ASPECT STRUCTURAL ENGINEERS

TALL MASS TIMBER

TEAMWORK MAKES THE DREAM WORK

ILANA DANZIG, P.Eng. Struct Eng., M.Eng., PE, SE

ilana@aspectengineers.com

Disclaimer: this presentation was developed by a third party and is not funded

by Woodworks or the Softwood Lumber Board

TALL MASS TIMBER

TEAMWORK MAKES THE DREAM WORK

- Rethink project organization + teams
- Schematic design considerations
- Collaboration with the suppliers and builders
- Seismic Considerations
- Codes

TRADITIONAL

SCHEMATIC DESIGN CONSIDERATIONS

Different Materials Different Tolerances Different Markets

Sizes Available

Gridlines need to match panel availability!

Floor types

Post and Beam Efficient for: Beam spans up to 30' Slab spans up to 20'

Column spacing decreases

Post and Slab Band Efficient for: Beam spans up to 20' (longer if composite)

Flat Slab Efficient for: Column spacing up to 12'

Structure depth decreases

Modern Connections

Modern Connections

COLLABORATION WITH SUPPLIERS AND BUILDERS

Design for Manufacturing

Design for Transportation

Design for Installation

SEISMIC CONSIDERATIONS

• No addition of mass timber lateral system into table 12.2-1

Options

- Concrete cores
- CLT walls
- Braced Frames

Options

- Concrete cores
- CIT walls (Usually)
- Braced Frames

CONCRETE CORES

BRACED FRAMES

Modular Eccentrically Braced Frame

	Concrete Core	CLT shear walls	BRBs or Eccentrically Braced Frames
Cost			
Time		\bigcirc	
Quality / Prefab			
Code			
Ductility			

Diaphragms

- Concrete topping
- Untopped CLT
- Rigid / Flexible assumptions

Transfer at Podium

- These buildings are NOT light frame where transfers are common
- Transferring the lateral system is costly and inefficient
 - Uneven distribution of lateral loads
 - Deep transfer beams

TALLER WOOD CONSIDERATIONS

Vibration due to wind

- Lightweight building with low damping → vibration challenge
- Added damping might be necessary at taller heights

Shrinkage and Creep

- Consider interface
 between wood + lateral
 system
- Short term: elastic shortening while building is loaded
- Long term: creep and shrinkage

FIRE AND STRUCTURE

- Structural consideration of fire
 - ASCE 7-16 Appendix E: Performance-based fire design
 - NDS Chapter 16 fire design of wood members
 - AWC Technical Report 10 expansion and examples

Calculating the Fire Resistance of Wood Members and Assemblies Technical Report No. 10

QUESTIONS?

ILANA DANZIG ilana@aspectengineers.com