

Acoustics and <u>Vibration</u> in Mass Timber Structures: Design & Performance

Scott Breneman, PhD, PE, SE Senior Technical Director – Project Resources and Solutions Division WoodWorks – Wood Products Council

US Building Code Requirements for Vibration

Barely mentioned in IBC, ASCE 7, NDS, etc. ASCE 7 Commentary Appendix C has some discussion, no requirements

Common Vibration Sources for Buildings

Vibration sources are complex:

- Footfall, running, aerobics, etc.
- Machinery and equipment
- Vehicular traffic, rail traffic, forklifts
- Ground-borne, structure-borne, air-borne
- Steady-state, episodic, periodic
- Harmonic, pulse, random
- Moving, stationary

Vibration Sensitivities

- People
 - Sitting, Standing, Laying
- Equipment

gure 5.1 Directions for Vibration defined in ISO 2631⁽¹²⁾ BS 6472⁽³⁾ and BS 6841⁽²¹⁾

Direction of Vibration in ISO 2631

Photo licensed under <u>CC BY-NC-ND</u>

Natural Frequency

$$f_n = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$

Undamped Free Response

Period T = $1 / f_n$ Frequency

(a) A bridge as a simply supported beam

(b) The first mode of vibration

Practical floor frequencies from 5 to 15+ Hz.

(c) The displacement of mid-span after someone jumps once at mid-span Generally the higher the better

CCIP-016 (2006)

Resonant vs Impulsive Response

Excitation Frequency not >> Natural Frequency Excitation Creates Resonant Build-up of Vibration

Low Frequency Floor

Excitation Frequency >> Natural Frequency Responses decays out between load cycles

High Frequency Floor

 $f_n \sim 8 \text{ Hz}$ For Walking Excitation $f_n \sim 8 \text{ Hz}$

Floor Vibration Concepts: Resonance

Natural Frequency: f_n

Forcing Frequency: f

Human Body Dynamics

Illustration: Sven-Olof Emanuelsson

Floor Vibration Criteria – Human Comfort

Range of Acceptable Perception of Acceleration

0.5% to 5% g (vertical)

Framing Materials Properties for Vibration

Material	Floor Weight (psf)	Damping	Material Stiffness (10 ⁶ psi)	Material Mass (pcf)	Example Floor System
Concrete	100-150	1-5%	3.2-5.8	120-150	2-way slab on columns
Steel	50-100	0.5-5%	30	490	Concrete on metal deck on purlins and girders
Mass Timber	15-65	1-6%	1.2-1.8	30-40	Beam <i>or</i> wall supported
Wood Frame	10-40	2-12%	1.2-2.0	30-40	Wall supported

Beam vs Wall Supported Floors

Mass Timber Panels on Grid of Beams. Frequency of Floor < Frequency of Panel Vibration of Floor > Vibration of Panel Vibration Design Depends on Beams

Low Frequency Floor? Maybe, depends on system

Mass Timber Panels on Bearing Walls

High Frequency Floor? Yes, for most floor spans < ~22 ft

Vibration Design Methods

Vibration Design Methods

Calculated natural frequency of simple span of bare CLT:

$$f = \frac{2.188}{2L^2} \sqrt{\frac{EI_{app}}{\rho A}}$$

Where:

 EI_{app} = apparent stiffness for 1 foot strip, pinned supported,

uniformly loaded, simple span ($K_s = 11.5$) (lb-in²)

- ρ = specific gravity of the CLT
- A = the cross section area (thickness x 12 inches) (in²)

Reference: US CLT Handbook, Chapter 7

Limit CLT Floor Span such that

Frequency f > 9.0 Hz

Span L!
$$\leq \frac{1}{12.05} \frac{(EI_{app})^{0.293}}{(\rho A)^{0.122}}$$

Based on:

- Un-topped CLT
- Single, Simple span
- Bearing wall supports.

Does not account for:

- Supporting beam flexibility
- Multi-span conditions
- Additional floor mass (topping slab, etc)

Reference: US CLT Handbook, Chapter 7

CLT Handbook, Chapter 7 Recommendations

Experimental Verification – Results

Calculation of Recommended Span Limit

Using spreadsheet & iterate:

- 1) Estimate L
- 2) Calculate El_{app}
- 3) Calculate L limit
- 4) Repeat until converges (quickly)

OR Use values provided by Manufacturers, et al.

Reference: US CLT Handbook, Chapter 7

FPI Span Limit for Basic CLT Grades / Layups

Grade	Layup	Thickness	FPI Span Limit
	3ply	4 1/8"	12' 5"
E1	5ply	6 7/8"	17' 4"
	7ply	9 5/8"	21' 8"
	3ply	4 1/8"	12' 0"
E2	5ply	6 7/8"	16' 8"
	7ply	9 5/8"	20' 10"
	3ply	4 1/8"	11' 7"
E3	5ply	6 7/8"	16' 1"
	7ply	9 5/8"	20' 1"
	3ply	4 1/8"	12' 2"
E4	5ply	6 7/8"	17' 0"
	7ply	9 5/8"	21' 3"

	Grade	Layup	Thickness	FPI Span Limit
		3ply	4 1/8"	12' 2"
	V1	5ply	6 7/8"	17' 0"
		7ply	9 5/8"	21' 3"
		3ply	4 1/8"	11' 11"
	V2	5ply	6 7/8"	16' 8"
		7ply	9 5/8"	20' 10"
		3ply	4 1/8"	12' 0"
	V3	5ply	6 7/8"	16' 9"
		7ply	9 5/8"	21' 0"

Approximate FPI Span Limits:

3-ply:	11 to 12 ft
5-ply:	16 to 17 ft
7-ply:	20 to 21 ft

Limitations:

- Does not account for strength or deflections
- Does not account for beam flexibility
- Does not account for project specifics

CLT Handbook In Practice

- Explicitly requires high-frequency floor (>9Hz)
- Is simple to implement
- Experience shown it can produce well performing floors for load bearing wall applications.
- Does not directly consider impact of
 - Multi-span panels (which can help)
 - Flexibility of supports (which can hurt)
 - Topping slabs (which can help or hurt)
 - Selection of level of performance (hospital vs budget hotel)

Vibration Design Methods

US Mass Timber Vibration Design Guide

USDA Wood Innovations Grant funded project in progress

US MASS TIMBER FLOOR VIBRATION DESIGN GUIDE

APPROXIMATE OUTLINE

- 1 Introduction
 - 1.1 Preface
 - 1.2 Scope of this Guide
 - 1.3 Terminology
 - 1.4 Symbols
 - 1.5 Vibration Characteristics of Floor Structures
 - 1.6 Building Codes and Standards
- 2 Understanding Floor Vibration
 - 2.1 Structural Response to Footfall Forces
 - 2.2 Vibration Background
 - 2.3 Methods for Evaluating Vibration
 - 2.4 Human Perception of Vibration
- 3 Vibration Design Considerations
 - 3.1 Floor Loading / Mass
 - 3.2 Damping
 - 3.3 Component Stiffness
 - 3.4 Composite Behavior
 - 3.5 Structural and Floor Configurations
 - 3.6 Excitation Parameters
 - 3.7 Floor Vibration Performance Targets

Guide to be published by WoodWorks in early 2020

Project Team: WoodWorks, KPFF, Aspect, StructureCraft, & Fast+Epp

Model Based Vibration Design Considerations

- Dedicated Vibration Dynamics Model
- Floor Mass including Live Loading
- Component Stiffness
- Composite Behavior (explicit or incidental)
- Damping
- Walking Frequencies
- Boundary Conditions
- Acceptance Criteria

Copyright Materials

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

© The Wood Products Council 2019

Questions?

This concludes The American Institute of Architects Continuing Education Systems Course

Scott Breneman, PhD, PE, SE Scott.Breneman@WoodWorks.org

