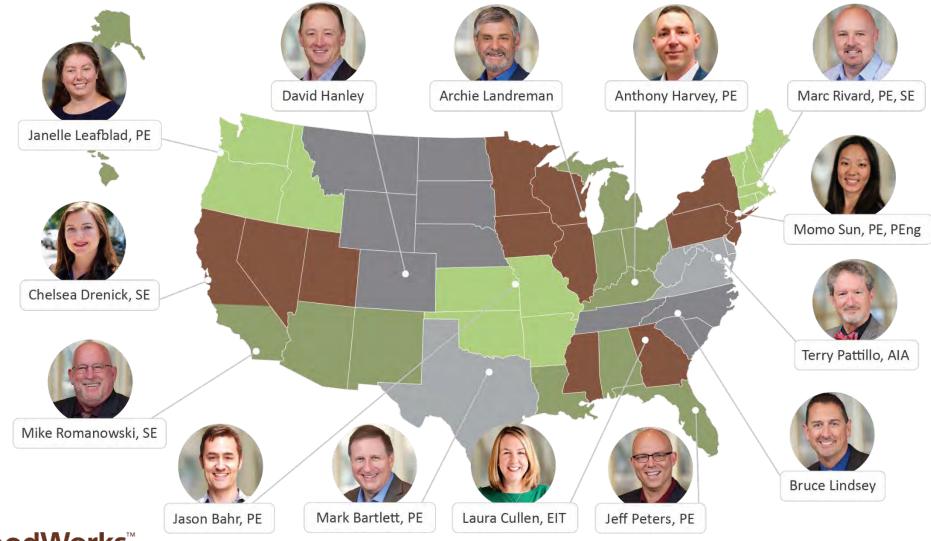
The Hudson Mackenzie | Photo: Christian Columbres Venture Capital Office HQ Il Murdoch Architects | Photo: Eric Staudenmaier

Albina Yard LEVER Architecture | Photo: LEVER Architecture

((((CA)))

Designing a wood building? Ask us anything.

FREE PROJECT SUPPORT . EDUCATION . RESOURCES

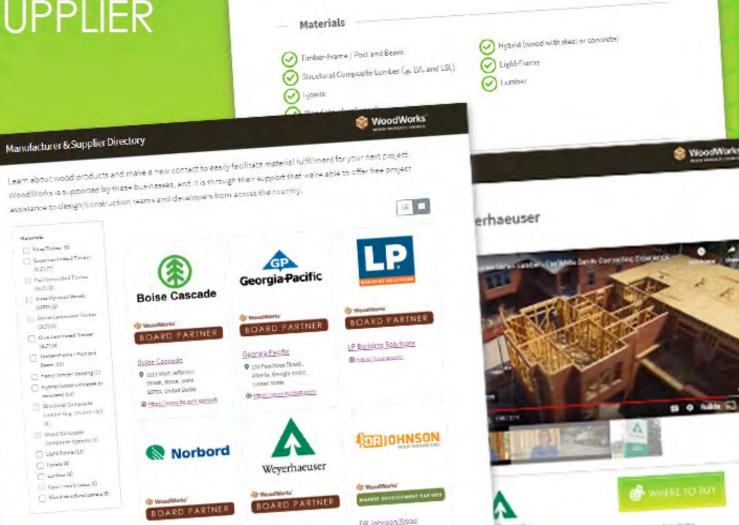

Nationwide support for the code-compliant design, engineering and construction of non-residential and multi-family wood buildings.

- Allowable Heights/Areas
- Construction Types
- Structural Detailing
- Wood-Framed & Hybrid Systems
- Fire/Acoustic Assemblies
- Lateral System Design
- Alternate Means of Compliance
- Energy-Efficient Detailing
- Building Systems & Technologies

woodworks.org/project-assistance · help@woodworks.org

Design Professionals: One-on-One Support and Assistance

2021


MARKET DEVELOPMENT PARTNERS

WOODWORKS MANUFACTURER & SUPPLIER DIRECTORY

CONNECT WITH WOOD MANUFACTURERS.

PRODUCT INFORMATION, SALES RESOURCES & MORE.

Main Profile

improving both performance and profitability.

Weyerhaeuser.com or contact Wendy.Minichiello@weyerhaeuser.com.

Weyerhacuser produces all of the wood products and innovative solutions needed to build quality sinuctures. The company prides itself on its expertise and innovation, and the ability to help maternars solve problems while

To learn more about products such as TJI Joists, Parallam PSI, TimberStrand LSL, Microllam LVL, OSB, and panels, VISB

Current State of Mass Timber Projects

As of March 2021, in the US, **1,114** multi-family, commercial, or institutional projects have been constructed with, or are in design with, mass timber.

UPCOMING ONLINE EVENTS

WEBINARS

July 14 | Save the Date

August 11 | Save the Date

WORKSHOPS & SYMPOSIUMS

July 22 & 27 | A Detailing Deep Dive: Fire, Acoustics and Structural Detailing in Mid-Rose Multi-Family
August 20 | Construction Management Workshop
November 4 | Symposium – Save the Date

Visit www.woodworks.org for a complete list

"The Wood Products Council" is a Registered Provider with The American Institute of Architects Continuing Education Systems (AIA/CES), Provider #G516.

Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request. This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Course Description

Innovative mass timber buildings are experiencing significant growth in both market opportunity and height with the new 2021 International Building Code tall wood code provisions. Growing this industry requires an understanding from both designers and seasoned construction professionals of how to construct efficiently, navigate jurisdictions new to mass timber, and manage the procurement risks to deliver the dream of a new and optimized building system. This presentation will address how the development, architectural, engineering, and construction community can achieve success with mass timber projects of various scales and typologies.

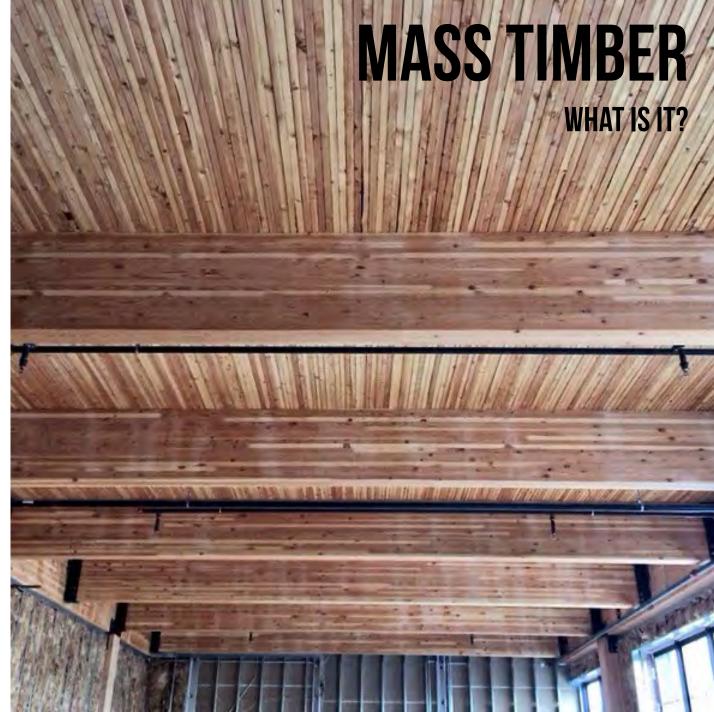
Learning Objectives

- 1. Explore benefits of mass timber, including fast construction, labor savings, light weight, aesthetic value, and wood's contributions to a healthy indoor environment.
- 2. Discuss opportunities presented by the new construction types for tall wood buildings, along with associated code-compliance and fire life safety considerations, challenges, and tips for successful project delivery.
- 3. Use case study presentations to illustrate innovative and code-compliant examples of mass timber projects throughout the U.S., highlighting strategies for MEP routing and grid layout.
- 4. Explore best practices for interaction between manufacturer, design team and preconstruction manager that can lead to cost efficiency and safety on site.

PRESENTATION OUTLINE

1. MASS TIMBER OVERVIEW

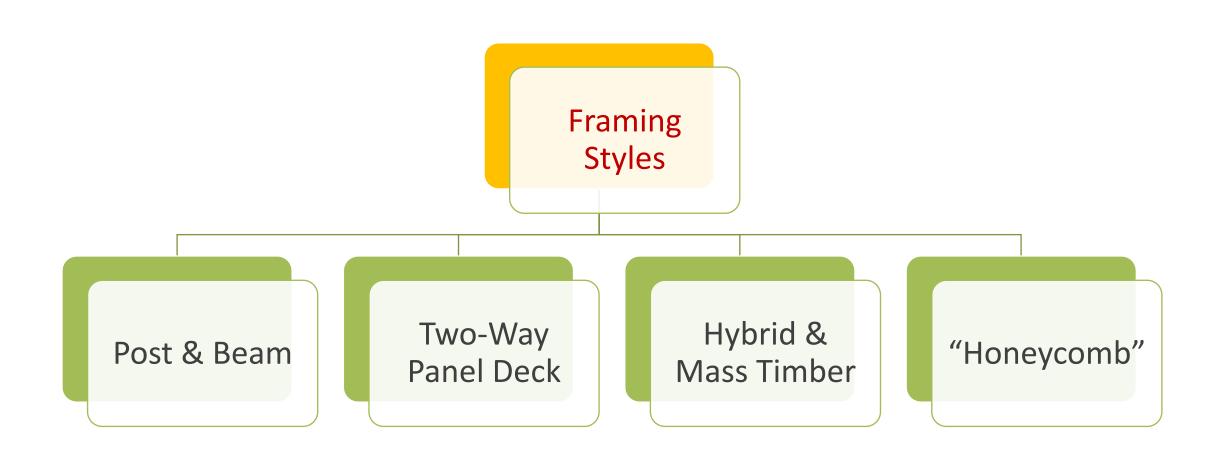
2. TALL WOOD PROVISIONS

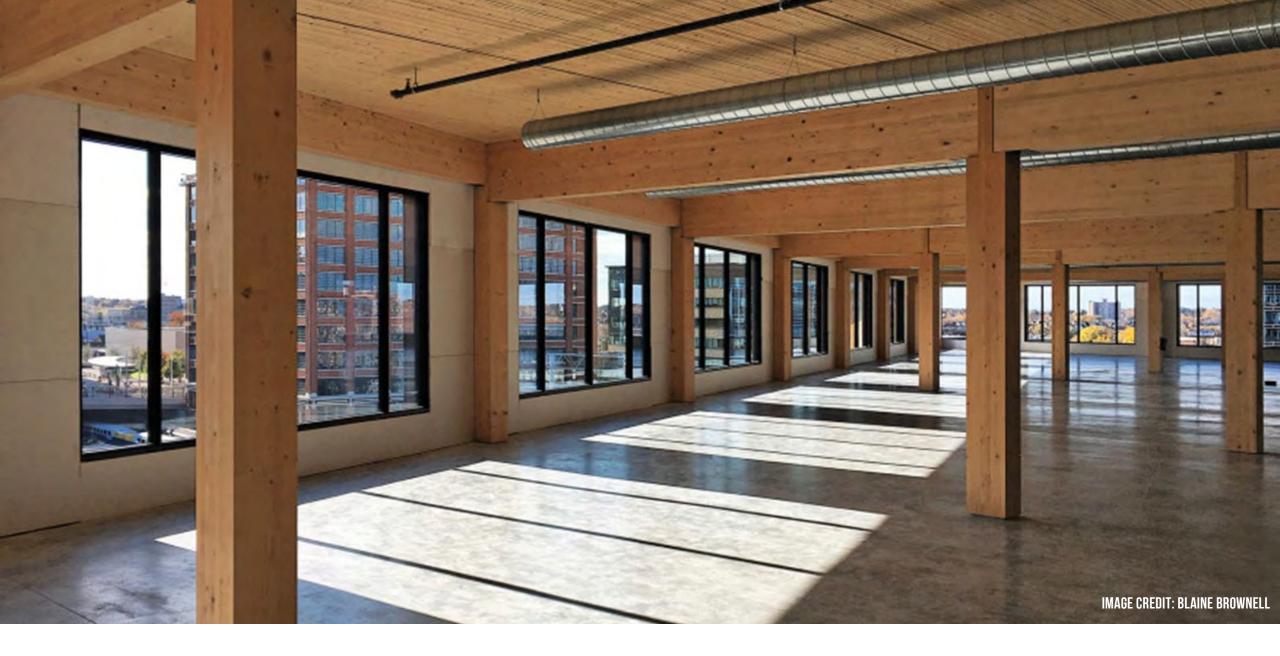

3. CONSTRUCTION MANAGEMENT

4. BUSINESS CASE FOR MASS TIMBER

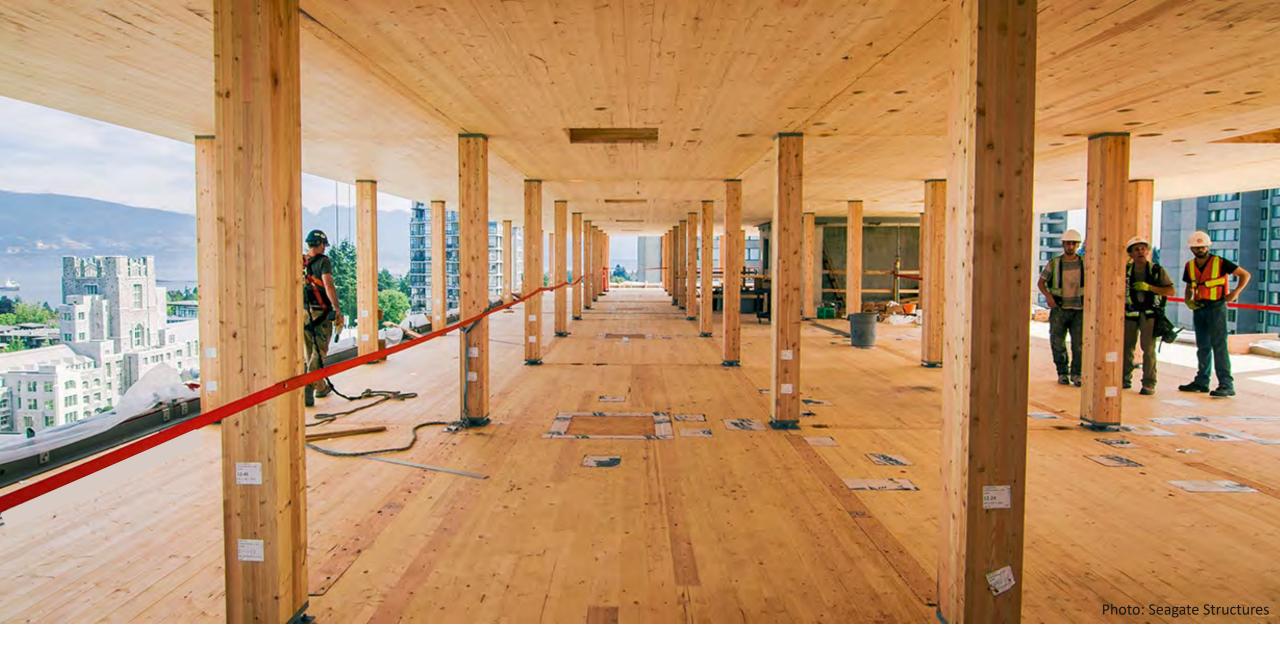
MASS TIMBER OVERVIEW

MASS TIMBER IS A CATEGORY OF FRAMING STYLES OFTEN USING SMALL WOOD MEMBERS FORMED INTO LARGE PANELIZED SOLID WOOD CONSTRUCTION INCLUDING CLT, NLT OR GLULAM PANELS FOR FLOOR, **ROOF AND WALL FRAMING**


HEAVY TIMBER

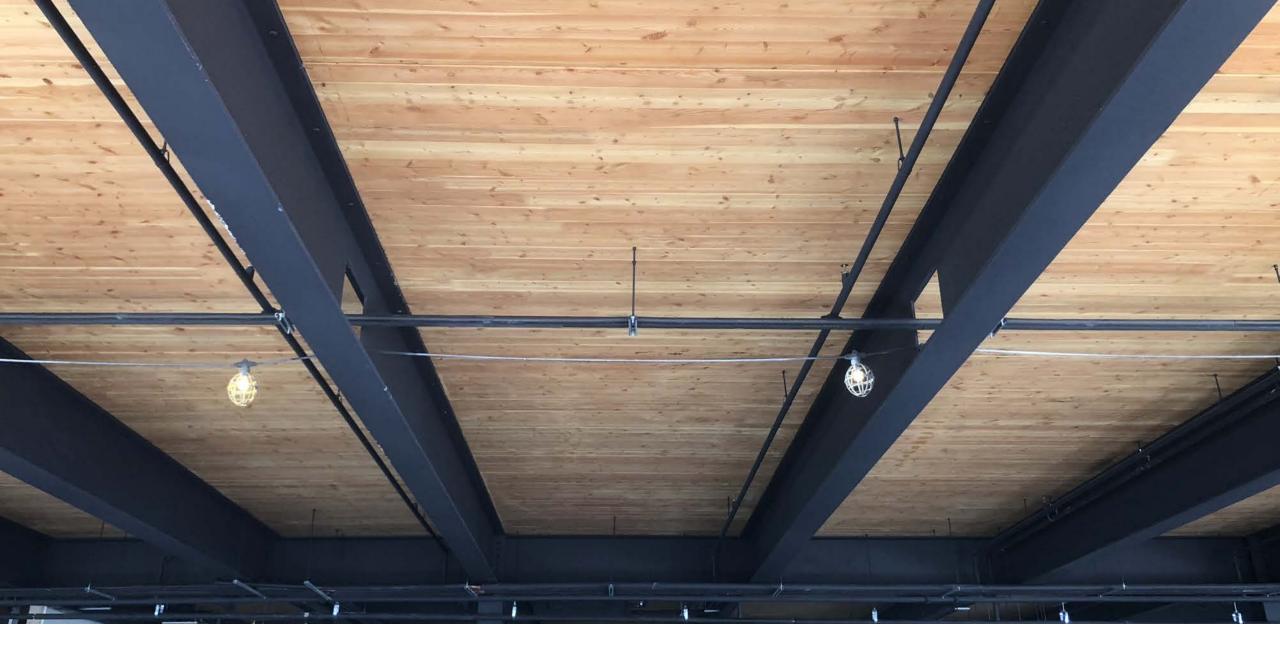

Federal Center South, Seattle, WA Photo: Benjamin Benschneider

MASS TIMBER


Bullitt Center, Seattle, WA Photo: John Stamets

Mass Timber Framing Systems

STRUCTURAL SOLUTIONS | POST, BEAM + PLATE


STRUCTURAL SOLUTIONS | POST + PLATE

STRUCTURAL SOLUTIONS | HONEYCOMB

STRUCTURAL SOLUTIONS | HYBRID LIGHT-FRAME + MASS TIMBER

FRAMING OPTIONS | HYBRID STEEL + MASS TIMBER

Glue Laminated Timber (Glulam) Beams & columns

Cross-Laminated Timber (CLT) Solid sawn laminations

Cross-Laminated Timber (CLT) SCL laminations

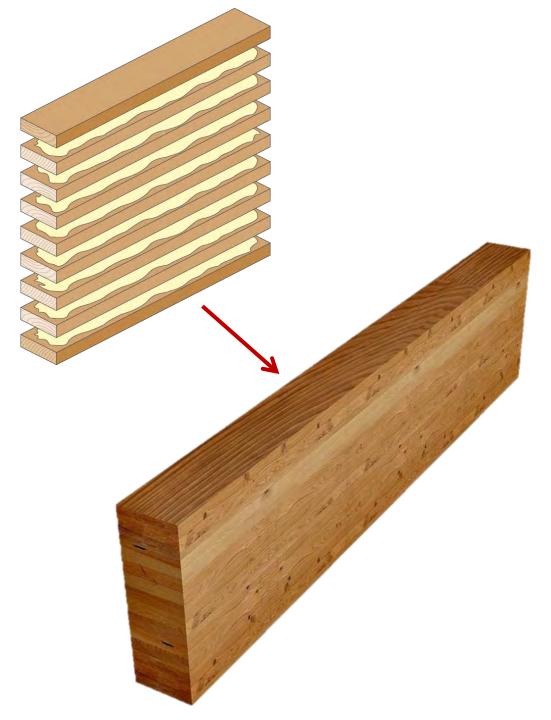
Dowel-Laminated Timber (DLT)

Photo: StructureCraft

Nail-Laminated Timber (NLT)

Glue-Laminated Timber (GLT) Plank orientation

Photo: Think Wood


Photo: StructureCraft

Glue Laminated Timber (GLT)

Photo: Manasc Isaac Architects/Fast + Epp

Nail-Laminated Timber (NLT)

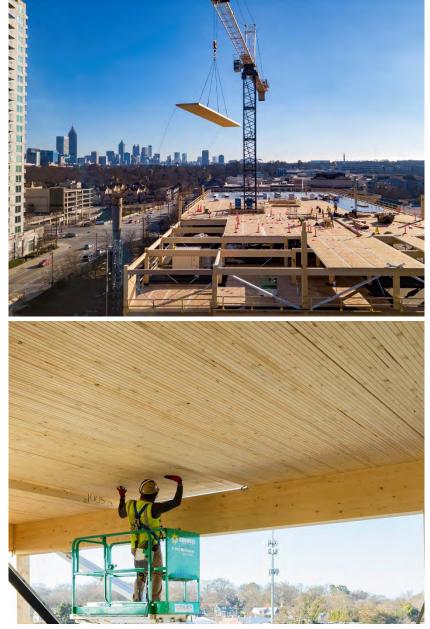


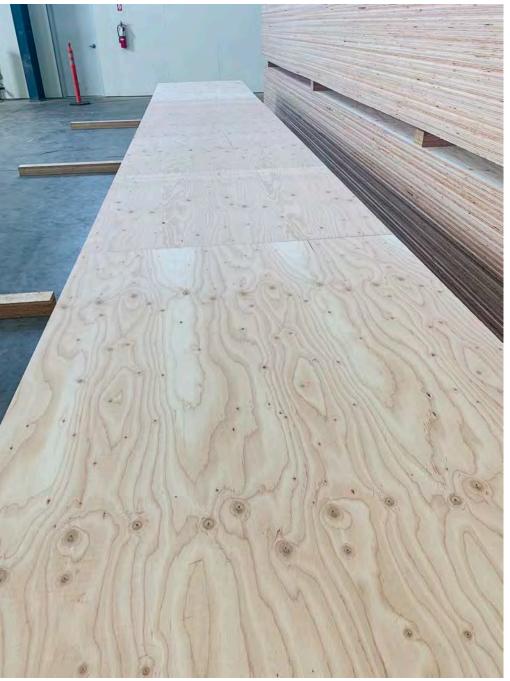
Image Credit: Ema Peter

PRECEDENT PROJECTS | T3 MINNEAPOLIS

Dowel-Laminated Timber (DLT)

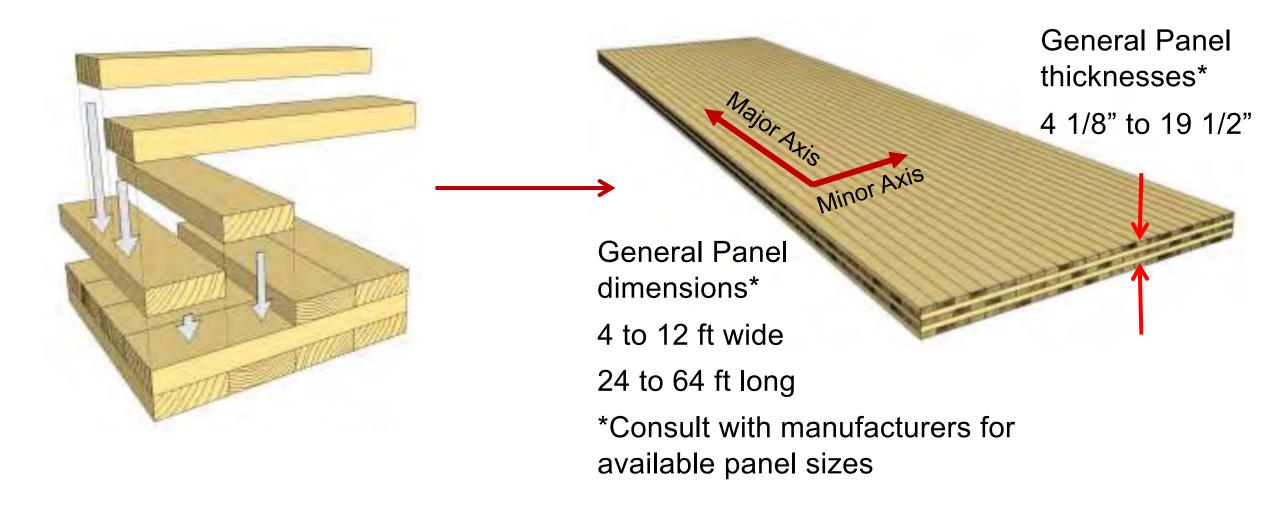
Photos: StructureCraft

Photo: Hartshorne Plunkard Architecture


PRECEDENT PROJECTS | T3 ATLANTA

Cross-Laminated Timber (CLT) - Solid sawn laminations

Cross-Laminated Timber (CLT) - with SCL laminations


123

Win

Fis

Cross-Laminated Timber (CLT)

With solid sawn laminations

MASS TIMBER PRODUCTS

CLT PANEL FABRICATION

CROSS-LAMINATED TIMBER (CLT)

ALBINA YARD

4 STORIES 16,000 SF GREEN ROOF

IMAGE CREDIT: LEVER ARCHITECTURE

ONE DE HARO

4 STORIES SAN FRANCISCO, CA 130,000 SIGNIFICANT SAVINGS ON FOUNDATION COSTS WITH MASS TIMBER

OVERVIEW | MANUFACTURING

OVERVIEW | CONNECTIONS

Concealed Connectors

Self Tapping Screws

Photos: Rothoblaas

MASS TIMBER DESIGN

CONNECTIONS

OVERVIEW | CONNECTIONS

Photo: Alex Schreyer

OVERVIEW | CONNECTIONS

Panel to Panel & Supports

Photo: Charles Judd

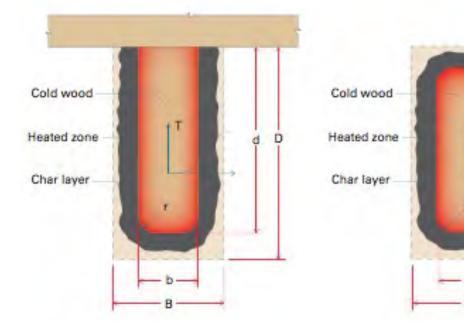
Photo: Alex Schreyer

Common mass timber floor assembly:

- Finish floor (if applicable)
- Underlayment (if finish floor)
- 1.5" to 3" thick concrete/gypcrete topping
- Acoustical mat
- WSP (if applicable)
- Mass timber floor panels

MASS TIMBER DESIGN

BUILDING CODE APPLICATIONS | FIRE RESISTANCE


Table 16.2.1AChar Depth and Effective CharDepth (for $\beta_n = 1.5$ in./hr.)

Mass Timber's Fire-Resistive Performance is Well-Tested, Documented and Recognized via Code Acceptance

d D

Required Fire Resistance (hr.)	Char Depth, a _{char} (in.)	Effective Char Depth, a _{eff} (in.)
1-Hour	1.5	1.8
1 ¹ / ₂ -Hour	2.1	2.5
2-Hour	2.6	3.2

Source: AWC's NDS

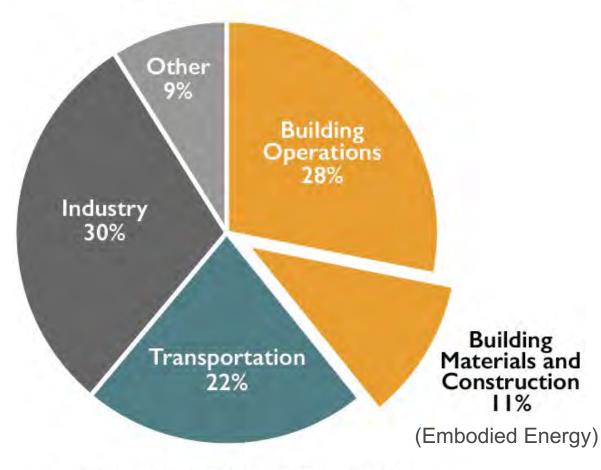
MASS TIMBER DESIGN

FIRE RESISTANCE

FOR EXPOSED WOOD MEMBERS: IBC 722.1 REFERENCES AWC'S NDS CHAPTER 16 (AWC'S TR 10 IS A DESIGN AID TO NDS CHAPTER 16)

MERCAN WOOD COLING	NATIONAL DESIGN SPECIFICATION FOR WOOD CONSTRUCTION 249	NDS e
Rational Design Specification* for Wood Construction 2015 EDITION	16.1 General 150 16.2 Design Procedures for Exposed Wood Members 150 16.3 Wood Connections 151 16.4 Wood Connections 151 Table 16.2.1 Effective Char Rates and Char Layer Thicknesses (for $\beta_s = 1.5$ in./hr.) 150 Table 16.2.2 Adjustment Factors for Fire Design	Calculating the Fire Resistance of Wood Members and Assemblies Technical Report No. 10
ANES/ ANC NDS-2015	Copyright S American Wood Council. Downloaded printed pursuant to Learner Agreement, No further reproductions authorizant. AVERICAN WOOD COUNCIL	

Global Population Increase

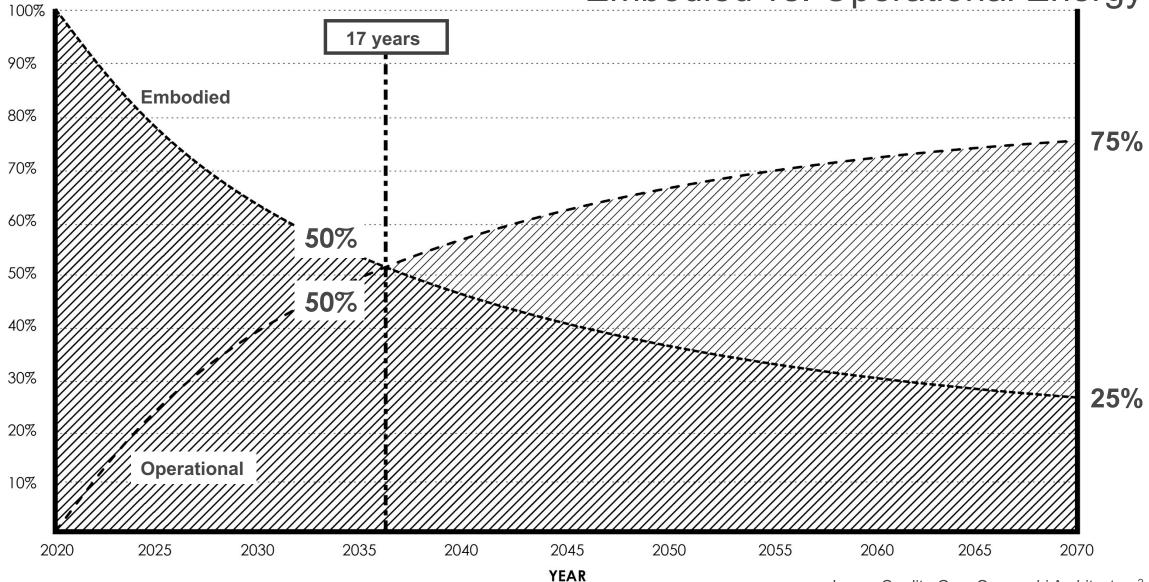

2050 = 11.2 billion people

2019 = 7.7 billion people

Source: https://ourworldindata.org/future-population-growth

New Buildings & Greenhouse Gases

Global CO₂ Emissions by Sector


Buildings generate nearly 40% of annual global greenhouse gas emissions (*building operations + embodied energy*)

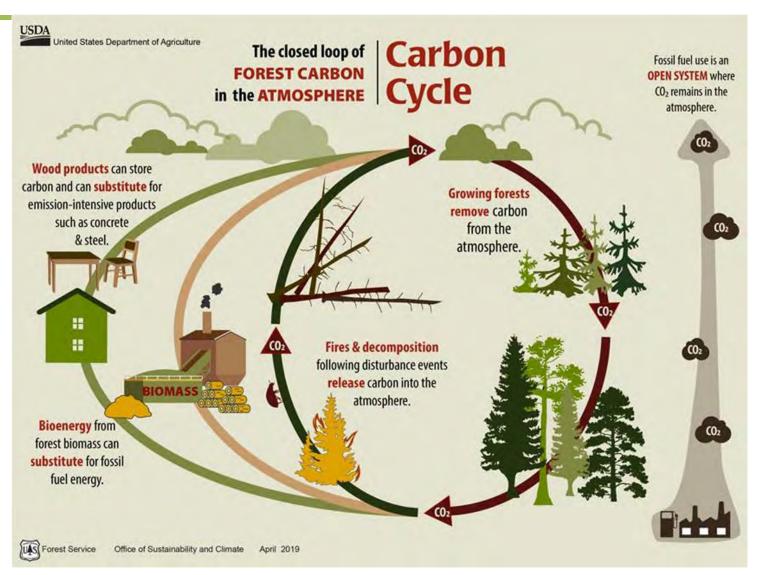
Embodied Energy (11%): Concrete, iron + steel produce approximately 9% of this (Architecture 2030)

Source: © 2018 2030, Inc. / Architecture 2030. All Rights Reserved. Data Sources: UN Environment Global Status Report 2017; EIA International Energy Outlook 2017

Image: Architecture 2030

Embodied vs. Operational Energy

% Energy


Image Credit: Gray Organschi Architecture²

Carbon Storage Wood ≈ 50% Carbon (dry weight)

Carbon Benefits of Wood

- Less energy intensive to manufacture than steel or concrete
- Less fossil fuel consumed
 during manufacture
- Avoid process emissions
- Carbon storage in forests and promote forest health
- Extended carbon storage in products

Image: USDA US Forest Service

Biophilia - Structural Warmth is a Value-Add

Construction Impacts: Labor Availability

MASS TIMBER APPEAL REDUCED CONSTRUCTION TIME

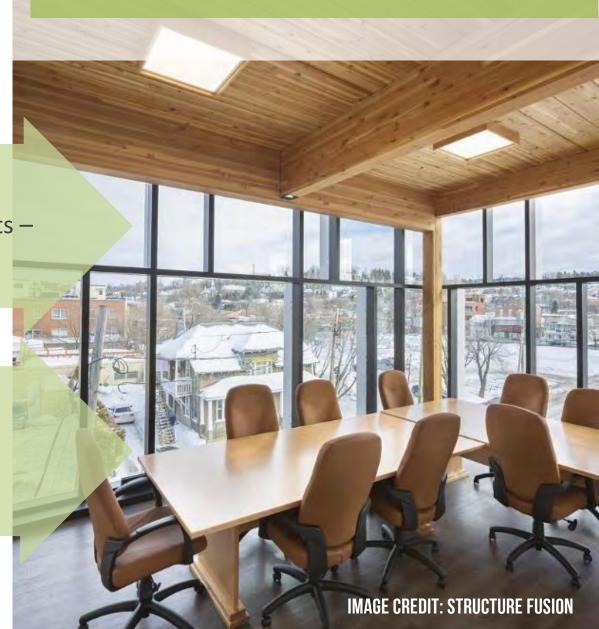
1 Floor = 3 Days

17 Floors Erected in 9.5 Weeks

Brock Commons, Vancouver, BC Source: naturally:wood⁵

MASS TIMBER APPEAL

75% LIGHTER WEIGHT THAN CONCRETE SOURCE: STRUCTURLAM⁷


MARKET DRIVERS FOR MASS TIMBER

PRIMARY DRIVERS

- » Construction Efficiency & Speed
- » Construction site constraints Urban Infill
- » Innovation/Aesthetic

SECONDARY DRIVERS

 » Carbon Reductions
 » Structural Performance – lightweight

Tall Wood Provisions

PILL

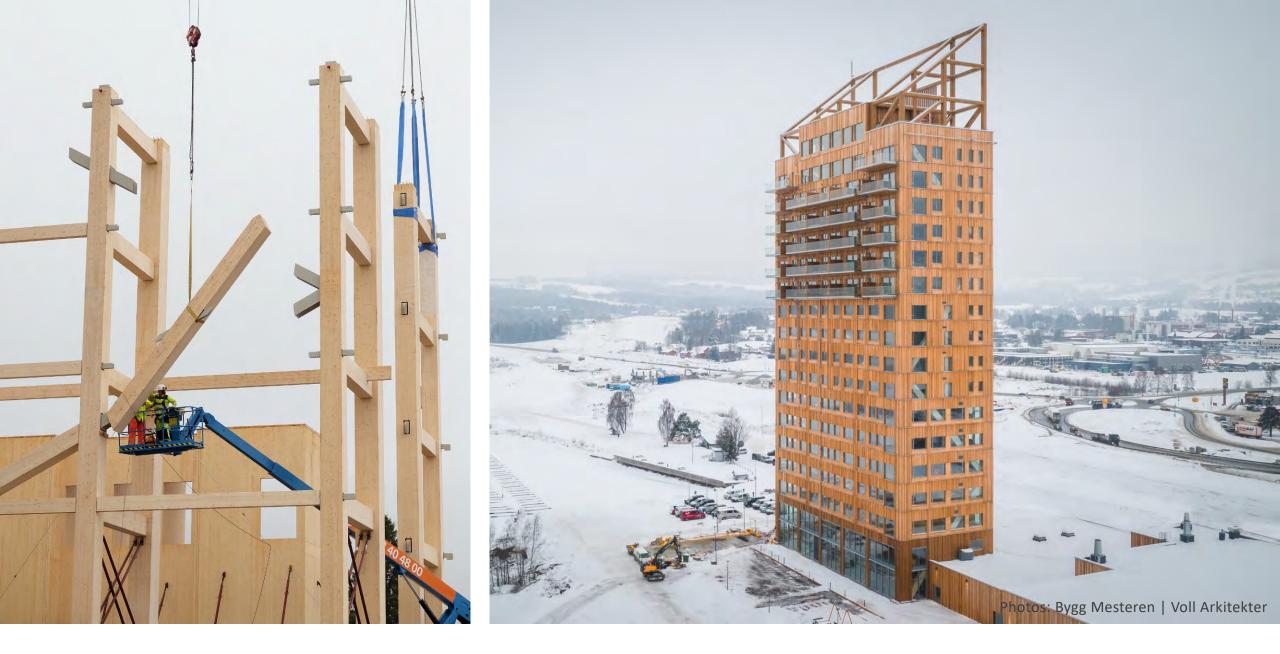

Presented by Mike Romanowski, SE

Photo: Kaiser+Path

Questions we'll answer:

- What is tall wood?
- How tall is tall?
- What has been done?
- What wood products are used in tall wood?
- What does the Code allow now?
- How did we arrive at the proposed tall wood code changes?
- What are the new tall wood code provisions?

MJOSTARNET, NORWAY

18 STORIES | 280 FT

HOHO, AUSTRIA

24 STORIES | 275 FT

BROCK COMMONS, BRITISH COLUMBIA

18 STORIES | 174 FT

Photos: Baumberger Studio/PATH Architecture/Marcus Kauffman | Architect: PATH Architecture

CARBON12, PORTLAND, OR

8 STORIES | 85 FT

ASCENT, MILWAUKEE

artinine IIIII

Photo: Korb & Associates Architects | Architect: Korb & Associates Architects

T

INTRO, CLEVELAND

9 Stories | 115 ft 8 Timber Over 1 Podium

512;000 SF III CARE HAVANA 297 Apartments, Mixed-Use

Photo: Harbor Bay Real Estate Advisors, Image Fiction | Architect: Hartshorne Plunkard Architecture

BOOKING FOR EARLY 202

80 M ST, WASHINGTON, DC

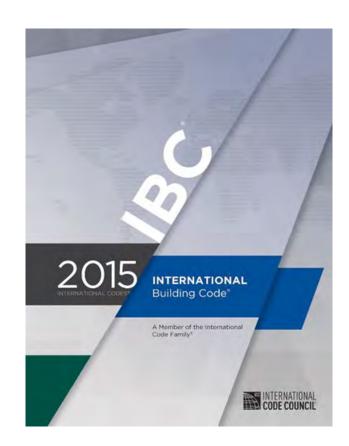
3 STORY OVER-BUILD ON EXISTING 7 STORY BUILDING

Photo: Hickok Cole | Architect: Hickok Cole

U.S. BUILDING CODE STATUS

» Current Prescriptive Code Limit - 6 stories (B occupancy) or 85 feet

» Over 6 Stories - Alternate Materials and Methods Request (AMMR) through performance-based design


» Based on the 1910 Heights and Areas Act

U.S. TALL WOOD DEVELOPMENT AND CHANGES

Seen as the catalyst for the mass timber revolution, CLT is first recognized in US codes in the 2015 IBC

[BS] CROSS-LAMINATED TIMBER. A prefabricated engineered wood product consisting of not less than three layers of solid-sawn lumber or *structural composite lumber* where the adjacent layers are cross oriented and bonded with structural adhesive to form a solid wood element.

2303.1.4 Structural glued cross-laminated timber. Crosslaminated timbers shall be manufactured and identified in accordance with ANSI/APA PRG 320.

U.S. TALL WOOD DEVELOPMENT AND CHANGES

In December 2015, the ICC Board established the ICC Ad Hoc Committee (AHC) on Tall Wood Buildings. Objectives:

- 1. Explore the building science of tall wood buildings
- 2. Investigate the feasibility of tall wood buildings
- 3. Take action on developing code changes for tall wood buildings

Taller wood buildings create new set of challenges to address:

AHC established 6 performance objectives:

- 1. No collapse under reasonable scenarios of complete burn-out of fuel without automatic sprinkler protection being considered.
- 2. Highly reliable fire suppression systems to reduce the risk of failure during reasonably expected fire scenarios. The degree of reliability should be proportional to evacuation time (height) and the risk of collapse.

Performance Objectives

- 3. No unusually high radiation exposure from the subject building to adjoining properties to present a risk of ignition under reasonably severe fire scenarios.
- 4. No unusual response from typical radiation exposure from adjacent properties to present a risk of ignition of the subject building under reasonably severe fire scenarios.

Performance Objectives

- 5. No unusual fire department access issues.
- Egress systems designed to protect building occupants during the design escape time, plus a factor of safety.

U.S. BUILDING CODES Tall Wood Ad Hoc Committee

Commissioned series of 5 full-scale tests on 2-story mass timber structure at ATF lab in MD, May-June 2017

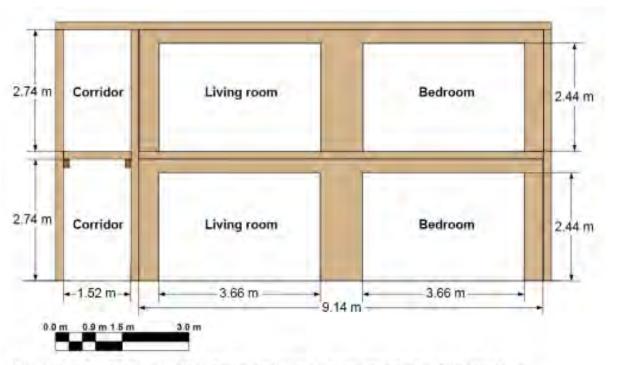


Figure 2. Elevation view of the front of the cross-laminated timber test structure.

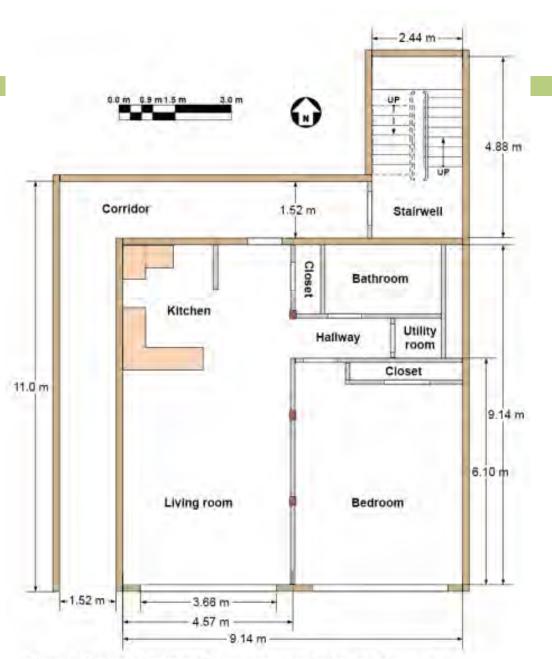


Figure 1. General plan view of cross-laminated timber test structure.

U.S. BUILDING CODES Tall Wood Ad Hoc Committee

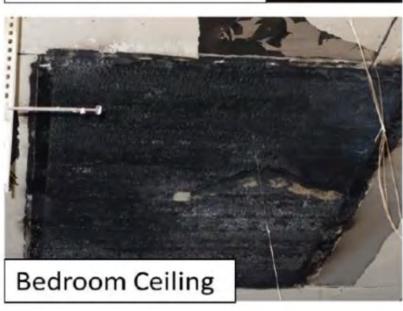
Test	Description	Construction Type
Test 1	All mass timber surfaces protected with 2 layers of 5/8" Type X Gypsum. No sprinklers.	IV-A
Test 2	30% of CLT ceiling area in living room and bedroom exposed. No sprinklers.	IV-B
Test 3	Two opposing CLT walls exposed – one in bedroom and one in living room. No sprinklers.	IV-B
Test 4	All mass timber surfaces fully exposed in bedroom and living room. Sprinklered – normal activation.	IV-C
Test 5	All mass timber surfaces fully exposed in bedroom and living room. Sprinklered – 20 minute delayed activation.	IV-C

TEST 1 (100% GWB protection, no sprinklers)

Photos provided by U.S. Forest Products Laboratory, USDA

Source: AWC

TEST 2 (partial GWB protection, no sprinklers)


Photos provided by U.S. Forest Products Laboratory, USDA

Living Room / Kitchen Flashover

Source: AWC

TEST 3 (partial GWB protection, no sprinklers)

Kitchen Flashover

Photos provided by U.S. Forest Products Laboratory, USDA

Source: AWC

TEST 4

All mass timber surfaces fully exposed in bedroom and living room.

Sprinkler – normal activation

Source: AWC

Photos provided by U.S. Forest Products Laboratory, USDA

36

TEST 5

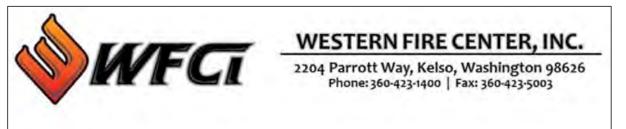
All mass timber surfaces <u>fully exposed</u> in bedroom and living room.

Sprinkler – activation delayed for 20 minutes after smoke detector activation...approximately 23-1/2 minutes from ignition

Although not directly affiliated with the TWB AHC, other mass timber and tall wood testing & research was occurring, the results of which the AHC included in their final decisions

Fire Safety Challenges of Tall Wood Buildings – Phase 2: Task 5 – Experimental Study of Delamination of Cross Laminated (CLT) Timber in Fire

SOUTHWEST RESEARCH INSTITUTE


220 CULEBRA ROAD 78238-5166 . P.O. DRAWER 28510 78228-0510 . SAN ANTONIO, TEXAS, USA . (210) 684-5111 . WWW.SWRI ORG

CHEMISTRY AND CHEMICAL ENGINEERING DIVISION

IRE TECHNOLOGY DEPARTMENT WWW.FIRE.SWRI.ORG FAX (210) 522-3377

DEVELOPMENT OF A FIRE PERFORMANCE ASSESSMENT METHODOLOGY FOR QUALIFYING CROSS-LAMINATED TIMBER ADHESIVES

Fire Resistance Testing of CLT Floor/Ceiling Assemblies to Establish Contribution of Gypsum Protection

TALL WOOD APPROVED!

Unofficial results posted Dec. 19, 2018 Final votes ratified Jan. 31, 2019 AWC: Tall Mass Timber code changes get final approval

Dec 19, 2018

LEESBURG, VA. – The International Code Council (ICC) has released the unofficial voting results on code change proposals considered in 2018, including passage of the entire package of 14 tail mass imber code change proposals. The proposals create three new types of construction (Types IV-A, IV-B and IV-C), which set fire safety requirements, and allowable heights, areas and number of stories for tall mass timber buildings. Official results are expected to be announced during the first quarter of 2019. The new provisions will be included in the 2021 *International Building Code* (IBC).

"Mass timber has been capturing the imagination of architects and developers, and the ICC result means they can now turn sketches into reality. ICC's rigorous study, testing and voting process now recognizes a strong, low-carbon alternative to traditional tall building materials used by the building

SO WHAT'S CHANGED??

Since its debut, IBC has contained 9 construction type options

5 Main Types (I, II, III, IV, V) with all but IV having sub-types A and B

TYPE I		TYI	PE II	TYP	EIII	TYPE IV	TYP	PEV
Α	В	Α	В	Α	В	HT	Α	В

U.S. BUILDING CODES Tall Wood Construction Types

Three Main Categories:

- 1. Noncombustible (Types I and II)
- 2. Light-Frame (Types III and V)
- 3. <u>Heavy/Mass Timber (Type IV)</u>

Use of heavy/mass timber products in low- to mid-rise buildings of Types III and V construction is very common

U.S. BUILDING CODES Tall Wood Ad Hoc Committee

2021 IBC Introduces 3 new tall wood construction types:

IV-A, IV-B, IV-C

Previous type IV renamed type IV-HT

BUILDING	TYPE	1	TYPE	0	TYPE	Ш	TYPE	IV			TYPE	V
ELEMENT	Α	В	Α	В	Α	В	Α	В	С	HT	Α	В

Credit: Susan Jones, atelierjones

*BUILDING FLOOR-TO-FLOOR HEIGHTS ARE SHOWN AT 12'-0" FOR ALL EXAMPLES FOR CLARITY IN COMPARISON BETWEEN 2015 TO 2021 IBC CODES.

BUSINESS OCCUPANCY [GROUP B]

Type IV-A

18 STORIESBUILDING HEIGHT270'ALLOWABLE BUILDING AREA972,000 SFAVERAGE AREA PER STORY54,000SF

TYPE IV-A

Credit: Susan Jones, atelierjones

Photos: Structurlam, naturally:wood, Fast + Epp, Urban One

Type IV-A Protection vs. Exposed

18 STORIESBUILDING HEIGHT270'ALLOWABLE BUILDING AREA972,000 SFAVERAGE AREA PER STORY54,000SF

TYPE IV-A

Credit: Susan Jones, atelierjones

100% NC protection on all surfaces of Mass Timber

IBC Type IV-A Height and Area Limits

18 STORIESBUILDING HEIGHT270'ALLOWABLE BUILDING AREA972,000 SFAVERAGE AREA PER STORY54,000SF

TYPE IV-A

Occupancy Height Building # of Area per **Stories** Story Area 270 ft 135,000 SF 405,000 SF A-2 18 324,000 SF 972,000 SF B 18 270 ft 184,500 SF Μ 12 270 ft 553,500 SF **R-2** 553,500 SF 184,500 SF 18 270 ft

Areas exclude potential frontage increase

In most cases, Type IV-A height & story allowances = 1.5 × Type I-B height & story allowances

Type IV-A area = 3 × Type IV-HT area

Type IV-B

12 STORIESBUILDING HEIGHTALLOWABLE BUILDING AREAAVERAGE AREA PER STORY54,000SF

TYPE IV-B

Credit: Susan Jones, atelierjones

Credit: LEVER Architecture

Type IV-B Protection vs. Exposed

12 STORIES BUILDING HEIGHT 180 FT ALLOWABLE BUILDING AREA 648,000 SF AVERAGE AREA PER STORY 54,000SF

TYPE IV-B

NC protection on all surfaces of Mass Timber except limited exposed areas

≈20% of ceiling or ≈40% of wall can be exposed, see code for requirements

IBC Type IV-B Height and Area Limits

12 STORIESBUILDING HEIGHTALLOWABLE BUILDING AREA648,000 SFAVERAGE AREA PER STORY54,000SF

TYPE IV-B

Credit: Susan Jones, atelierjones

Occupancy	# of Stories	Height	Area per Story	Building Area
A-2	12	180 ft	90,000 SF	270,000 SF
В	12	180 ft	216,000 SF	648,000 SF
Μ	8	180 ft	123,000 SF	369,000 SF
R-2	12	180 ft	123,000 SF	369,000 SF

Areas exclude potential frontage increase

In most cases, Type IV-B height & story allowances = Type I-B height & story allowances

Type IV-B area = 2 × Type IV-HT area

Type IV-C

9 STORIES BUILDING HEIGHT 85' ALLOWABLE BUILDING AREA 405,000 SF AVERAGE AREA PER STORY 45,000 SF

TYPE IV-C

Photos: Baumberger Studio/PATH Architecture/Marcus Kauffman

Credit: Susan Jones, atelierjones

Type IV-C Protection vs. Exposed

9 STORIES BUILDING HEIGHT 85' ALLOWABLE BUILDING AREA 405,000 SF AVERAGE AREA PER STORY 45,000 SF

TYPE IV-C

All Mass Timber surfaces may be exposed

Exceptions: Shafts, concealed spaces, outside face of exterior walls

Credit: Susan Jones, atelierjones

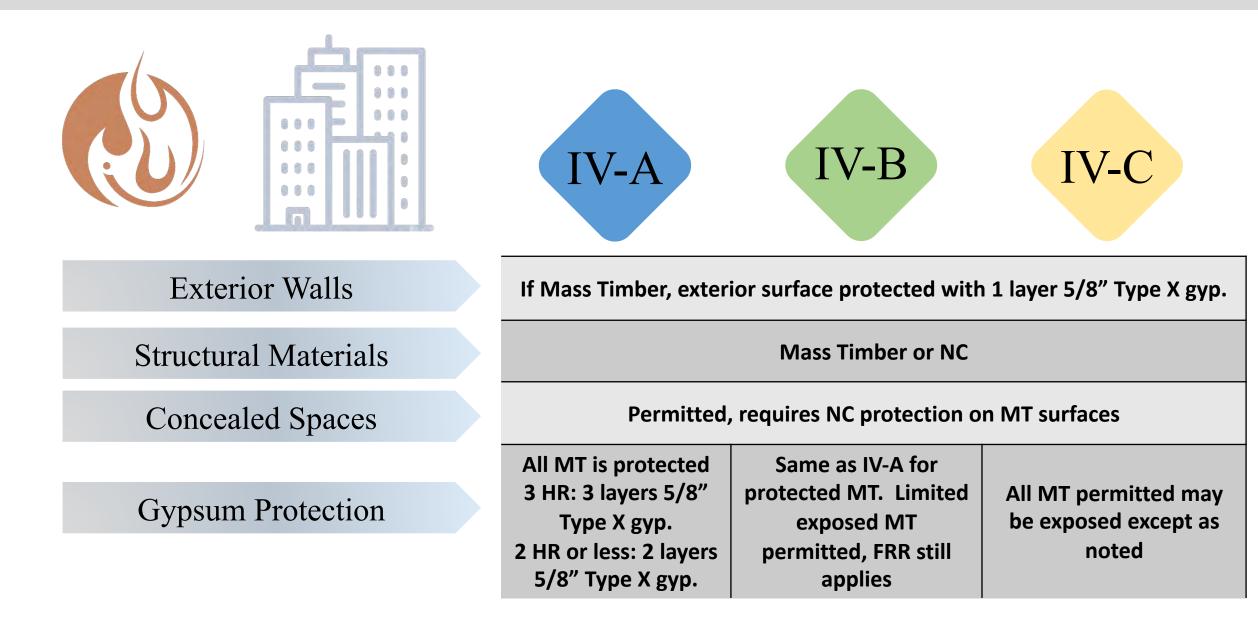
IBC Type IV-C Height and Area Limits

9 STORIES BUILDING HEIGHT 85' ALLOWABLE BUILDING AREA 405,000 SF AVERAGE AREA PER STORY 45,000 SF

TYPE IV-C

Credit: Susan Jones, atelierjones

Occupancy	# of Stories	Height	Area per Story	Building Area
A-2	6	85 ft	56,250 SF	168,750 SF
В	9	85 ft	135,000 SF	405,000 SF
Μ	6	85 ft	76,875 SF	230,625 SF
R-2	8	85 ft	76,875 SF	230,625 SF


Areas exclude potential frontage increase

In most cases, Type IV-C height allowances = Type IV-HT height allowances, but add.'I stories permitted due to enhanced FRR Type IV-C area = 1.25 × Type IV-HT area

Tall Wood Fire Resistance Ratings (FRR)

	IV-A	IV-B	IV-C
Primary Frame or Brg Wall FRR	3 HR (2 HR at Roof)	2 HR (1 HR at Roof)	2 HR (1 HR at Roof)
Floor Construction FRR	2 HR	2 HR	2 HR
Roof Construction FRR	1.5 HR	1 HR	1 HR
Floor Surface Protection	1 inch of NC protection on top	1 inch of NC protection on top	No protection req.'d
Roof Construction Protection	2 layers 5/8" Type X gyp. on underside	2 layers 5/8" Type X gyp. on underside	No protection req.'d unless concealed space

Tall Wood Materials & Protection

Tall Wood Buildings in the 2021 IBC Up to 18 Stories of Mass Timber

Scott Breneman, PhD, SE, WoodWorks – Wood Products Council • Matt Timmers, SE, John A. Martin & Associates • Dennis Richardson, PE, CBO, CASp, American Wood Council

In January 2019, the International Code Council (ICC) approved a set of proposals to allow tall wood buildings as part of the 2021 International Building Code (IBC). Based on these proposals, the 2021 IBC will include three new construction types—Type IV-A, IV-B and IV-C—allowing the use of mass timber or noncombustible materials. These new types are based on the previous Heavy Timber construction type (renamed Type IV-HT) but with additional fire-resistance ratings and levels of required noncombustible protection. The code will include provisions for up to 18 stories of Type IV-A construction for Business and Residential Occupancies.

Based on information first published in the Structural Engineers Association of California (SEAOC) 2018 Conference Proceedings, this paper summarizes the background to these proposals, technical research that supported their adoption, and resulting changes to the IBC and product-specific standards.

Background: ICC Tall Wood Building Ad Hoc Committee

Over the past 10 years, there has been a growing interest in tall buildings constructed from mass timber materials (Breneman 2013, Timmers 2015). Around the world there

WoodWorks Tall Wood Design Resource

http://www.woodworks.org/wp-content/uploads/wood_solution_paper-TALL-WOOD.pdf

	Padationa		
Via Cenni	Milan, Italy	9	2013

EARLY TALL WOOD CODE ADOPTION IN CALIFORNIA

2

California Building Standards Commission Passes Tall Wood Code Change Proposals

Source: Softwood Lumber Bo

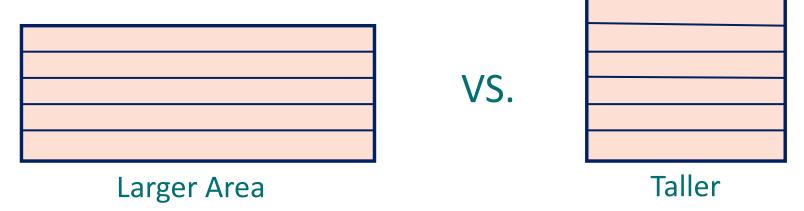
On August 13, 2020 the California Building Standards Commission grouped the tall wood code change proposals into one agenda item and passed them unanimously.

The changes were published as an amendment to the 2019 CBC on January 1, 2021 and will become effective on July 1, 2021.

California Building Standards Commission Passes Tall Wood Code Change Proposals

Source: Softwood Lumber Bo

"The early adoption of mass timber codes can be a benefit to California in many ways, but I would like to highlight three of those advantages in this proposal.


- 1. It has the potential to increase the market demand for mass timber production in California to meet the needs of the construction industry.
- 2. It will increase the pace and scale of our wildland fire prevention and forest management goals of treating 500 thousand acres per year by thinning the forest of smaller diameter trees that can be used in the production of cross laminated timber and other mass timber assemblies.
- 3. While wood products provide the benefit of storing carbon, another benefit or advantage is that mass timber construction can also help reduce the carbon footprint of concrete and steel production."
- Chief Mike Richwine, State Fire Marshal

CBC Tall Wood Building Size Limits

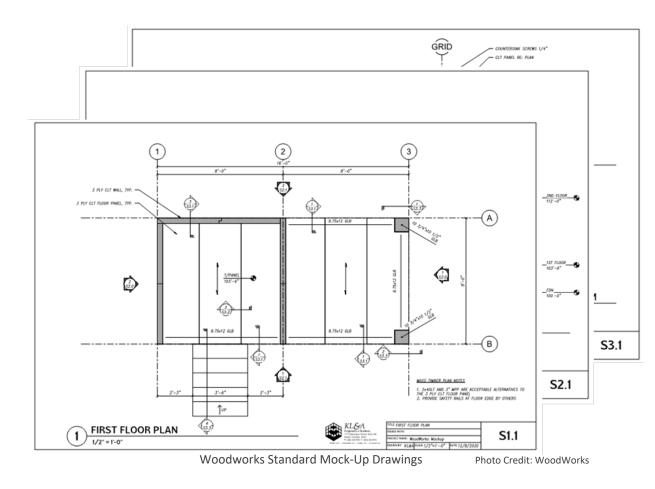
The CBC has historically not allowed "double-dipping" for sprinkler increases of building height and area for A, E, H, I, L or R occupancies. The IBC has no such restriction.

Also specific to the CBC, for multi-story buildings that are A, E, H, I, L or R occupancies, the total allowable building area is equal to the allowable floor area multiplied by the number of stories, not to exceed 2. In the IBC, this value is 3 for all occupancies.

This is also the case for Tall Wood.

CBC Tall Wood Building Size Limits

		Construction Type (Sprinklered Values)								
	I-A	I-B	<u>IV-A</u>	<u>IV-B</u>	IV-C	IV-HT	III-A			
Occupancies	Allowable Building Height above Grade Plane, Feet (CBC Table 504.3)									
B, F, M, S, U, R-3, R-4	Unlimited	180*	<u>270</u>	<u>180</u>	<u>85</u>	85	85			
A, E, R-1, R-2 (w/ area increase)	Unlimited	180 (160)	<u>270 (250)</u>	<u>180 (160)</u>	<u>85 (65)</u>	85 (65)	85 (65)			
		Allowabl	le Number of St	cories above Gr	ade Plane (CBC	C Table 504.4)				
A-2, A-3, A-4 (w/	Unlimited	12 (11)	<u>18 (17)</u>	<u>12 (11)</u>	<u>6 (5)</u>	4 (3)	4 (3)			
area increase)	ļ	<u>ا</u>	<u> </u>	<u> </u>	<u> </u> '					
В	Unlimited	12	<u>18</u>	<u>12</u>	<u>9</u>	6	6			
R-1, R-2 (w/ area	Unlimited	12 (11)	<u>18 (17)</u>	<u>12 (11)</u>	<u>8 (7)</u>	5 (4)	5 (4)			
increase)	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u> '					
		Allow	vable Area Fact	or (At) for SM,	, Feet ² (CBC Ta	able 506.2)				
A-1, A-2, A-3, A-4	Unlimited	Unlimited	<u>135,000</u>	<u>90,000</u>	<u>56,250</u>	45,000	42,000			
(w/ height increase)			<u>(45,000)</u>	<u>(30,000)</u>	<u>(18,750)</u>	(15,000)	(14,000)			
В	Unlimited	Unlimited	<u>324,000</u>	<u>216,000</u>	<u>135,000</u>	108,000	85,500			
R-1, R-2 (w/ height	Unlimited	Unlimited	<u>184,500</u>	<u>123,000</u>	<u>76,875</u>	61,500	72,000			
increase)		<u> </u>	<u>(61,500)</u>	<u>(41,000)</u>	<u>(25,625)</u>	(20,500)	(24,000)			


MASS TIMBER CONSTRUCTION MANAGEMENT

Construction Management Program 2021 Program Expansion and Beyond

https://www.woodworks.org/mass-timber-construction-management-program

MASS TIMBER | TRAINING THE WORKFORCE

Mass Timber Construction Management

THREE KEY POINTS:

- 1. Mass timber is a <u>custom building system</u>, not a commodity.
- 2. Select the right partners for your project, the earlier the better.
- 3. Assess projects holistically when estimating costs.

Holistic cost estimation to understand value of the whole building

\$/SF

Total Project Cost Analysis

CONSIDERATIONS:

- **Ceiling Treatment**
- **Floor Topping** •
- HVAC System & Route •
- **Foundation Size** •
- Soil Improvements •
- **Exterior Skin Coordination** •
- Value of Time

Contractual Considerations

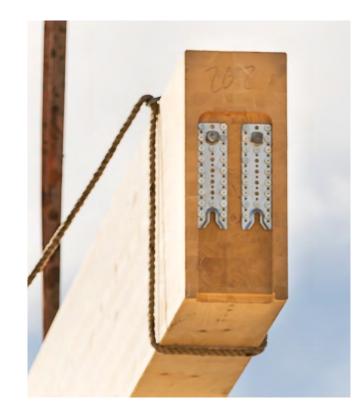

Avoid:

Design-bid-build

Consider:

- Design-assist
- Design-build

Embrace the Prefab Advantage

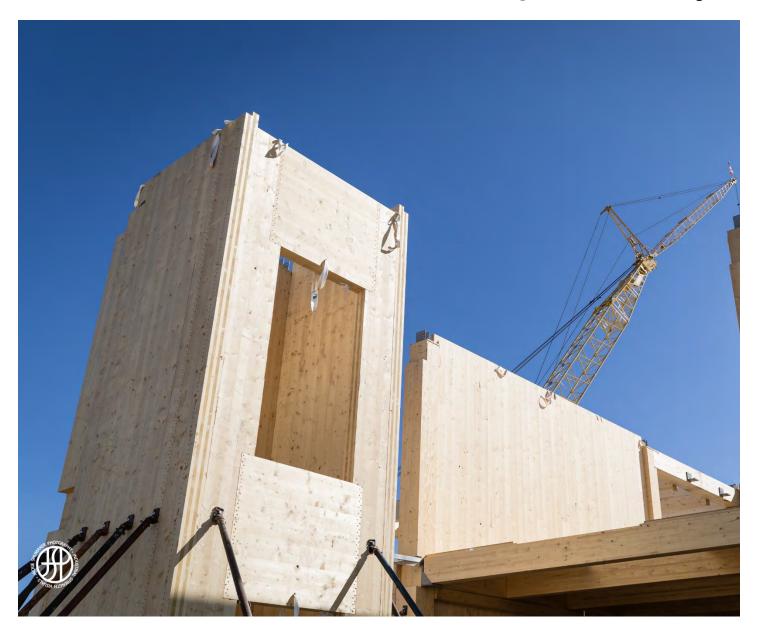

Photo: Swinerton

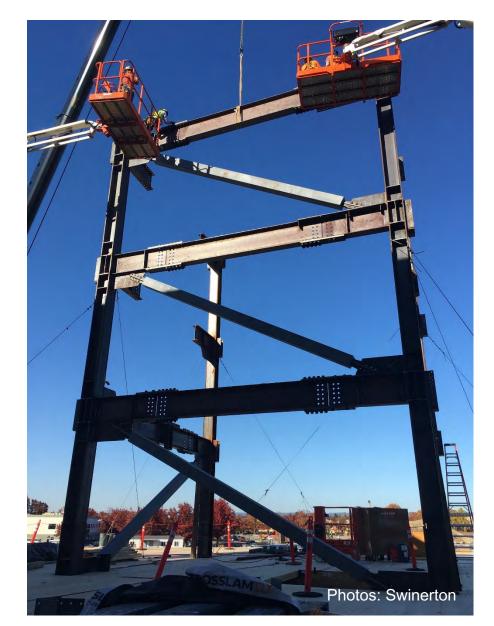
- Speed of construction
- Safety
- Quality control

Levels of prefabrication: effect on material and labor costs

or

Higher material cost **Lower** onsite labor cost


Tolerances: Interface with Other Structural Materials


- Tolerance differences
- Buildable details!

Schedule Impacts: Hybrid Structures

Schedule Savings for Rough-In Trades

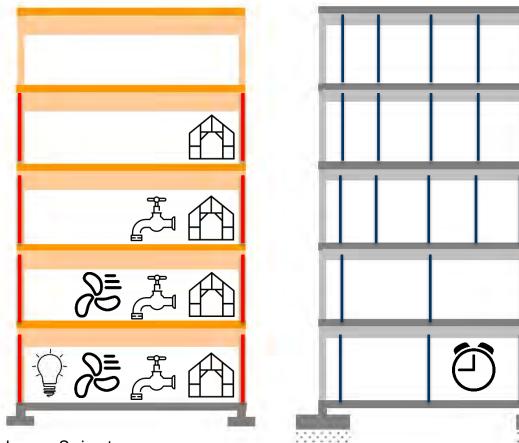


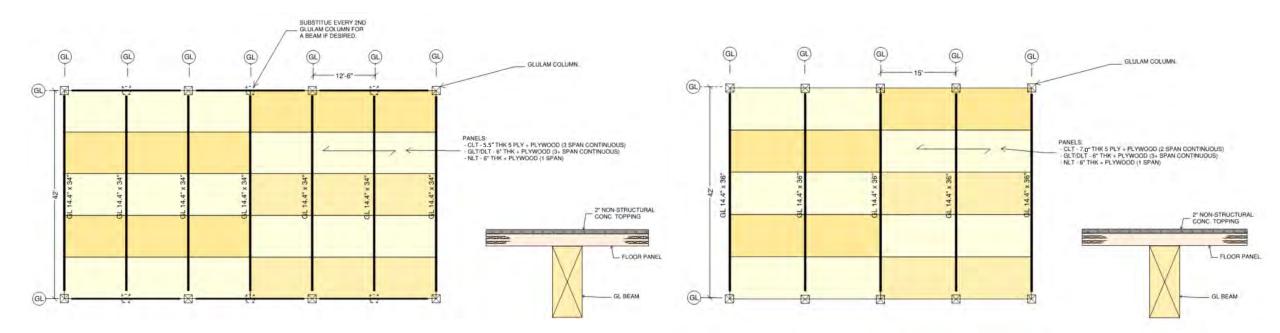
Photo: WoodWorks

Image: Swinerton

Value Analysis

Value Engineering Function Aesthetics Cost

Value Analysis


Value = Function + Aesthetics Cost

Structural Grid Considerations

Structural Grid Considerations

Baseline 12'-6" Glulam Spacing 5.5" CLT \$ +5% 15' Glulam Spacing 7" CLT

Source: Seattle Mass Timber Tower Book

PROJECT ASSISTANCE UPCOMING EVENTS CONT.

CONTACT US

5Harch

	GALLERY & AWARDS	DESIGN & TOOLS	PUBLICATIONS & MEDIA	WHY WOOD?	ABOUT
Home All Expert Tips					Project Australia

How can I create an efficient structural grid for a mass timber building?

Mass timber products such as cross-laminated timber (CLT), nail-laminated timber (NLT) and glue-laminated timber (glulam) are at the core of a revolution that is shifting how designers think about construction. At no time has materials selection been such an integral aspect of the building designer's daily responsibilities. In addition to its sustainability and light carbon footprint, mass timber has benefits that include enhanced aesthetics, speed of construction and light weight, all of which can positively impact costs. However, to convince building owners and developers that a mass timber solution is viable, the structural design must also be cost competitive. This requires a full understanding of both material properties and manufacturer capabilities.

Mast timber is commonly seen in projects such as offices, schools and tall mixed-use buildings, which often have assumed structural grids. Intended to meet the need for tenant flexibility, these "default" grids align with the capabilities of materials historically used—i.e., steel and concrete. When it comes to laying out a structural grid for mass timber, the square peg/round hole analogy is pertinent. Although a mass timber solution may work economically on many grids conducive to steel/concrete framing, some grid modification may be valuable. Trying to force a mass timber solution on a grid laid out for steel and concrete can result in member size inefficiencies while negating opportunities related to manufacturer capabilities. As such, it is critically important to design a mass timber building *as a mass timber building* from the start. This requires a thorough understanding of how to best lay out the structural grid, without sacrificing space functionality, to optimize member sizes—but there's more to cost efficiency than column spacing.

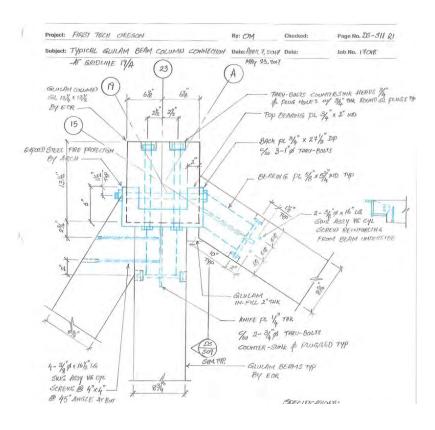
The following considerations are based on a post-and-beam frame for occupancies such as offices; however, many also apply to bearing wall-supported systems in other occupancy types.

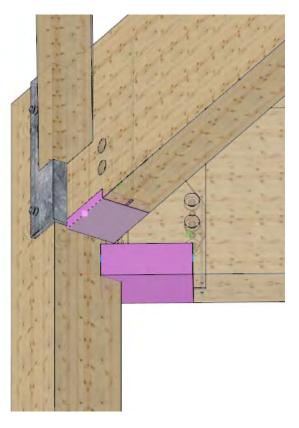
Grid Selection

Simplistically, there are two main grid options for mass timber buildings: square and rectangular. In deciding which to use, there are a number of factors to consider.

Our technical experts offer free project support from design through construction, on issues ranging from allowable heights and areas to structural design, lateral systems and fire- or acoustical-rated assemblies.

C & AUTOMOS


Ask an Expert


Q: What design and detailing considerations exist when splicing shear wall top plates at wall discontinuities?

A: Disruption of shear wall top plates can occur for many reasons—e.g., the presence of a continuous structural steel column within the wall, installation of plumbing vents, change in wall widths, or a slight jog in wall position. In some cases, a shear wall's top plates are used as chords and/or collectors for a diaphragm, meaning that discontinuities in the top plates create discontinuities in lateral load paths

Modeling

- Who is responsible?
- 2D or 3D?

Photos: Swinerton

QA/QC

- Starts with shop drawings, continues in field
- We are not fabricating onsite we are assembling onsite

BY STRUCTURLAM

NOO WATERN CON

ALBINETUSHINA CON

MITUNIC

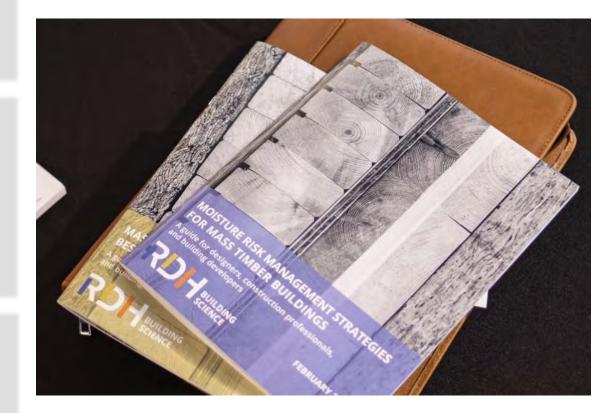
MAJAUTOU

Material Protection

Painting steel Taping joints Protect end cuts of timber

Moisture Management Resources: Keep Wood Dry & Schedule on Track

Moisture Management Guide


(Light-frame & mass timber) **Download:**

https://www.bchousing.org/publications/Wood-Construction-Moisture-Management-Guide.pdf

Construction Phase Moisture Management, Section 7.6 NLT Guide (Good Tips for all MT) Download: https://www.thinkwood.com/products-andsystems/mass-timber/nltguide

Moisture Risk Management Strategies for Mass Timber (by RDH) Purchase:

https://learnbuildingscience.com/collections/gui des-and-resources/products/moisture-riskmanagement-strategies-for-mass-timberbuildings

UNDERSTANDING INSURANCE

INSURANCE In accordance wi se and Option A acont

INSURANCE PERSPECTIVE ON MASS TIMBER

- Lack of historic loss data = Unknowns
- Unknowns = Risk
- Risk = Higher Premiums
- Some take a 'wood is wood' approach
- Important to understand the significant differences in how mass timber performs in the event of a fire, etc. when compared to light wood-frame and all other building materials

Photo Credit: StructureCraft

Photo Credit: GLI Partners

MASS TIMBER INSURANCE

- Mass timber insurance resource for insurers, developers, contractors & designers
- Free download at woodworks.org

Some mass timber projects have been classified as Modified Fire Resistive, but there is often pressure for underwriters to use more expensive classification codes. There is also interest in exploring a seventh classification specific to mass timber. Working with a broker experienced with mass timber is very helpful in terms of negotiating an appropriate classification. The broker can speak to its performance capabilities, advantages for the project at hand, and historical use in similar buildings.

While there are many types of insurance coverage for buildings, this paper is fucused on general liability and property coverage for a building owner.

General liability coverage insures your legal liability to third parties for bodily injury and/or property damage, it covers both defense costs and any indemnity payments. There are exclusions for intentional acts, coverage that can be purchased under another bolicy, illegal acts and acts of government. General liability policy premiums are calculated. based on employee payroll, revenue and the cost of subcontracted work, including materials. Rates vary based on specific tasks performed, location of the work, past claims history of the entity, breadth of coverage, the insurer providing the policy and negotiation skills of the insurance btoker. Typical general liability limits are \$1,000,000 for each occurrence, \$2,000,000 general aggregate and \$2,000,000 products/completed operations apgregate. This is considered a one million limit policy, as the occurrence limits are referenced in conversations about coverage. Aggregate refers to the maximum the policy will nov regardless of the pumpe

General Liability Insurance Structure Options For a developer of a mass timber project, there are two types, of general liability insurance available.

The first covers just the developer's operations, This can be an annual renewable policy that is part of a larger program covering all of the firm's projects or a standarone policy covering a single project for its duration. In this scenario, the general contractor and each of the trade subcontractors purchase their own annual tenewable policies. A typical construction project has over forty applicable general liability practice policies, most of which include at least \$5,000,000 in excess liability policies, Contractors and subcontractors are usually contractually obligated to name the developer as an additional insured on their policies.

The second option is a Controlled Insurance Program, which is called either an Owner Controlled Insurance Policy (OCIP) or Contractor Controlled Insurance Policy (OCIP), depending on whether the owner or general contractor is named first. These types of policies are issued for a specific project for all parties working at the site. They cover the term of construction through the statute of ultimate repose for the state where the project is located. Due to the depth and breadth of coverage, OCIPs and CCIPs are more expensive than practice policies. They're typically used when the lowner wants to assign the liability overage for a project to the insurance company, in order to end their liability when the project is sold. Scientimes a lender will require this type

Insurance for Mass Timber Construction: Assessing Risk and Providing Answers

Repaird McLain, ME, &E + Sensor Tachmag Daward - Tal Wood + Wood Wood - Wood Franksin Council Salam B, Breadth + Sensor Vick Phandam + Hellaman Frankrika Senard

One of the exciting trends in building design is the growing use of mass timber—i.e., large solid wood panel products such as cross-laminated timber (CLT) and nail-laminated timber (NLT)—for floor, wall and roof construction. Mass timber products have inherent fire resistance and can be left exposed in many applications and building sizes, achieving the triple function of structure, finish and fire resistance. Because of their strength and dimensional stability, these products offer an alternative to steel, concrete and masonry for many applications, but have a much lighter carbon footprint. It is this combination of exposed structure and strength that developers and designers across the country are leveraging to create innovative designs with a warm yet modern aesthetic.

As mass timber construction has proliferated across the U.S., a number of project teams have run into the same issue; insurance companies unfamiliar with these types of buildings can be reluctant to provide insurance.

The challenge has presented itself in two forms: builder's risk insurance (or course of construction) and property insurance (after building is complete and occupied). Relative risks are assessed differently for each, and each requires a unique approach. For example:

 Construction-phase risks associated with fire are different in mass timber buildings than with most other framing systems. Since the timber elements have inherent fire-resistance capabilities, a building can have a certain level of passive fire resistance after the frame is erected. Protection doesn't rely on land wait for installation off materials such as spray-applied In addition to safety, property insurance for mass timber buildings requires an understanding of performance related to things like moisture, durability and building enclosure detailing. Much of the property insurance discussion is also site-specific—e.g., is the area prone to flooding, earthquakes or high winds? Mass timber has been tested against potential natural disasters, and numerous test and research reports are available.

This paper is intended for developers and owners seeking to purchase insurance for mass timber buildings, for design/construction teams looking to make their designs and installation processes more insurable, and for insurance industry professionals looking to alleviate their concerns about safety and performance.

For developers, owners and design/construction teams, it provides an overview of the insurance industry, including its history, what affects premiums, how risks are analyzed, and how project teams can navigate coverage for mass timber buildings. Insurance in general can seem like a mystery what determines premium fluctuations, impacts of a

Seattle Mass Timber Tower: Detailed Cost Comparison Fast Construction

- Textbook example done by industry experts
- Mass timber vs. PT conc
- Detailed cost, material takeoff & schedule comparisons

"The initial advantage of Mass Timber office projects in Seattle will come through the leasing velocity

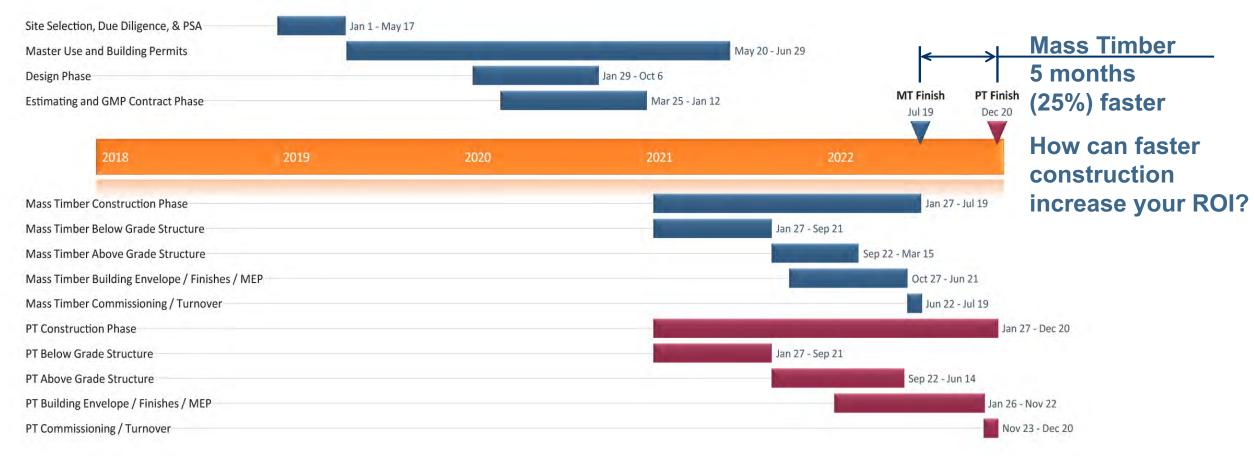
that developers will experience."

- Connor Mclain, Colliers¹

Download Case Study:

http://www.fastepp.com/wp-content/uploads/181109-Seattle-Mass-Timber-Tower-Book.pdf

Seattle Mass Timber Tower


Faster Construction + Higher Material Costs = Cost Competitive

System	Mass Timber Design	PT Concrete Design	Mass Timber Savings	
Direct Cost of Work	\$86,997,136	\$85,105,091	2.2%	
Project Overhead	\$ 9,393,750	\$11,768,750	-20.2%	
Add-Ons	\$ 8,387,345	\$ 8,429,368	-0.5%	
Total	\$104,778,231	\$105,303,209	-0.5%	

Source: DLR Group | Fast + Epp | Swinerton Builders

Seattle Mass Timber Tower Fast Construction

Construction Schedule:

Source: Tall With Timber A Seattle Mass Timber Tower Case Study by DLR Group¹

Reduce Risk Optimize Costs

- For the entire project team, not just builders
- Lots of reference documents

Download Checklists at

www.woodworks.org

www.woodworks.org/wp-content/uploads/wood_solution_paper-Mass-Timber-Design-Cost-Optimization-Checklists.pdf

Mass Timber Cost and Design Optimization Checklists

WoodWorks has developed the following checklists to assist in the design and cost optimization of mass timber projects. The *design optimization* checklists are intended for building designers (architects and engineers), but many of the topics should also be discussed with the fabricators and builders. The *cost optimization* checklists will help guide coordination between designers and builders (general contractors, construction managers, estimators, fabricators, installers, etc.) as they are estimating and making cost-related decisions on a mass timber project.

Most resources listed in this paper can be found on the WoodWorks website. Please see the end notes for URLs. First Tech Federal Credit Union – Hillsboro, OR ARCHITECT Hacker ENGINEERS: Kramer Gehien & Associates, Equilibrium Consulting CONTRACTOR: Swinerton

THE BUSINESS CASE FOR MASS TIMBER

Workplaces: Wellness + Wood = Productivity Healthy Buildings/ Biophilia

"Those in workplaces with a higher proportion of **visible wood feel more connected to nature** and rate their working environment far more positively."

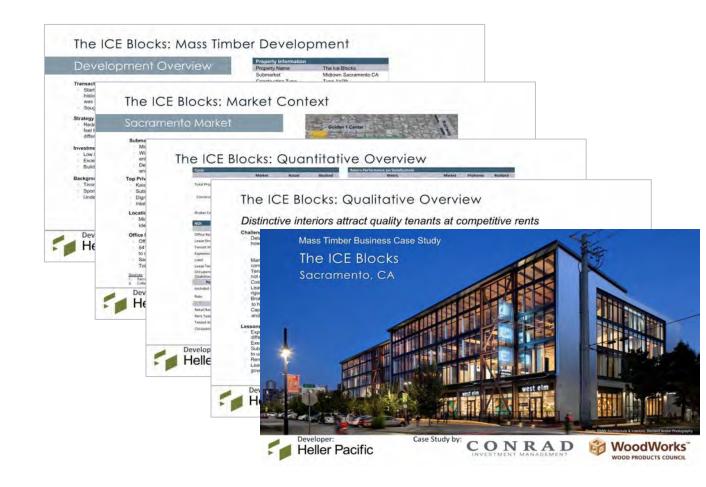
These people report:

- lower stress levels
- lower blood pressure
- higher concentration
- improved overall mood

"Wood in the workplace is associated with higher productivity and reduced sick leave."

Workplaces: Wellness + Wood = Productivity

A report prepared for Forest & Wood Products Australia* by Andrew Knox, Howard Parry-Husbands, Pollinate** February 2018


Tech Companies Invest in Healthy Corporate Campuses Microsoft Silicon Valley Campus

Potential Benefits	Project Goal √	Value Add ✓
Fast construction/shorter schedules; pre-fabricated and precise		
Exposed wood (structure is finish!) • Aesthetic value; potential for faster leasing and lease premiums; portfolio distinction • Biophilia; healthy indoor environment		
Lightweight structure, especially beneficial on sites with poor soils		
 Labor shortage solutions Small crews for timber frame erection Utilize more entry-level laborers when MEP and fire protection systems are fully designed, coordinated and pre-planned 		
Just-in-time delivery and small staging/lay-down areas; ideal for dense urban areas		
Natural, renewable material; environmentally friendly with a lighter carbon footprint		
 Support healthy forests and rural economies Mass timber can be made from relatively small-diameter trees and those affected by insects or disease; creates a market incentive for forest thinning and other landscape restoration efforts that reduce the risk of high-severity wildfires 		

Mass Timber Business Case Studies

Download online at

www.woodworks.org/masstimber-business-case-studies

- Includes financial return performance data on mass timber projects
- Developers share lessons learned, challenges and successes

ICE Block I: California's First Modern Timber Office Building

Location: Sacramento, CA Architect: RMW Architecture & Interiors Engineer: Buehler Engineering IIIB

- 3 Story heavy timber over podium
- 87,460 sf
- Aesthetic value is same for heavy & mass timber

"The building sold itself because of its unique character. There really was no true competition in the market. A lot of the credit goes to the fact that it is a timber building."

- Mike Heller, Heller Pacific

Clay Creative: Early Mass Timber Speculative Office

IIIA

- 5 Story Type IIIA over 1 story Type IA deck
- 92,000 sf
- Flexible, open office
- Fast construction, enabled TI build-out concurrent with core and shell
- Achieved fast leasing and attracted desirable tenants

Location: Portland, OR Architect: Mackenzie Engineer: Kramer Gehlen & Associates

Other Resources for Developers/ Owners

2-pager for Urban Land Institute (ULI)

www.woodworks.org/wp-content/uploads/WoodWorks_Getting-Started-w-Mass-Timber-2-Pager.pdf

Mike Romanowski, SE mike.romanowski@woodworks.org 619-206-6632

This concludes The American Institute of Architects Continuing Education Systems Course Chelsea Drenick, SE chelsea.drenick@woodworks.org 303-588-1300

hoto: Structurlam Seagate Structures

Copyright Materials

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

© The Wood Products Council 2019