

Designing and Engineering Mass Timber Buildings in California

February 16, 2023

Presented by

Chelsea Drenick, SE, WoodWorks Mike Romanowski, SE, WoodWorks

Apex Plaza / Courtesy William McDonough + Partner

New Code Provisions for Tall Timber Structures in California

February 16, 2023

Presented by Chelsea Drenick, SE, WoodWorks

Apex Plaza / Courtesy William McDonough + Partner

Designing a wood building? Ask us anything.

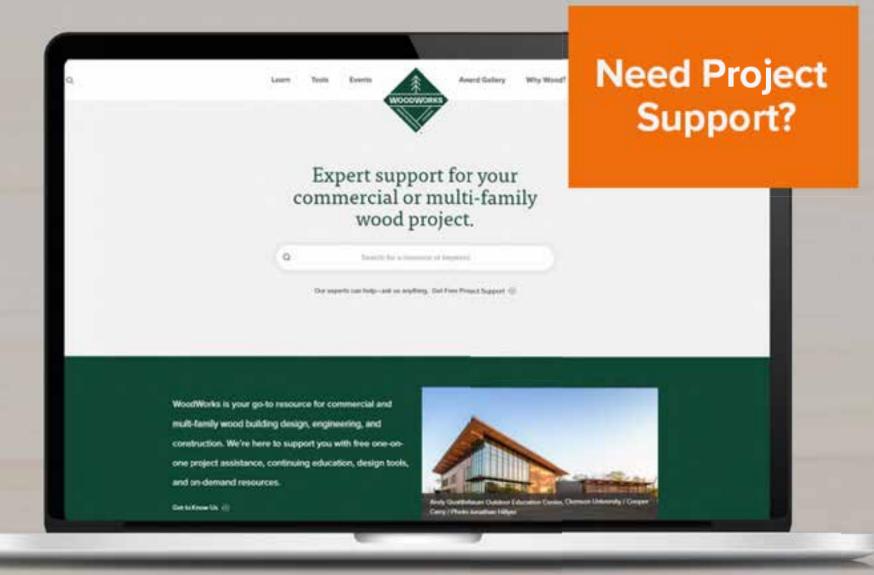
FREE PROJECT SUPPORT / EDUCATION / RESOURCES

Nationwide support for the code-compliant design, engineering and construction of non-residential and multi-family wood buildings.

- Allowable Heights/Areas
- Construction Types
- Structural Detailing
- Wood-Framed & Hybrid Systems
- Fire/Acoustic Assemblies

- Lateral System Design
- Alternate Means of Compliance
- Energy-Efficient Detailing
- Building Systems & Technologies

woodworks.org/project-assistance | help@woodworks.org



Regional Directors: One-on-One Project Support

woodworks.org

Q,

Events

Building Types

Award Gallery

Why Wood? About

Need Project Support?

	n 10 u	
1201124		

Light-Frame

Mass Timber / CLT

Off-Site / Panelized Construction

Hybrid

Education

Office

Commercial Low-Rise

Multi-Family / Mixed Use

Industrial

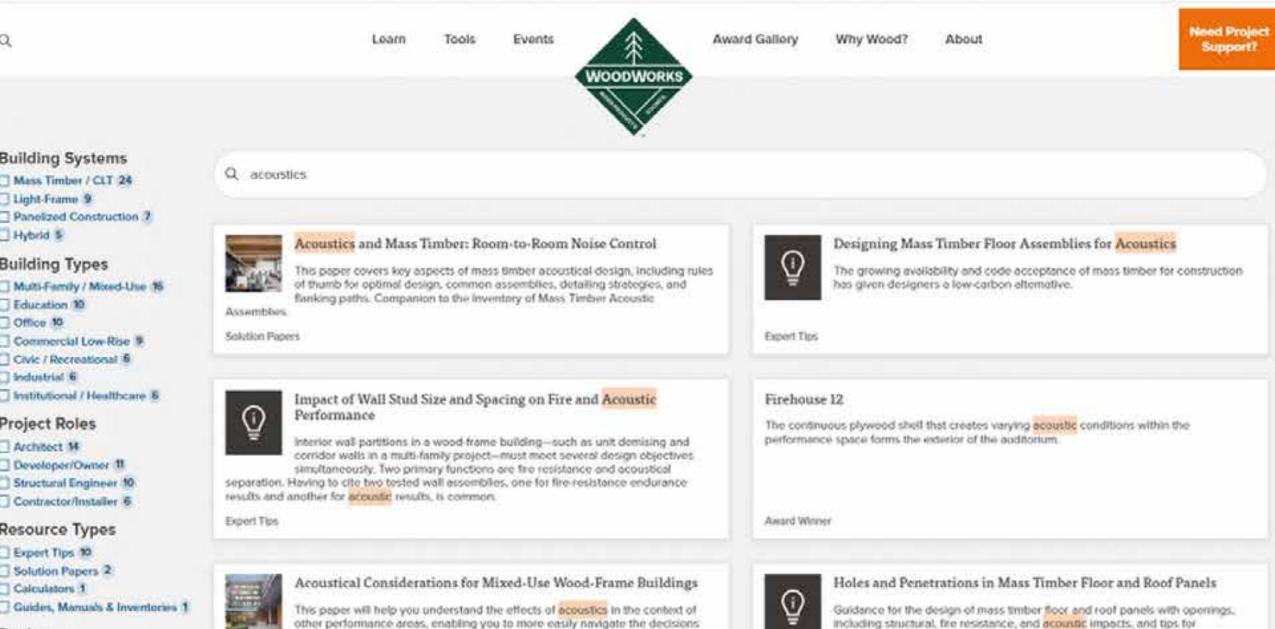
Civic / Recreational

Institutional / Healthcare

View All 🕣

On Demand Education

Find over 140 continuing education courses on wood topics for architects, engineers, general contractors, and code officials.


WoodWorks Innovation Network

Discover mass timber projects across the US and connect with their teams.

Our experts can help-ask us anything. Get Free Project Support 💮

WoodWorks is your go-to resource for commercial and multi-family wood building design, engineering, and construction. We're here to support you with free one-on-

reinforcement.

.

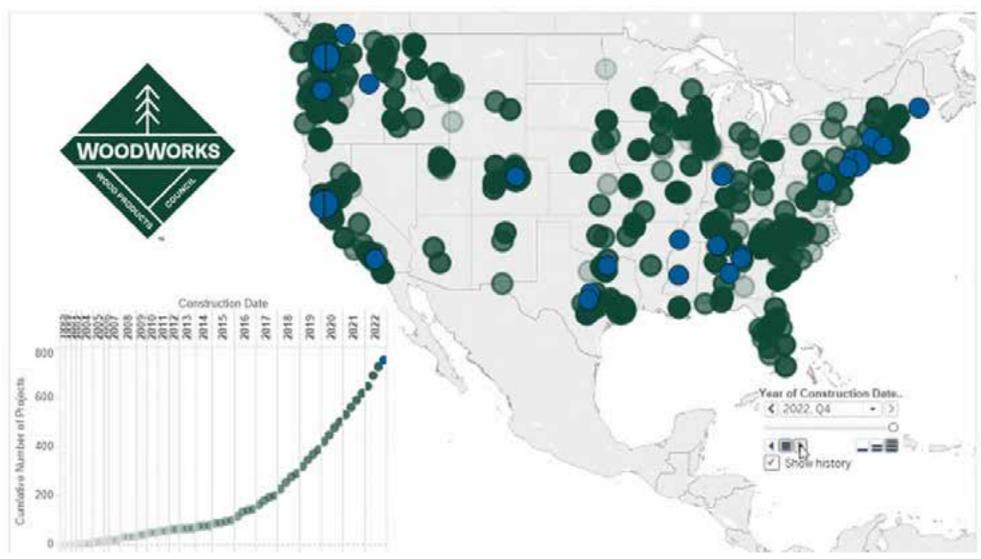
Expert Tips

and trade-offs required when evaluating assembly options.

Solution Papers

.

Regions


Notional 20 Midwost 5

South 4

West 4

Current State of Mass Timber Projects

As of December 2022, in the US, **1,667** multi-family, commercial, or institutional projects have been constructed with, or are in design with, mass timber.

INTRO Cleveland Cleveland, OH 9 stories – 8 mass timber

Heartwood

Seattle, WA 8 stories mass timber

Carbon 12 Portland, OR 8 stories mass timber

Minnesota Places Portland, OR 8 stories - 7 mass timber

WoodWorks is supporting 189 tall wood projects

Minnesota Places, rendering Wright Architecture; Carbon 12, Kaiser+Path, photo Andrew Pogue; Heartwood, rendering Atelier Jones; INTRO Cleveland, Harbor Bay Real Estate Advisors, HPA Architecture; Ascent, Korb + Associates Architects, Thornton Tomasetti; 11 E Lenox, rendering Monte French Design Studio; 80 M Street, Hickok Cole Architects, Columbia Property Trust; Apex Plaza, rendering William McDonough + Partners

11 E Lenox

TALL

WOOD

Boston, MA 7 stories mass timber

80 M Street Washington DC 10 stories – 3-story mass timber vertical addition

= 20 in-design tall wood

construction or completed

= tall wood project in

projects

Apex Plaza

Charlottesville, VA 8 stories – 6 mass timber

woodworksinnovationnetwork.org

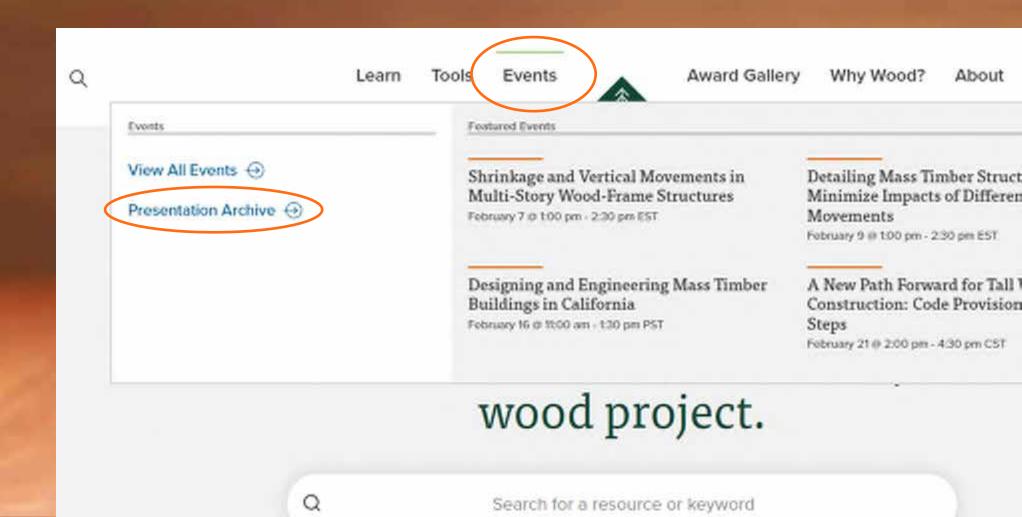
-

1.4

- ...

	Who are you loo	oking for?		
	Q Search by name or keyword			
Hide Filters	Manufacturers Supplier	X		
Membership Type		Companie	s and PROs	
Professionals Verified by Project 151 Experience	Companies Verified by Project Experience		StructureCraft Manufacturer Partner	View Save &
Community Members 14 Verified by Education	Manufacturers & Suppliers	。	SmartLam NA Manufacturer Partner	View Save &
	WoodWorks Partners	LANSIN	Sansin Manufacturer Partner	View Save &
Architect & Contractor (Same To	Simpson Strong-Tie Manufacturer Partner	View Save A
Engineer & Installer & Insurance Broker &		(SIR)	DR Johnson Manufacturer Partner	View Save &
C Other () Structural Engineering ()		NATELACHER MARTIN	HASSLACHER Group	View

Funding Partners



Sustaining Partners -

presentation slides in pdf: woodworks.org/presentation-archive/

"The Wood Products Council" is a Registered Provider with The American Institute of Architects Continuing Education Systems (AIA/CES), Provider #G516.

Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request. This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Course Description

As awareness of mass timber's potential for tall wood structures has grown, there has been a push among U.S. building designers to achieve greater heights with these materials. Initially, tall wood buildings in the U.S. were proposed using international examples as precedent, with a project-specific performance-based design approach used. However, a uniform set of tall wood code provisions has begun going into effect in many States with adoption of the 2021 International Building Code (IBC), which will allow up to 18 stories of mass timber construction. The 2022 California Building Code (CBC) has now also been adopted with a series of tall wood code changes based on the new IBC provisions, but with Californiaspecific modifications. Following a brief discussion of history and motivators, this presentation will introduce the new IBC and CBC tall wood code provisions, as well as the technical research and testing that supported their adoption.

Learning Objectives

- Review the global history of tall wood construction and highlight the mass timber products used in these structures.
- Explore the work and conclusions of the ICC Ad Hoc Committee on Tall Wood Buildings in establishing 17 new code provisions for the 2021 IBC.
- 3. Identify differences between the 2021 IBC and 2022 CBC relative to code allowances for tall timber structures.
- 4. Discuss differences between the new tall wood mass timber construction types and existing construction types.

The What, Why and How of Tall Mass Timber

TALL MASS TIMBER ASSESSING THE WHAT

.

Brock Commons, Vancouver, BC | Architect: Acton Ostry | Image Courtesy naturallywood

BROCK COMMONS, BRITISH COLUMBIA

18 STORIES | 174 FT

Photos: Baumberger Studio/PATH Architecture/Marcus Kauffman | Architect: PATH Architecture

CARBON12, PORTLAND, OR

8 STORIES | 85 FT

INTRO, CLEVELAND

9 Stories | 115 ft 8 Timber Over 1 Podium

What has

512,000 SF 297 Apartments, Mixed-Use

Photo: Harbor Bay Real Estate Advisors, Purple Film | Architect: Hartshorne Plunkard Architecture

INTRO, CLEVELAND

9 Stories | 115 ft 8 Timber Over 1 Podium

Type IV-B Variance to expose ~50% ceilings

Photo: Harbor Bay Real Estate Advisors, Image Fiction | Architect: Hartshorne Plun

ard Architecture

ASCENT, MILWAUKEE

Photo: Korb & Associates Architects Architect: Korb & Associates Architects

493,000 SF 259 APARTMENTS, MIXED-USE

ASCENT, MILWAUKEE

Tallest Mass Timber Building in the World

Photo: CD Smith Construction | Architect: Korb & Associates Architects

ASCENT, MILWAUKEE

25 STORIES 19 TIMBER OVER 6 PODIUM, 284 FT

Photo: Korb & Associates Architects | Architect: Korb & Associates Architects

80 M ST, WASHINGTON, DC

3 STORY VERTICAL ADDITION ON EXISTING 7-STORY CONCRETE BUILDING

Photo: Hickok Cole | Architect: Hickok Cole

80 M ST, WASHINGTON, DC

100,000 SF 2 NEW LEVELS OF CLASS A OFFICE SPACE OCCUPIED PENTHOUSE 17'-0" CEILING HEIGHTS

APEX P CHARLOT TESVILLE, VA

8 STORIES 6 TIMBER OVER 2 PODIUM, 100 FT 187,000 SF

PRIMARILY OFFICE SPACE

Gleason

Photo: William McDonough + Partners | Architect: William McDonough + Partners

11 E LENOX, BOSTON, MA

TAXABLE AND ADDRESS OF LANDING

7 STORIES 70 FT Passive House Multi-Family

Credit: H + O Structural Engineering

11 E LENOX, BOSTON, MA

Credit: H + O Structural Engineering

NUMBER OF STREET

1441

HEARTWOOD, SEATTLE

8 STORIES Workforce Housing

Type IV-C 66,000 SF

Photo: Atelier Jones | Architect: Atelier Jones

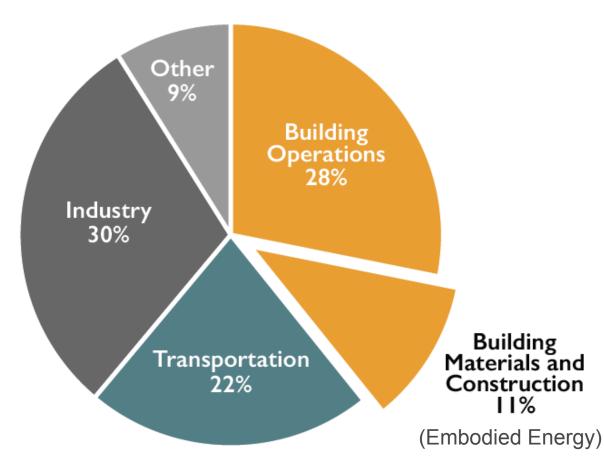
MINNESOTA PLACES, PORTLAND

8 STORIES

Affordable Housing

Photo: Wright Architecture | Architect: Wright Architecture

Type IV-C 72 Units 7 Stories of Timber over Podium

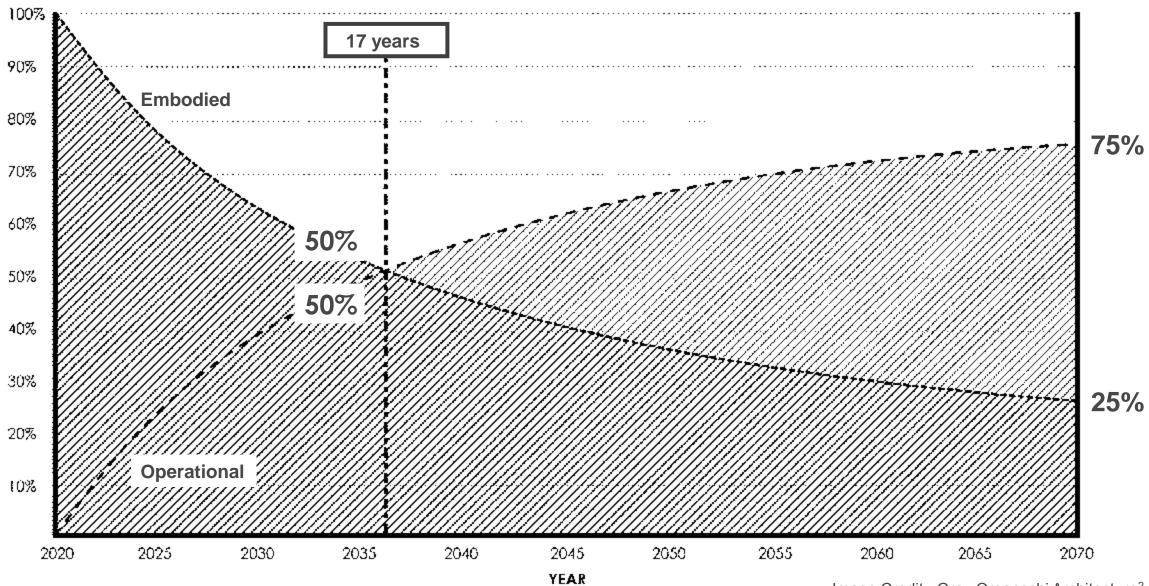

TALL MASS TIMBER UNDERSTANDING THE WHY

n

Brock Commons, Vancouver, BC | Architect: Acton Ostry | Image Courtesy naturallywood

New Buildings & Greenhouse Gases

Global CO₂ Emissions by Sector


Buildings generate nearly 40% of annual global greenhouse gas emissions (*building operations* + *embodied energy*)

Embodied Energy (11%): Concrete, iron + steel produce approximately 9% of this (Architecture 2030)

Source: © 2018 2030, Inc. / Architecture 2030. All Rights Reserved. Data Sources: UN Environment Global Status Report 2017; EIA International Energy Outlook 2017

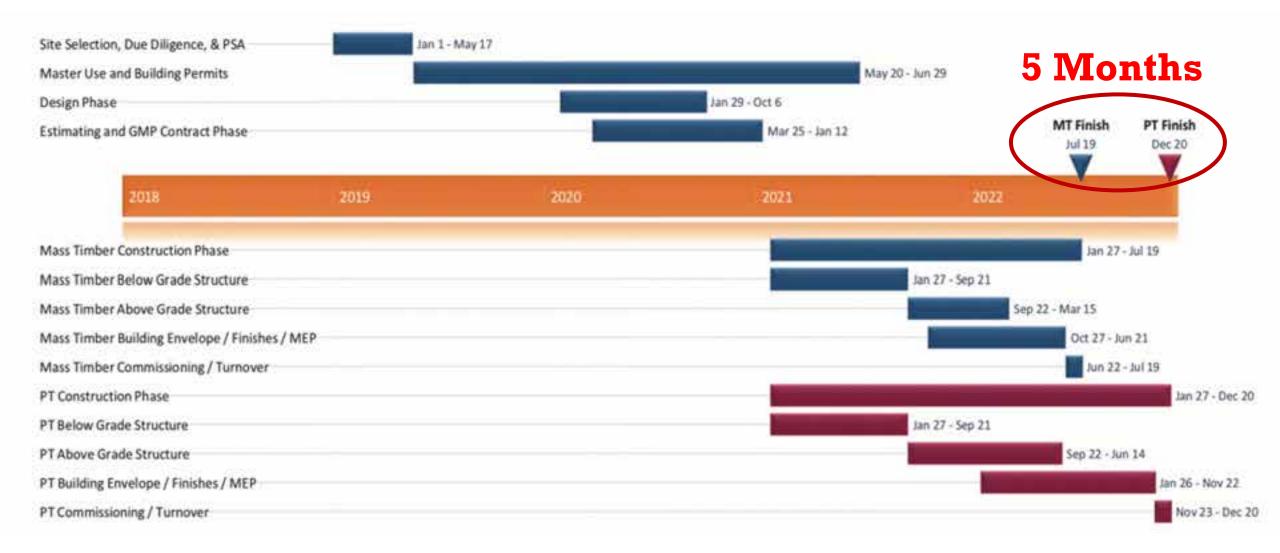
Image: Architecture 2030

Embodied vs. Operational Energy (High Performing Non-Wood Building)

% Energy

Image Credit: Gray Organschi Architecture²

Carbon Storage Wood ≈ 50% Carbon (dry weight)


Biophilia - Structural Warmth is a Value-Add

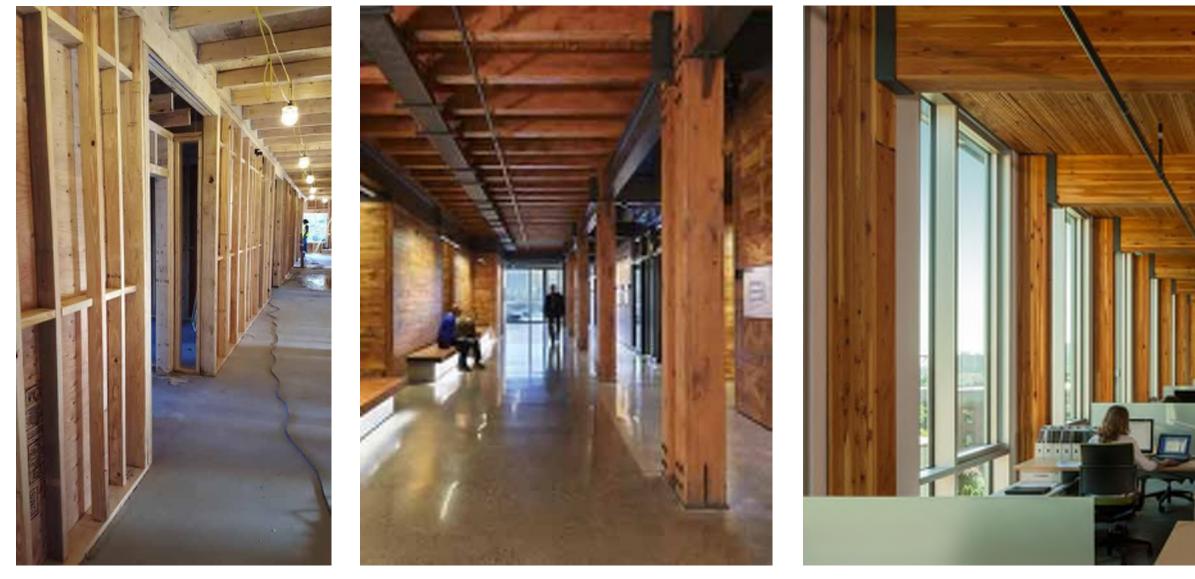
Construction Impacts: Labor Availability

Construction Impacts: Schedule

Seattle Mass Timber Tower Study, Source: DLR Group | Fast + Epp | Swinerton Builders

Lightweight Structure

75% lighter weight than concrete


Potential Benefits	Project Goal	Value Add ✓		
Fast construction/shorter schedules; pre-fabricated and precise				
Exposed wood (structure is finish!) • Aesthetic value; potential for faster leasing and lease premiums; portfolio distinction • Biophilia; healthy indoor environment				
Lightweight structure, especially beneficial on sites with poor soils				
 Labor shortage solutions Small crews for timber frame erection Utilize more entry-level laborers when MEP and fire protection systems are fully designed, coordinated and pre-planned 				
Just-in-time delivery and small staging/lay-down areas; ideal for dense urban areas				
Natural, renewable material; environmentally friendly with a lighter carbon footprint				
 Support healthy forests and rural economies Mass timber can be made from relatively small-diameter trees and those affected by insects or disease; creates a market incentive for forest thinning and other landscape restoration efforts that reduce the risk of high-severity wildfires 				

TALL MASS TIMBER DEMONSTRATING THE HOW

71

Brock Commons, Vancouver, BC | Architect: Acton Ostry | Image Courtesy naturallywood

OVERVIEW | TERMINOLOGY

Light-Frame Wood Photo: WoodWorks Heavy Timber Photo: Benjamin Benschneider

Mass Timber Photo: John Stamets Glue Laminated Timber (Glulam) Beams & columns

Cross-Laminated Timber (CLT) Solid sawn laminations

Cross-Laminated Timber (CLT) SCL laminations

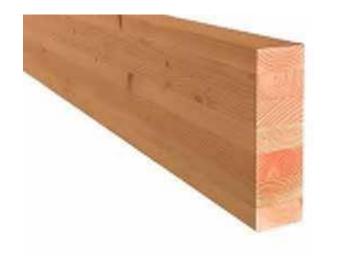


Photo: Freres Lumber

Dowel-Laminated Timber (DLT)

Nail-Laminated Timber (NLT)

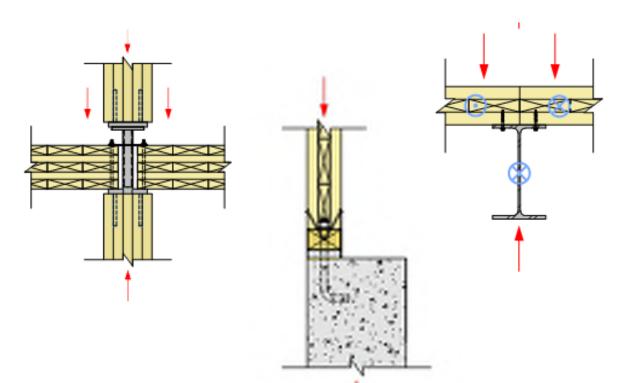
Glue-Laminated Timber (GLT) Plank orientation

Photo: Think Wood

Photo: StructureCraft

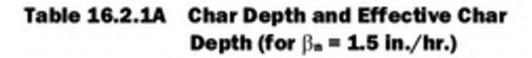
NEW MASS TIMBER CONNECTIONS INDEX

ARCHITECTURE URBAN DESIGN INTERIOR DESIGN



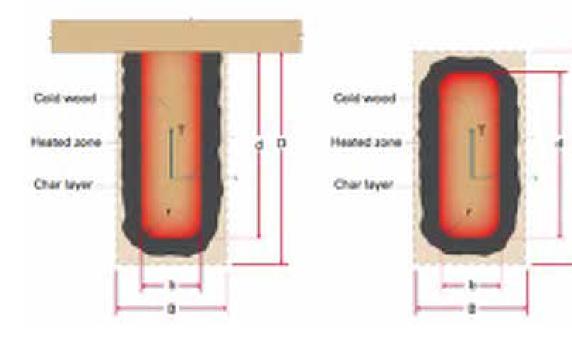
A library of commonly used mass timber connections with designer notes and information on fire resistance, relative cost and load-carrying capacity.

WoodWorks Index of Mass Timber Connections



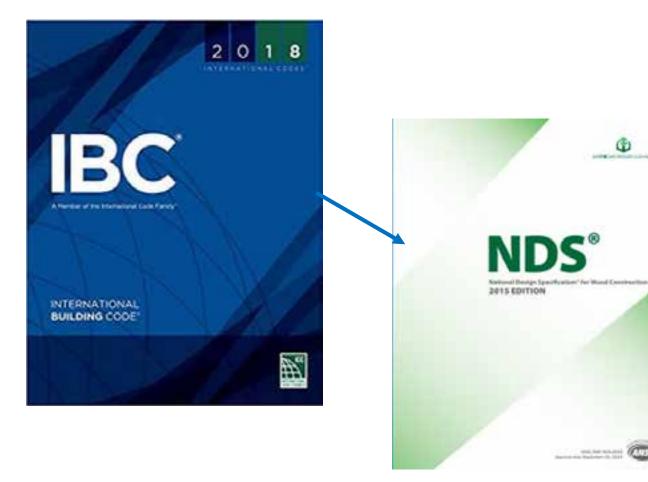
MASS TIMBER DESIGN

FIRE RESISTANCE


Mass Timber's Fire-Resistive Performance is Well-Tested, Documented and Recognized via Code Acceptance

Required Fire Resistance (hr.)	Char Depth, a _{char} (in.)	Effective Char Depth, a _{eff} (in.)
1-Hour	1.5	1.8
1½-Hour	2.1	2.5
2-Hour	2.6	3.2

Source: AWC's NDS



Source: AWC's TR 10

FRR Design of MT

Calculated FRR of Exposed MT: IBC to NDS code compliance path

Code Path for Exposed Wood Fire-Resistance Calculations

IBC 703.3

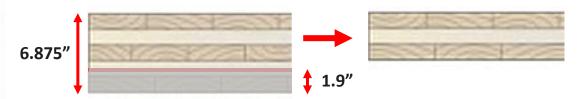
Methods for determining fire resistance

- Prescriptive designs per IBC 721.1
- Calculations in accordance with IBC 722
- · Fire-resistance designs documented in sources
- Engineering analysis based on a comparison
- Alternate protection methods as allowed by 104.11

IBC 722 Calculated Fire Resistance

"The calculated fire resistance of exposed wood members and wood decking shall be permitted in accordance with Chapter 16 of ANSI/AWC National Design Specification for Wood Construction (NDS)

NDS Chapter 16 Fire Design of Wood Members


- · Limited to calculating fire resistance up to 2 hours
- Char depth varies based on exposure time (i.e., fire-resistance rating), product type and lamination thickness. Equations and tables are provided.
- TR 10 and NDS commentary are helpful in implementing permitted calculations.

Key Early Design Decisions

Fire-Resistance Ratings (FRR)

- Thinner panels (i.e. 3-ply) generally difficult to achieve a 1+ hour FRR
- 5-ply CLT / 2x6 NLT & DLT panels can usually achieve a 1- or 2hour FRR
- Construction Type | FRR | Member Size | Grid (or re-arrange that process but follow how one impacts the others)

Panel	Example Floor Span Ranges					
3-ply CLT (4-1/8" thick)	Up to 12 ft					
5-ply CLT (6-7/8" thick)	14 to 17 ft					
7-ply CLT (9-5/8")	17 to 21 ft					
2x4 NLT	Up to 12 ft					
256 NLT	10 to 17 ft					
258 NLT	14 to 21 ft					
5" MPP	10 to 15 ft					

FRR Design of MT

WoodWorks Inventory of Fire Tested MT Assemblies

Table 1: North American Fire Resistance Tests of Mass Timber Floor / Roof Assemblies

CLT Pand	Mandedarar	CLT Gende ar Major x Minor Grade	Colling Prototion	Panel Connection in Yest	First Topping	Load Rating	Fire Resistance Advice of (House)	Source	Torting Lab	
3-p ly CEX. 1314-ran, 4-484 in 5	Nutir	KPF 1610 Ph 1.7E MOR x5PF PD	21ajam 1/2" Type X gypsam	Illalf-Lay	Notes	Reduced 39% Montanti Capacity		L(Ball I)	NRC Fire Laboratory	
3-pty-CLZ (10fmm-6.123-in)	Studielen	\$99,91,92,5399,91,92	1 Jayor 3-9" Type Xgyprom	Halfday	Noni	Reduced 23% Manual Capacity	0.00	1 (fer.1)	NRC Fee Laboratory	
5.ph/CUI (/73mmii.825*)	Netter		Neter	Topside Splane	2 mgg and logen at 1/2" commitments	Loaded. See Manufacturer	1	2 NRC Fire Laboratory March 2016		
5-p1/-552 (173-mm+1/25*)	Nedir	-	1 by or a 15.9" Type X gyprom and or Z- chains to and farring or tips with 3.5 19" (barriers) and	Topy ide Spline	2 magg and layers of 1/2" semant bounds	Loaled. Kar Manufactaner	2	>	NBC Fire Laboratory	
5+1/CS2 (173mmil.875*)	Nordie	8	New	Toyvide Splate	3 4 in proprietary goperate ever Mancon novariesi mar	Reduced SINS Moment Capacity	13	3	UL	
5-pty CS2 (175mmil.875*)	Nordie	10	1 kyst 3.4" notical gyptum.	Topcide Splate	2:4 in proprietary gyperate over Manson Reduced accepted and or proprietary social local SPS Monson Copy		2		UL	
3-ph/CLT (175min6.975*)	Nordie		1 Separa S.W. Dype, X Gyp under Reaction (Channel ander 7 NP (Lipids with) 12" Material Ward Serveral Scient	Half Lay	5-m	Looded, SocManufacturer	2	31	listenek 8/24/2012	
3-pty-0.3 (17)mm#.875*)	Stechedam	E3365 MSR 2109 x 527 92	New	Topeide Splan	1-1/2 ¹ Mexcus Cyp-Gasta 2000 or at Malacon Reinforcing Mails	Loaded, Ser Manufacturer	23		Jatoriek, 2/22/2016	
5.els(U2 1)?/mail.\$75*)	DR Jelmon	n	Netse	Helf-Lap & Topoide Splanz	2° gyposieropping	Lookd, Sou Manuf at our	2	7	5wRJ (May 2016)	
3.ply (3.7 (173mm+375*)	Nativ	529 1 1 1 0 F5 Mid8 5 527 43	New	Mall-Lap	New	Relaced 53% Monant Capacity	1.8	it fait to	NRC Fire Laboratory	
5 pty CLT (175mmii 875*)	Structure	576 FL 92 5 599 FL 92	1. Io. or 3. N° Type X gyprom	Hall Leg	None	Uninduced SIEPS Measure Capability	2	1 (Set N	NRC Fire Laboratory	
7-pts SLT (245mm 9-837)	Sevenities	519 21 102 5 529 21 102	New	Hulf-Lep	Nav	Unrodyand 1915: Monumi Capacity	3.9	E (Fee 7)	NRC Fire Laboratory	
54byCLT (175mmit.825*)	Smartlan	86,994	New	Half Lap	montand 1/2" plymond with bid mathe	Leaded. Sor Newfacturer	1	12(Tmi 4)	Western Fire Center 10/26/2016	
5#IyCL3 (373mm4.875*)	Securit.ass	×1	New	Hulf-Lap	assiant 1/2" glywood with 6 d anily.	Loaled. See Massfacturer	2	12(Tat 5)	Wotern Fire Center 10/28/2016	
3-ph-CL2 (173maid-375*)	OkJohanne	31	New	Huli-Lap	assuad 1/2° physical with 64 mails.	Lended. Soy Manufacturer	2	12(fast 6)	Western Fire Cetter 11/01/2016	
SelyCLT	R.LIN	(5334)	New	Phillipp de	Natio	Loaderit,	1(4)	18	Sw91	

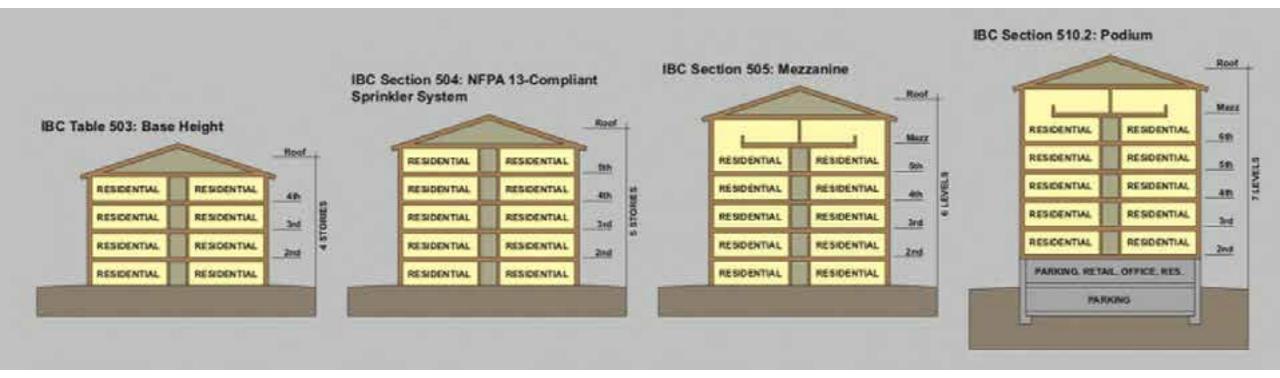
Mass Timber Acoustics

Common mass timber floor assembly:

- Finish floor (if applicable)
- Underlayment (if finish floor)
- 1.5" to 4" thick concrete/gypcrete topping
- Acoustical mat
- WSP (if applicable)
- Mass timber floor panels

Know The Supply Chain

EFFICIENCY FOUND IN UNDERSTANDING SUPPLY CHAIN, DESIGNING ACCORDING TO ITS CAPABILITIES

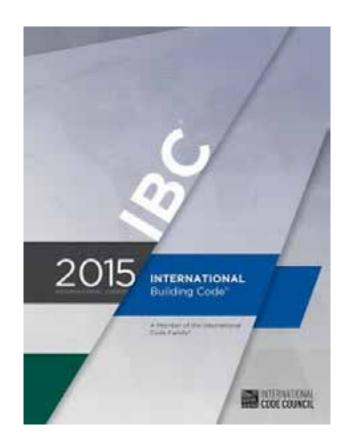

Photo: DR Johnson

TALL WOOD IN THE U.S.

02011 NATTAPOL PORNSALNUWAT WWW.FIVEOCLOCKSTUDIO.COM

BEFORE 2021 IBC Code Limit for wood - 6 stories (business) 5 stories (residential) and 85 feet

Over 6 Stories: Alternate Means and Methods Request (AMMR) through performance based design



U.S. TALL WOOD DEVELOPMENT AND CHANGES

Seen as the catalyst for the mass timber revolution, CLT first recognized in US codes in the 2015 IBC

[BS] CROSS-LAMINATED TIMBER. A prefabricated engineered wood product consisting of not less than three layers of solid-sawn lumber or *structural composite lumber* where the adjacent layers are cross oriented and bonded with structural adhesive to form a solid wood element.

2303.1.4 Structural glued cross-laminated timber. Crosslaminated timbers shall be manufactured and identified in accordance with ANSI/APA PRG 320.

U.S. TALL WOOD DEVELOPMENT AND CHANGES

In December 2015, the ICC Board established the ICC Ad Hoc Committee on Tall Wood Buildings. Objectives:

- 1. Explore the building science of tall wood buildings
- 2. Investigate the feasibility, and
- 3. Take action on developing code changes for tall wood buildings.

Taller wood buildings create new set of challenges to address:

AHC established 6 performance objectives:

- 1. No collapse under reasonable scenarios of complete burn-out of fuel without automatic sprinkler protection being considered.
- 2. Highly reliable fire suppression systems to reduce the risk of failure during reasonably expected fire scenarios. The degree of reliability should be proportional to evacuation time (height) and the risk of collapse.

AHC established 6 performance objectives:

- 3. No unusually high radiation exposure from the subject building to adjoining properties to present a risk of ignition under reasonably severe fire scenarios.
- 4. No unusual response from typical radiation exposure from adjacent properties to present a risk of ignition of the subject building under reasonably severe fire scenarios.

AHC established 6 performance objectives:

- 5. No unusual fire department access issues
- Egress systems designed to protect building occupants during the design escape time, plus a factor of safety.

U.S. BUILDING CODES Tall Wood Ad Hoc Committee

Commissioned series of 5 full-scale tests on 2-story mass timber structure at ATF lab in MD, May-June 2017

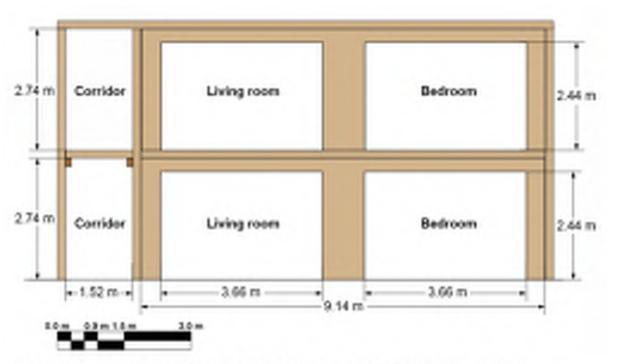


Figure 2. Elevation view of the front of the cross-laminated timber test structure.

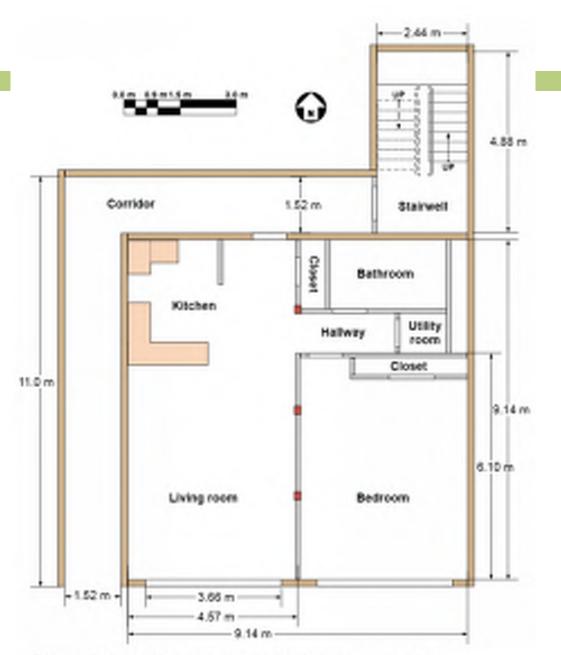


Figure 1. General plan view of cross-laminated timber test structure.

U.S. BUILDING CODES Tall Wood Ad Hoc Committee

Tests on exposed mass timber, gypsum-covered mass timber; normal sprinkler protection, delayed sprinkler protection Majority of flames seen are from contents, not structure

TALL WOOD APPROVED!

Unofficial results posted Dec 19, 2018 Final votes ratified Jan 31, 2019

AWC: Tall Mass Timber code changes get final approval

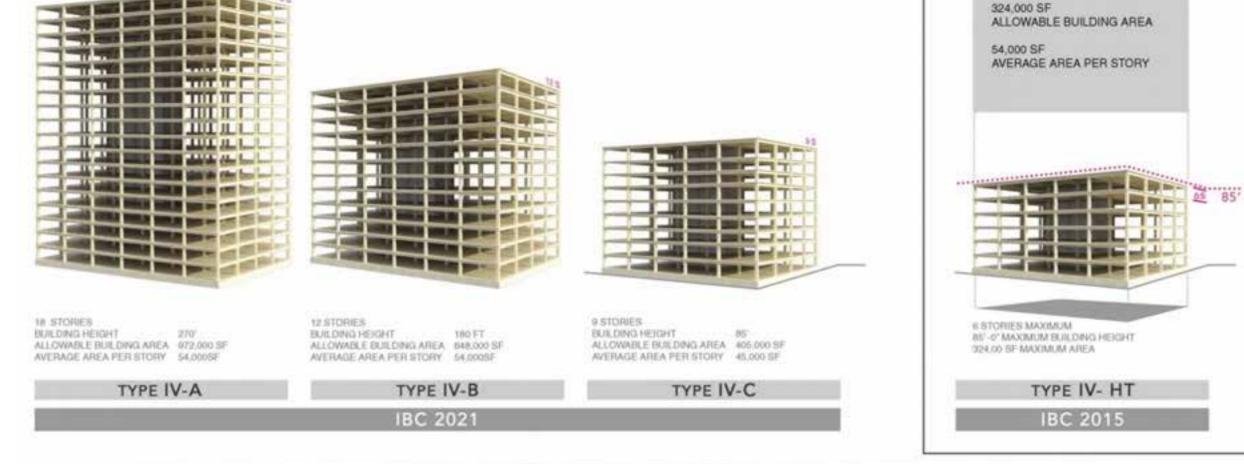
Dec 19, 2018

LEESBURG, VA. – The International Code Council (ICC) has released the unofficial voting results on code change proposals considered in 2018, including passage of the entire package of 14 tail mass timber code change proposals. The proposals create three new types of construction (Types IV-A, IV-B and IV-C), which set fire safety requirements, and allowable heights, areas and number of stories for tail mass timber buildings. Official results are expected to be announced during the first quarter of 2019. The new provisions will be included in the 2021 *listemational Building Code* (IBC).

"Mass timber has been capturing the imagination of architects and developers, and the ICC result means they can now turn sketches into reality. ICC's rigorous study, testing and voting process now U.S. BUILDING CODES Tall Wood Ad Hoc Committee

2021 IBC Introduces 3 new tall wood construction types:

IV-A, IV-B, IV-C


Previous type IV renamed type IV-HT

BUILDING	TYPE I		TYPE II		TYPE III		TYPE IV				TYPE V	
ELEMENT	Α	В	Α	В	Α	В	Α	В	С	HT	Α	В

Credit: Susan Jones, atelierjones

*BUILDING FLOOR TO FLOOR HEIGHTS ARE SHOWN AT 12:0" FOR ALL EXAMPLES FOR CLARITY IN COMPARISON BETWEEN 2015 TO 2021 IBC CODES.

BUSINESS OCCUPANCY [GROUP B]

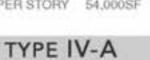
New Building Types

Type IV-A

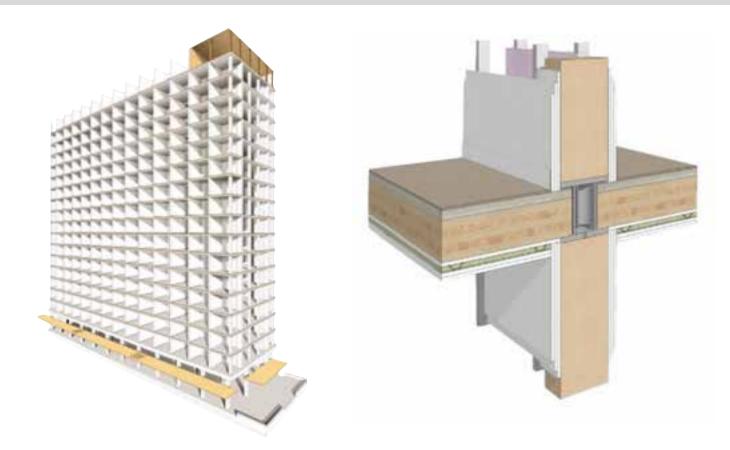
18 STORIES BUILDING HEIGHT 270° ALLOWABLE BUILDING AREA 972,000 SF AVERAGE AREA PER STORY 54,000SF

TYPE IV-A

Credit: Susan Jones, atelierjones



Photos: Structurlam, naturally:wood, Fast + Epp, Urban One


Type IV-A Protection vs. Exposed

18 STORIES BUILDING HEIGHT 270' ALLOWABLE BUILDING AREA 972,000 SF AVERAGE AREA PER STORY 54,000SF

Credit: Susan Jones, atelierjones

100% NC protection on all surfaces of Mass Timber

Type IV-B

12 STORIES BUILDING HEIGHT 180 FT ALLOWABLE BUILDING AREA 648,000 SF AVERAGE AREA PER STORY 54,000SF

TYPE IV-B

Credit: Susan Jones, atelierjones

Credit: LEVER Architecture

Type IV-B Protection vs. Exposed

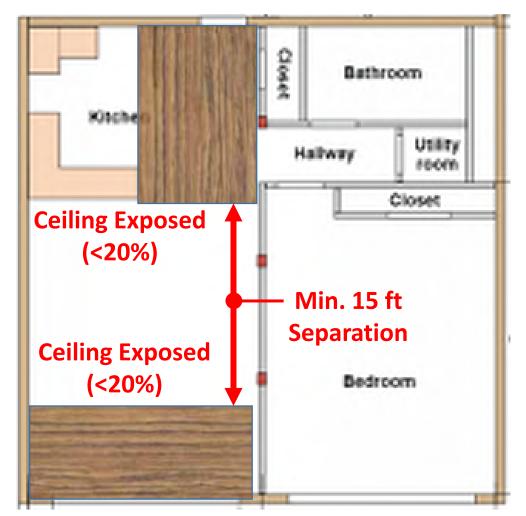
12 STORIES BUILDING HEIGHT 180 FT ALLOWABLE BUILDING AREA 648,000 SF AVERAGE AREA PER STORY 54,000SF

TYPE IV-B

NC protection on all surfaces of Mass Timber except limited exposed areas

~20% of Ceiling or ~40% of Wall can be exposed, see code for requirements

Credit: Susan Jones, atelierjones


2024 IBC Changes

RISE Tests, 2020 Photo: RISE

Type IV-B Protection vs. Exposed

2021 IBC Allowances

IV-B

Credit: AWC

Type IV-B Protection vs. Exposed

2024 IBC Allowances

IV-B

No separation req'd between wall & ceiling

Credit: AWC

Type IV-C

9 STORIES BUILDING HEIGHT 85' ALLOWABLE BUILDING AREA 405,000 SF AVERAGE AREA PER STORY 45,000 SF

TYPE IV-C

Photos: Baumberger Studio/PATH Architecture/Marcus Kauffman

Credit: Susan Jones, atelierjones

Type IV-C Protection vs. Exposed

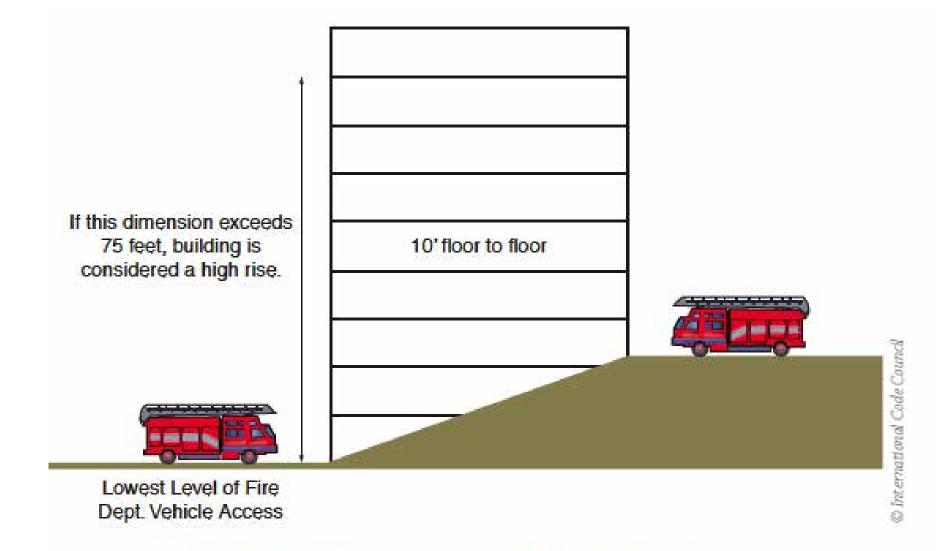
9 STORIES 85 FUILDING HEIGHT ALLOWABLE BUILDING AREA 405,000 SF AVERAGE AREA PER STORY 45.000 SF

TYPE IV-C

All Mass Timber surfaces may be exposed

Exceptions: Shafts, concealed spaces, outside face of exterior walls

Ema Peter


Credit: Kaiser+Path,

Credit: Susan Jones, atelierjones

IV-C

Mid-Rise vs. High-Rise

FIGURE 6-6 Determination of high-rise building

Sprinklers in High Rises

- Two Water Mains Required if:
 - Building Height Exceeds 420 ft, or
 - Type IV-A and IV-B buildings that exceed 120 ft in height

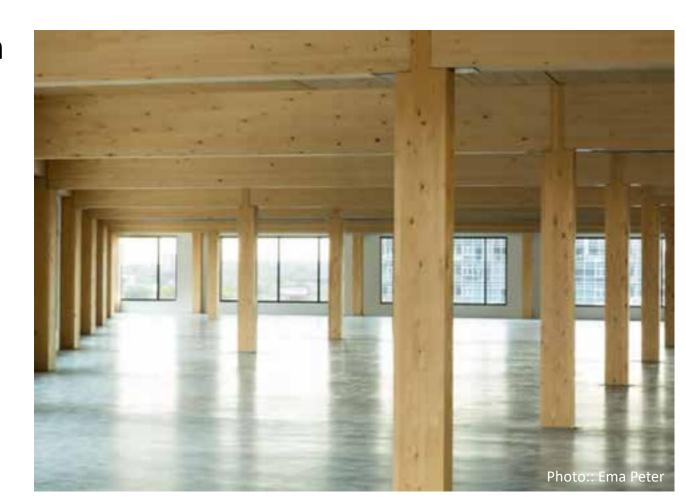
Materials Permitted

602.4 Type IV. Type IV construction is that type of construction in which the building elements are mass timber or noncombustible materials and have fire resistance ratings in accordance with Table 601. Mass timber elements shall meet the fire resistance rating requirements of this section based on either the fire resistance rating of the noncombustible protection, the mass timber, or a combination of both and shall be determined in accordance with Section 703.2 or 703.3. The minimum dimensions and permitted materials for building elements shall comply with the provisions of this section and Section 2304.11. Mass timber

Exterior load-bearing walls and nonload-bearing walls shall be mass timber construction, or shall be of noncombustible construction.

Exception: Type IV-HT Construction in accordance with Section 602.4.4.

The interior building elements, including nonload-bearing walls and partitions, shall be of mass timber construction or of noncombustible construction.


Exception: Type IV-HT Construction in accordance with Section 602.4.4..

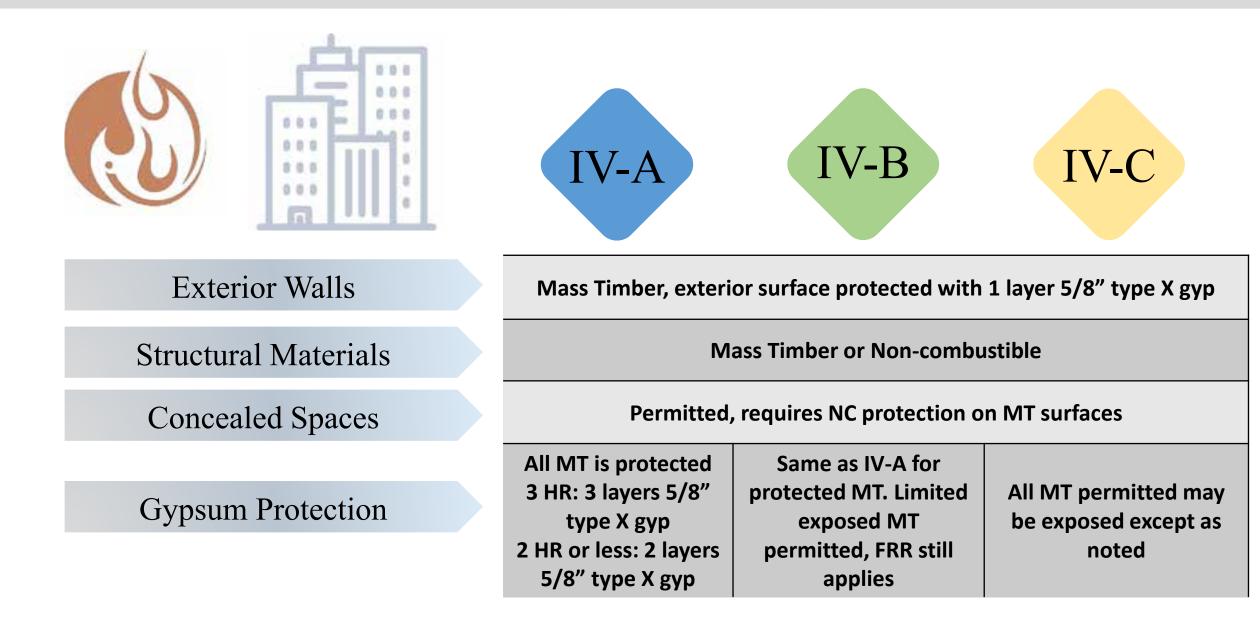
MT Type IV Minimum Sizes

In addition to meeting FRR, all MT elements must also meet minimum sizes

These minimum sizes have been in place for old type IV (current type IV-HT) construction and the same minimums sizes also apply to MT used in new types IV-A, IV-B and IV-C

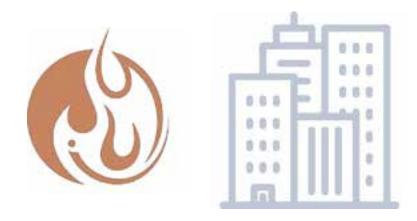
Contained in IBC 2304.11

Noncombustible Protection (NC)



The definition of "Noncombustible Protection (For Mass Timber)" is created to address the passive fire protection of mass timber.

Mass timber is permitted to have its own fireresistance rating (e.g., Mass Timber only) or have a fire resistance rating based on the fire resistance through a combination of the mass timber fireresistance plus protection by non-combustible materials as defined in Section 703.5 (e.g., additional materials that delay the combustion of mass timber, such as gypsum board).


Tall Wood Materials & Protection

Tall Wood Fire Resistance Ratings (FRR)

	IV-A	IV-B	IV-C
Primary Frame or Brng Wall FRR	3 HR (2 HR at Roof)	2 HR (1 HR at Roof)	2 HR (1 HR at Roof)
Floor Construction FRR	2 HR	2 HR	2 HR
Roof Construction FRR	1.5 HR	1 HR	1 HR
Floor Surface Protection	1 inch of NC protection	1 inch of NC protection	No protection req'd

MT Fire Resistance Ratings (FRR)

IBC 722.7

The fire resistance rating of the mass timber elements shall consist of the fire resistance of the unprotected element (MT) added to the protection time of the noncombustible (NC) protection.

Mass Timber

Non-Combustible

Fire Resistance Rating

New code provisions in International Fire Code (IFC) address construction fire safety of tall wood buildings

IFC 3308.4 Fire safety requirements for buildings of Types IV-A, IV-B, and IV-C construction. Buildings of Types IV-A, IV-B, and IV-C construction designed to be greater than six stories above grade plane shall meet the following requirements during construction unless otherwise approved by the fire code official.

- 1. Standpipes shall be provided in accordance with Section 3313.
- 2. A water supply for fire department operations, as approved by the fire chief.

IFC/CFC 3313 Standpipe Requirements

SECTION 3313 STANDPIPES

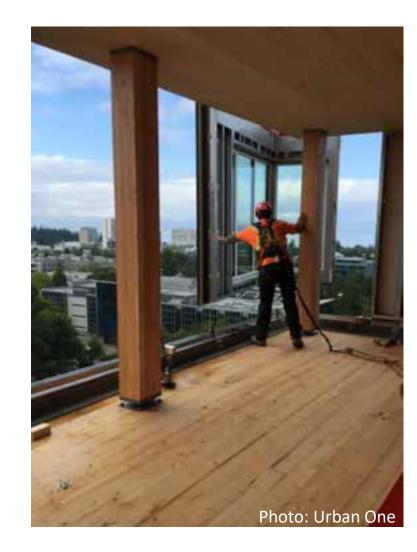
3313.1 Where required.

In buildings required to have standpipes by Section 905.3.1, not less than one standpipe shall be provided for use during construction. Such standpipes shall be installed prior to construction exceeding 40 feet (12 192 mm) in height above the lowest level of fire department vehicle access. Such standpipe shall be provided with fire department hose connections at accessible locations adjacent to usable stairways. Such standpipes shall be extended as construction progresses to within one floor of the highest point of construction having secured decking or flooring.

3313.2 Buildings being demolished.

Where a building is being demolished and a standpipe is existing within such a building, such standpipe shall be maintained in an operable condition so as to be available for use by the fire department. Such standpipe shall be demolished with the building but shall not be demolished more than one floor below the floor being demolished.

3313.3 Detailed requirements.


Standpipes shall be installed in accordance with the provisions of Section 905.

Exception: Standpipes shall be either temporary or permanent in nature, and with or without a water supply, provided that such standpipes comply with the requirements of Section 905 as to capacity, outlets and materials.

IFC 3308.4 Cont'd

- 3. Where building construction exceeds six stories above grade plane, at least one layer of noncombustible protection where required by Section 602.4 of the International Building Code shall be installed on all building elements more than 4 floor levels, including mezzanines, below active mass timber construction before erecting additional floor levels.
- 4. Where building construction exceeds six stories above grade plane required exterior wall coverings shall be installed on all floor levels more than 4 floor levels, including mezzanines, below active mass timber construction before erecting additional floor level.

Exception: Shafts and vertical exit enclosures

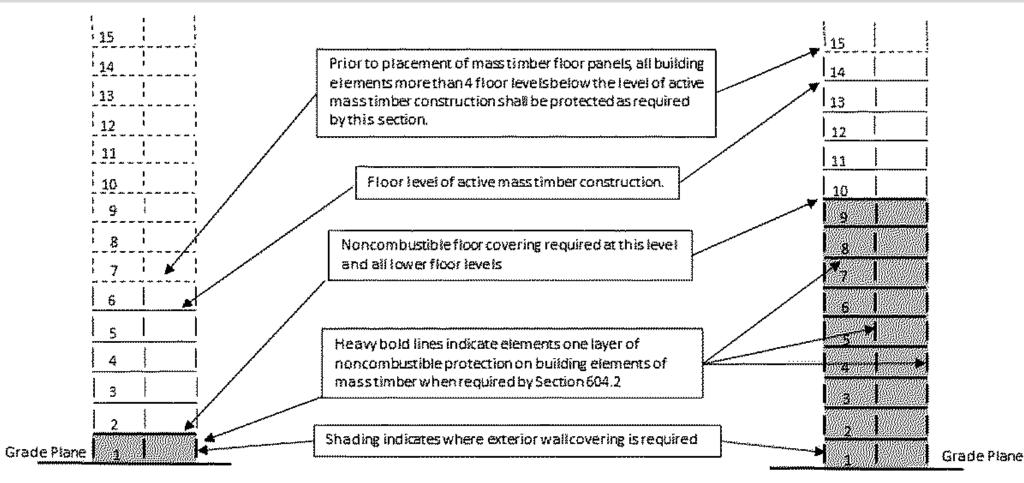


Figure 1

Examples of Protection During Construction For Mass Timber Buildings Greater Than 6 Stories Above Grade Plane Figure 2

Tall Wood Buildings in the 2021 IBC Up to 18 Stories of Mass Timber

Scott Banarow, PED, SE, WeodRoito - Weod Products Council • Matt Timewes, SE, John A. Marter & Association • Demis Richerbors, PE, CRO, CASe, American Weod Council

In January 2019, the International Code Council (ICC) approved a set of proposals to allow tail wood buildings as part of the 2021 International Building Code (IBC). Based on these proposals, the 2021 (IBC will include three new construction types —Type IV-A, IV-B and IV-C—allowing the use of mass tender or noncombustible materials. These new types are based on the previous Heavy Timber construction type (renamed Type IV-HT) but with additional five-resistance ratings and levels of required noncombustible protection. The code will include provisions for up to 18 stories of Type IV-A construction for Business and Residential Occupancies.

Based on information first published in the Structural Engineers Association of California (SEAOC) 2018 Conference Proceedings, this paper summarizes the background to these proposals, technical research that supported their adoption, and resulting changes to the IBC and product specific standards.

Background: ICC Tall Wood Building Ad Hoc Committee

Over the past 10 years, there has been a growing interest in tail buildings constructed from mass timber materials (Breneman 2013, Tenmers 2015). Around the world there

WoodWorks Tall Wood Design Resource

https://www.woodworks.org/resources/tall-wood-buildings-in-the-2021-ibc-up-to-18-stories-of-mass-timber/

Fote	Autola	8-over1	2012
Vie Centri	Mars, taky		2013

TALL WOOD CODE ADOPTION IN CALIFORNIA

CBC Tall Wood Building Size Limits

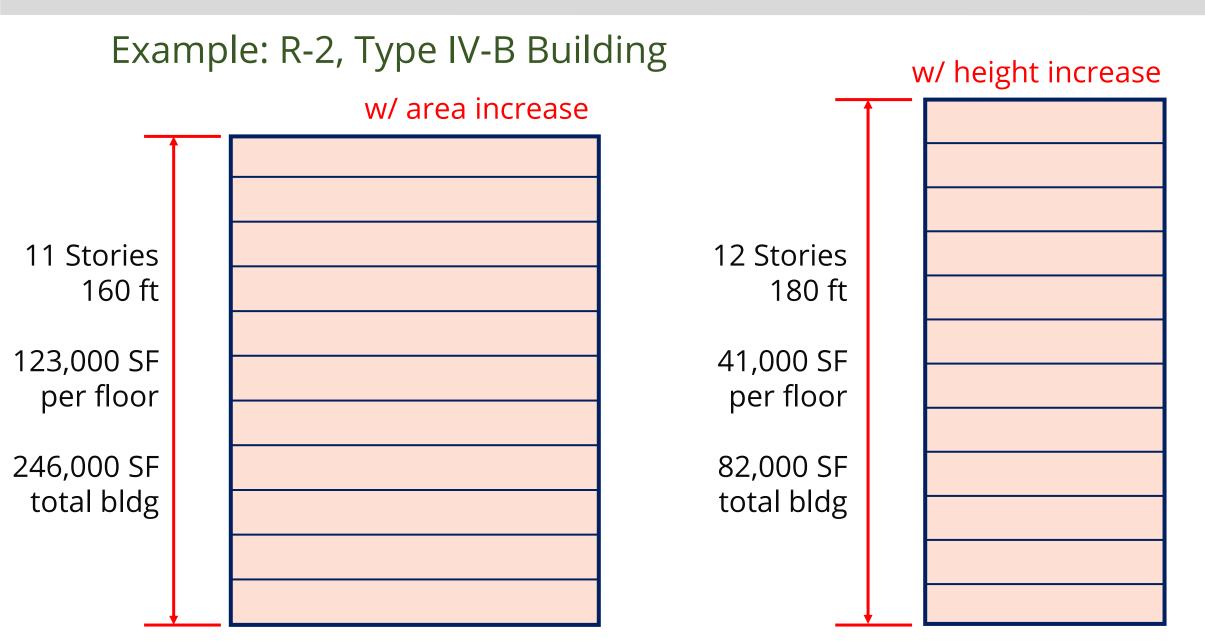
The CBC has historically not allowed "double-dipping" for sprinkler increases of building height and area for A, E, H, I, L or R occupancies. The IBC has no such restriction.

Also specific to the CBC, for multi-story buildings that are A, E, H, I, L or R occupancies, the total allowable building area is equal to the allowable floor area multiplied by the number of stories, not to exceed 2. In the IBC, this value is 3 for all occupancies.

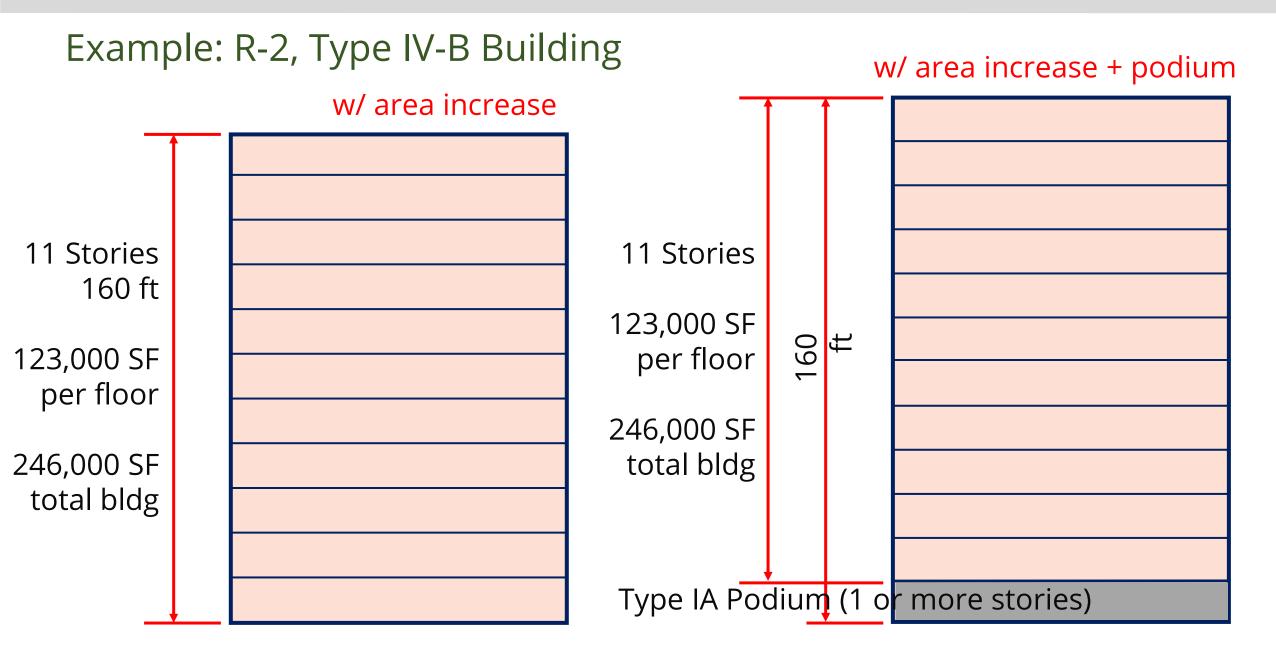
This is also the case for Tall Wood.

	VS.	
Larger Area		Taller

CBC Tall Wood Building Size Limits


For example, if using the sprinkler area increases, the allowable height in the CBC is 20 ft and 1 story less than the IBC limits for Type IV-A, IV-B and IV-C construction for A, E, H-4, I-4, R-1 and R-2 occupancies.

OCCURANCY	TYPE OF CONSTRUCTION				
OCCUPANCY	REE ECVITACITED	TYPE IV			
CLASSIFICATION	SEE FOOTNOTES	A	₿	<u>c</u>	HT
₿, ₱, ₩, \$, U	NS⁼	<u>65</u>	<u>6</u>	<u>65</u>	65
	S	<u>270</u>	<u>180</u>	<u>85</u>	83
ĄE	NS ⁵	<u>65</u>	<u>.</u> 85	<u>65</u>	65
	S (without area increase)	<u>270</u>	<u>180</u>	<u>85</u>	85
	S (with area increase)	<u>250</u>	<u>160</u>	<u>65</u>	65


CBC Tall Wood Building Size Limits

	Construction Type (Sprinklered Values)						
	I-A	I-B	<u>IV-A</u>	<u>IV-B</u>	<u>IV-C</u>	IV-HT	III-A
Occupancies	Allowable Building Height above Grade Plane, Feet (CBC Table 504.3)						
B, F, M, S, U, R-3, R-4	Unlimited	180*	<u>270</u>	<u>180</u>	<u>85</u>	85	85
A, E, R-1, R-2 (w/ area increase)	Unlimited	180 (160)	<u>270 (250)</u>	<u>180 (160)</u>	<u>85 (65)</u>	85 (65)	85 (65)
		Allowabl	e Number of St	tories above Gra	ade Plane (CBC	Table 504.4)	
A-2, A-3, A-4 (w/	Unlimited	12 (11)	<u>18 (17)</u>	<u>12 (11)</u>	<u>6 (5)</u>	4 (3)	4 (3)
area increase)	ļļ	<u>ا</u>	Į′	ļ'	ļ'	!	
В	Unlimited	12	<u>18</u>	<u>12</u>	<u>9</u>	6	6
R-1, R-2 (w/ area	Unlimited	12 (11)	<u>18 (17)</u>	<u>12 (11)</u>	<u>8 (7)</u>	5 (4)	5 (4)
increase)	<u> </u>	<u>ا</u>	<u> </u>	<u> </u>			
		Allowable Area Factor (At) for SM, Feet ² (CBC Table 506.2)					
A-1, A-2, A-3, A-4	Unlimited	Unlimited	<u>135,000</u>	<u>90,000</u>	<u>56,250</u>	45,000	42,000
(w/ height increase)			<u>(45,000)</u>	<u>(30,000)</u>	<u>(18,750)</u>	(15,000)	(14,000)
В	Unlimited	Unlimited	<u>324,000</u>	<u>216,000</u>	<u>135,000</u>	108,000	85,500
R-1, R-2 (w/ height	Unlimited	Unlimited	<u>184,500</u>	<u>123,000</u>	<u>76,875</u>	61,500	72,000
increase)		<u>ا</u>	<u>(61,500)</u>	<u>(41,000)</u>	<u>(25,625)</u>	(20,500)	(24,000)

CBC Tall Wood – Sprinkler Increase Options

CBC Tall Wood – Podium Option (w/ Sprinkler Increase)

