

Building for High Wind Resistance

Presented by: Cathy Scarince, P.E.

Disclaimer: This presentation was developed by a third party and is not funded by WoodWorks or the Softwood Lumber Board.

AIA Credits

"The Wood Products Council" is a Registered Provider with The American Institute of Architects Continuing Education Systems (AIA/CES), Provider #G516.

Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request. This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Course Description

This session will examine structural failures observed during storm damage assessments and the behavior of wood structures during high-wind events. Discussion will include an overview of how high wind forces work, the importance of a complete load path to building resiliency, and how good design and construction practices can improve the storm resistance of buildings. Both code requirements and APA's above-code recommendations, which contribute to improved overall performance in the structural shell, will be reviewed. These recommendations focus on good connection details and common failure modes seen in storm-damage assessments, and can help builders to cost-effectively build safer structures. By understanding key code requirements and lateral-load concepts, building damage in storms can be minimized.

Learning Objectives

- 1. Identify common failure modes using photographs from post-disaster evaluations.
- 2. Understand the importance of a complete load path when designing and building for resiliency.
- 3. Recognize the fundamental behavior of wood structures especially as it pertains to lateral loads from high-wind events.
- 4. Discusses preventive methods that can reduce the damage that occurs during highwind events utilizing additional connection detailing.

Agenda

- 1. Understand high wind events and classifications
- 2. Discuss complete load paths.
- 3. Identify common failure modes.
- 4. Review APA suggested methods that can reduce damage due to high winds.

APA Publications

Publications from Others

High Wind Events

Midwest Tornados – May 2003 Tornados of the South – April 2011 Texas Tornado – December 2015 Texas Straight Line Winds – March 2017 Nebraska Tornado – June 2017 Maryland Tornado – July 2017 Tennessee Tornado – March 2018

How are hurricanes different from tornadoes?

	Hurricanes	Tornadoes	
Where they form	Hurricanes form over worm water in the tropical oceans and develop best when far from the jet stream.	Tornadoes form over land and form within storms that are often very close to the jet stream	
How big they are	Can be up to several hundred miles wide	Usually no more than 2 mile wide	
How long they last	Can last up to 3 weeks	Usually last no more than an hour	
How strong the winds are	Usually less than 180 mph	The most severe ones can be up to 300 mph	
Occurrences per year	An average of 10 tropical storms in the Atlantic Ocean	In the United States, 800-1000	
Advance warning from forecasters	Several days	Usually no more than 15-30 minutes	

HIGH WIND EVENTS

The Saffir-Simpson Hurricane Wind Scale

Category	Wind Speed (peak 1-min.)	Description of Expected Damage
1	74-95	Very dangerous winds will produce some damage. People, livestock, and pets struck by flying or falling debris could be injured or killed
2	96-110	Extremely dangerous winds will cause extensive damage. There is a substantial risk of injury or death to people, livestock, and pets due to flying and falling debris
3	111-129	Devastating damage will occur. There is a high risk of injury or death to people, livestock, and pets due to flying and falling debris
4	130-156	Catastrophic damage will occur. There is a very high risk of injury or death to people, livestock, and pets due to flying and falling debris
5	157+	Catastrophic damage will occur. People, livestock, and pets are at very high risk of injury or death from flying or falling debris, even if indoors in mobile homes or framed homes

Hurricane Facts

- 90% of hurricanes on US mainland are Cat. 3 or below (max. wind speed = 129 mph)
- The winds around the eye of a hurricane are usually the strongest.
- The eye of a hurricane is usually around 30 miles wide.
 - Can range from 2 miles over 200 miles
- The Saffir-Simpson Hurricane Wind Scale provides examples of the type of damage and impacts to expect based on measured wind speed
 - Damage rises by about a factor of four for every category increase.

Enhanced Fujita Scale

EF-Scale	Tornado description	Wind Speed (3-sec gust)	Description of Expected Damage
EF-0	Gale tornado	65-85	Minor or no damage. Peels surface off some roofs; some damage to gutters or siding; branches broken off trees; shallow-rooted trees pushed over.
EF-1	Moderate tornado	86-110	Moderate damage. Roofs severely stripped; mobile homes overturned or badly damaged; loss of exterior doors; windows and other glass broken.
EF-2	Significant tornado	111-135	Considerable damage. Roofs torn off well-constructed houses; foundations of frame homes shifted; mobile homes completely destroyed; large trees snapped or uprooted; light-object missiles generated; cars lifted off ground.
EF-3	Severe tornado	136-165	Severe damage. Entire stories of well-constructed houses destroyed; trains overturned; trees debarked; heavy cars lifted off the ground and thrown.
EF-4	Devastating tornado	166-200	Extreme damage. Well-constructed and whole frame houses completely leveled; cars and other large objects thrown and small missiles generated.
EF-5	Incredible tornado	>200	Total Destruction. Strong framed, well built houses leveled off foundations and swept away;

Tornado Facts

- 96% of all tornados are EF2 and below (max wind speed = 135 mph)
- Unrealistic to protect against EF4, EF5, and some EF3
- Winds outside vortex are slower than maximum winds
- The Enhanced F-scale still is a set of wind estimates (not measurements) based on damage.
- Safe rooms are not a universal remedy
 - There is often little warning to those who are in the tornado path
 - Need recommendations to protect building shell

Damage Indicators

- Group of objects that can be used to evaluate a tornado severity
- EF scale currently has 28 damage indicators (DI) or types of structures and vegetation, each with varying number of degrees of damage (DoD)
- The larger the degree of damage, the higher the wind speed and corresponding tornado ratings
- Primary Damage Indicators used in this report
 - One- or two-family residences
 - Hardwood trees

Damage Indicator #2 (FR12)

One- And Two-Family Residences (FR12) (1000 – 5000 sq. ft.)

Typical Construction

- Roof coverings
- Roof sheathing and framing
- Roof geometry
- Wall claddings
- Wall sheathing and framing
- Wall geometry and openings, including attached garages

Damage Indicator #2 (FR12)

DOD	Damage Description	EXP	LB	UB
1	Threshold of visible damage	65	53	80
2	 Loss of roof covering material (<20%), gutters and/or awning; loss of vinyl or metal siding Broken glass in doors and windows Uplift of roof deck and loss of significant roof covering material (>20%); collapse of chimney; garage doors collapse inward; failure of porch of carport 			97
3				114
4				116
5	Entire house shifts off foundation	121	103	141
6	Large sections of roof structure removed; most walls remain standing	122	104	142
7	Exterior walls collapsed		113	153
8	Most walls collapsed, except small interior rooms		127	178
9	All walls EF-3 to EF-4	170	142	198
10	Destruction of engineered and/or well constructed residence; slab swept clean	200	165	220

DOD = Degree of Damage

EXP = Expected Wind Speed

LB = Lower Bound Wind Speed

UB = Upper Bound Wind Speed

Well Constructed Home

Damage Indicator #27 (TH)

Hardwood: Oak, Maple, Birch, Ash

DOD	Damage Description		EXP	LB	UB
1	Small limbs broken (up to 1" diameter) EF-0		60	48	72
2	Large branches broken (1"-3" diameter)		74	61	88
3	Trees uprooted		91	76	118
4	Trunks snapped		110	93	134
5	Trees debarked with only stubs of largest branches remaining	EF-3	143	123	167

DOD = Degree of Damage

EXP = Expected Wind Speed

LB = Lower Bound Wind Speed

UB = Upper Bound Wind Speed

EF-3 Severe damage. Entire stories of well-constructed houses destroyed; trains overturned; trees debarked; heavy cars lifted off the ground and thrown.

EF-1 Moderate damage. Roofs severely stripped; mobile homes overturned or badly damaged; loss of exterior doors; windows and other glass broken.

Damage Indicators

Nebraska Tornado – June 2017

Tornado Intensity Along Path

Percentage of Occurrence

EF-Scale	Wind Speed (3-sec gust)	Relative Frequency	Cumulative Percentage	Examples of Damage
EF-0	65-85	53.5 %	53.5 %	
EF-1	86-110	31.6 %	85.1	
EF-2	111-135	10.7 %	95.8	and a
EF-3	136-165	3.4 %	99.2	
EF-4	166-200	0.7 %	99.9	
EF-5	>200	< 0.1	100	

Load Path

A load path takes a load on the structure from the point of origin to the foundation. There are 2 types of load paths:

Vertical Load Path - fairly intuitive

Lateral Load Path - not as intuitive

BUILDING FOR HIGH WIND RESISTANCE

Building for High Wind Resistance

A - Roof Sheathing Connection

A - Roof Sheathing Connection

Springfield, IL March 16, 2006

Hartford, WI – Multi-Family Garage Structure – 2006

A - Roof Sheathing Attachment

Nail roof sheathing with at 4" on center at panel ends and edges and 6" on center in the intermediate framing

A - Roof Sheathing Attachment

Fastener Recommendation: 8d (0.131" x 2-1/2") screw or ring shank nails

Enhanced withdrawal strength is – achieved with the deformed shank

Nebraska Tornado – June 2017

Fayetteville, North Carolina – 2011 Tornados

Tie gable end walls back to the structure

Resisting Pressure on Components and Cladding: Sheath gable end walls with wood structural panels such as plywood or oriented strand board (OSB)

D - Top Plates

D - Top Plates

Garland, Texas – 2015

Battlefield, MO Fire Station – 2003

Missouri Tornado – 2003

D - Top Plates

Pre-engineered Connectors

E - Rim Board Connections

Nebraska Tornado – June 2017

E - Rim Board Connections

E - Rim Board Connections

F and G - Wall Sheathing

Missouri Tornado – 2003

Missouri Tornado – 2003

F and G - Wall Sheathing

Texas Straight Line Wind – March 2017

F and G - Wall Sheathing Attachment

Garland, Texas – 2015

Tennessee Tornado – March 2017

Wall Framing to Sill Plate Connection

Extend wood structural panel sheathing at bottom of wall to sill plate intersection

Tennessee - 2018

H and I - Sill Plates and Anchor Bolts

Texas Tornado – December 2015

H and I - Sill Plates and Anchor Bolts

Anchor Bolt Installation

Building for High Wind Resistance

www.apawood.org/wind-weather-seismic

and a second second second

Recommendations for Wind-Resistant Construction

Impacts of the most common high-wind events are easily mitigated by a few wind-resistant construction techniques. A wind-resistant home costs a little more than a code-minimum home, but it can be several times stronger at resisting wind forces.

Building for High-Wind Resistance in Light Frame Wood Construction

Enoded Shilldow

Thanks for Attending!

QUESTIONS?

APA

Cathy Scarince, PE

Cathy.Scarince@apawood.org 469-247-1885

www.apawood.org