

Mass Timber Structural Design: Engineering Modern Timber Structures <image>

Presenter Name

S EDUCATION S EDUCATION

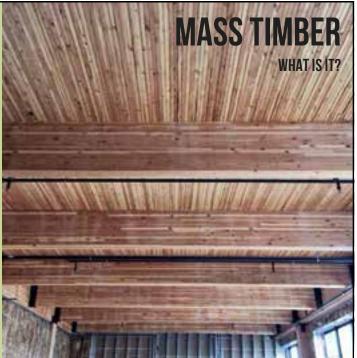
"The Wood Products Council" is a Registered Provider with The American Institute of Architects Continuing Education Systems (AIA/CES), Provider #G516.

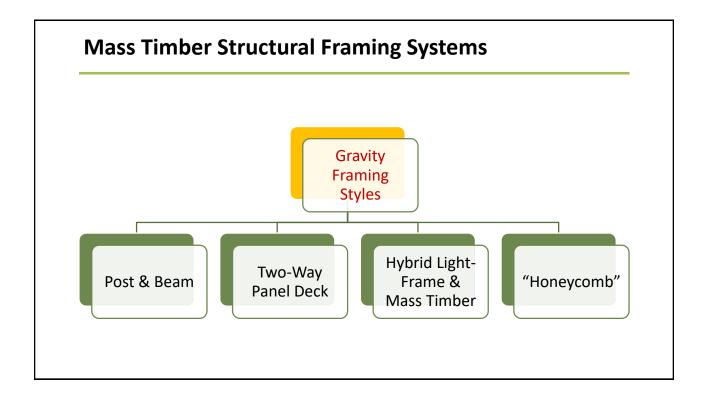
Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request. This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

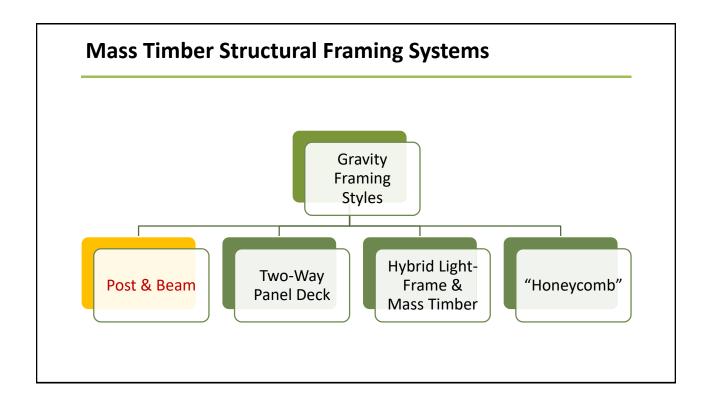
Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

## Course Description

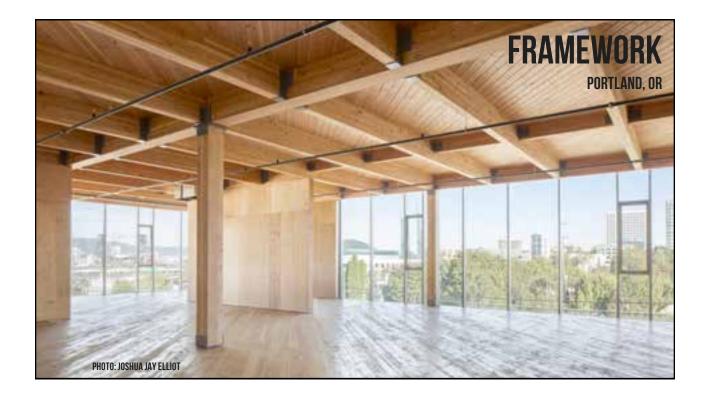
This presentation will provide a detailed look at the structural design processes associated with a variety of mass timber products, including glued-laminated timber (glulam), cross-laminated timber (CLT), and nail-laminated timber (NLT). Applications for the use of these products in gravity force-resisting systems under modern building codes will be discussed. Other technical topics will include and an introduction to lateral systems common in mass timber buildings, mass timber floor vibration criteria, and connection options. Mass timber framing components are often left exposed to act as a finish while taking advantage of their aesthetics. As such, they are often required to provide a fire-resistance rating demonstrating their ability to maintain structural integrity in the event of a fire. This session will also discuss structural design of mass timber elements under fire conditions.



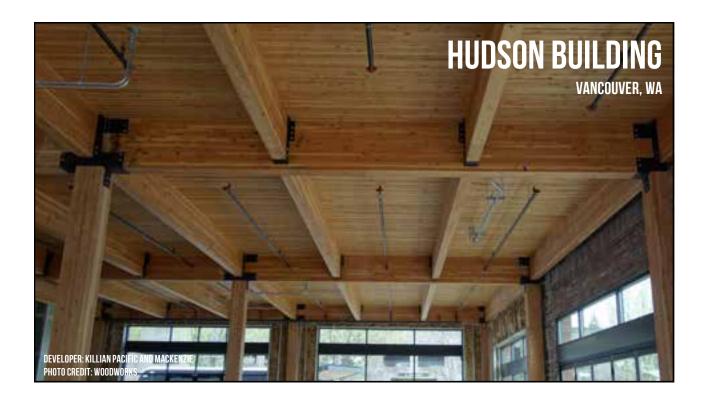


### Learning Objectives

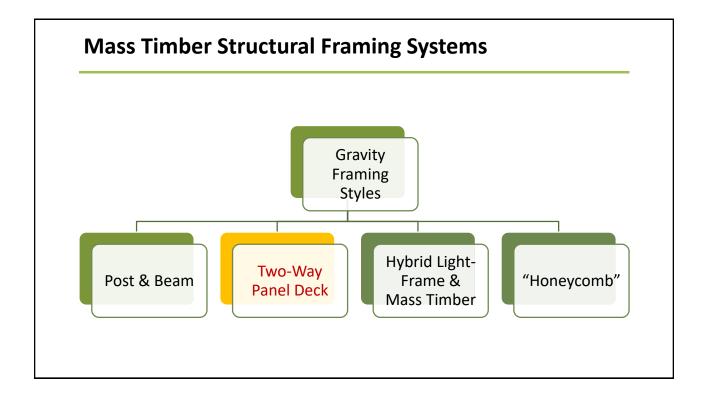

- 1. Compare properties and performance characteristics of mass timber products and review their unique design considerations.
- 2. Demonstrate structural layout options available in common mass timber framing systems through project examples
- 3. Highlight strategies for integrating wind and seismic force resisting systems into a mass timber gravity system
- 4. Provide code recognized path for justification of fire resistance of exposed structural timber elements.



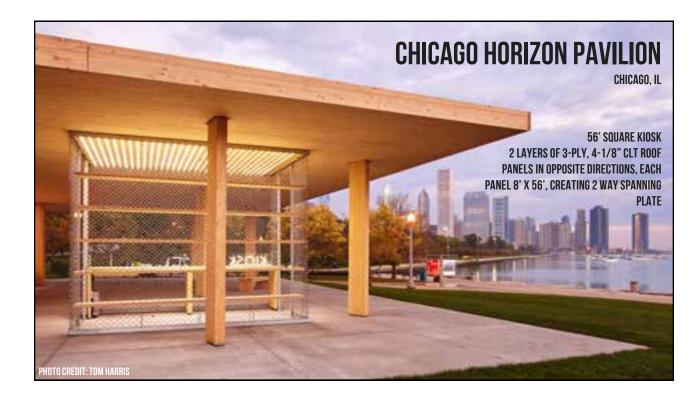

MASS TIMBER IS A CATEGORY OF FRAMING STYLES OFTEN USING SMALL WOOD MEMBERS FORMED INTO LARGE PANELIZED SOLID WOOD CONSTRUCTION INCLUDING CLT, NLT OR GLULAM PANELS FOR FLOOR, ROOF AND WALL FRAMING

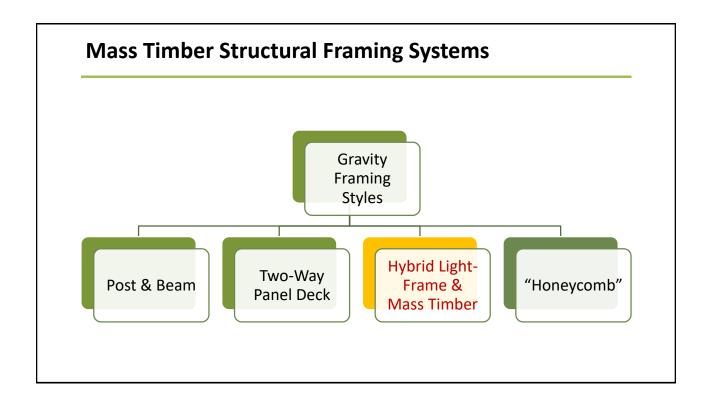




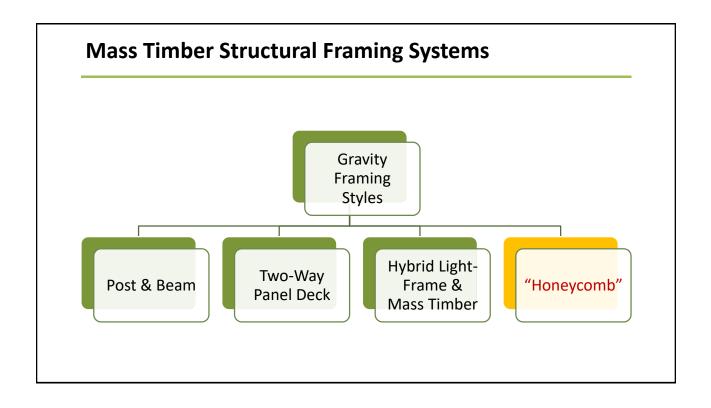





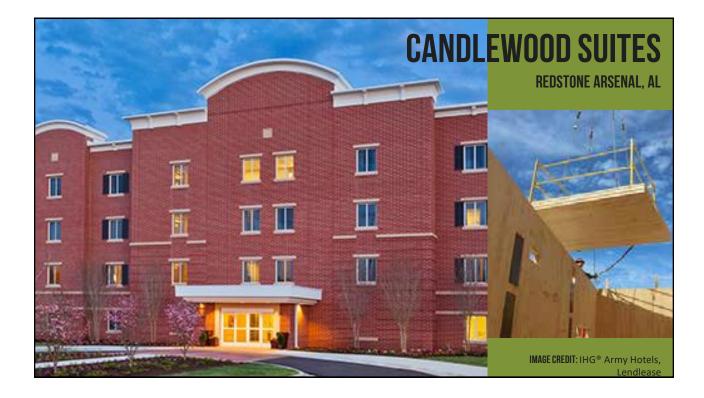



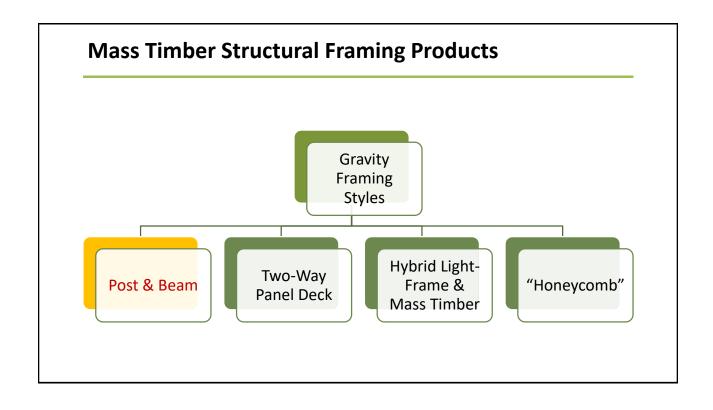


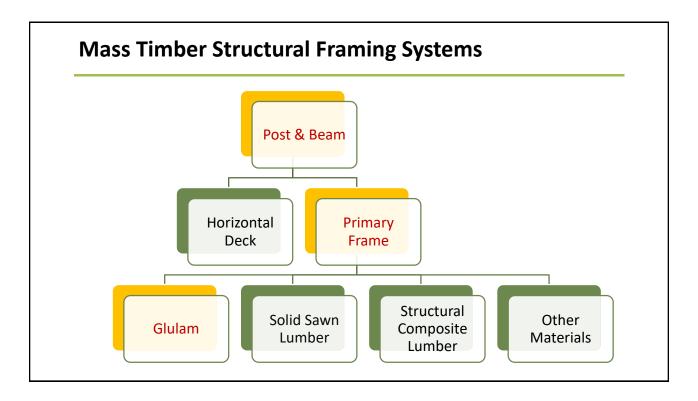









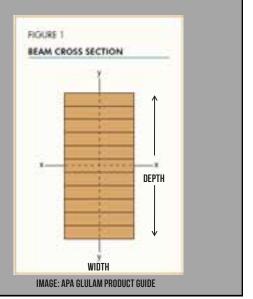









# **GLULAM STRUCTURAL DESIGN**


### **GLULAM SPECS:**

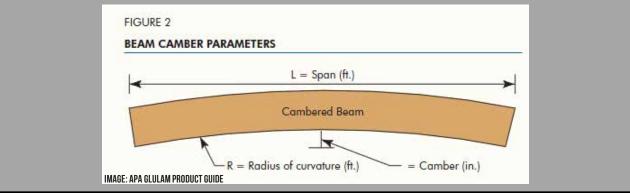
<u>TYPICAL WIDTHS:</u> 3-1/8", 3-1/2", 5-1/8", 5-1/2", 6-3/4", 8-3/4", 10-3/4", 12-1/4"

### **TYPICAL DEPTHS:**

INCREMENTS PER # OF LAMS FROM 6" TO 60"± Western species LAMS are typically 1-1/2" Thick Southern Pine LAMS are typically 1-3/8" Thick

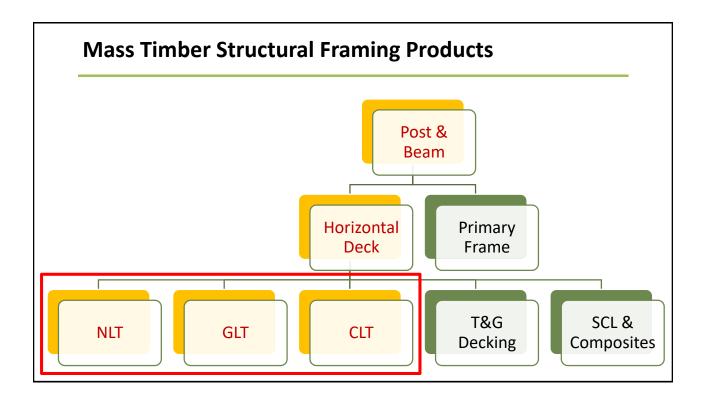
<u>TYPICAL SPECIES:</u> Douglas-Fir, southern Pine, spruce Also Available in Cedar & others




|                  |                                          |                                                          | (Le                                             | aded Per        | pendicular to<br>f Lamination  | o Wide Faces               |                                 |                                   |                                |   |
|------------------|------------------------------------------|----------------------------------------------------------|-------------------------------------------------|-----------------|--------------------------------|----------------------------|---------------------------------|-----------------------------------|--------------------------------|---|
|                  |                                          | Ba                                                       | nding                                           | Com             | pression<br>endicular<br>Grain | Shear Parallel<br>to Grain |                                 | UUs<br>V<br>Kolty                 |                                |   |
|                  |                                          | Balan of Boats<br>Browell IT<br>Toroan<br>Pratia Sectory | Tara kan<br>Brasil T<br>Taran<br>Dagara kontari | Tension<br>Face | Compression<br>Face            |                            | For<br>Defection<br>Calcubelors | Por<br>Statistity<br>Calculations | SUPPLEMENT                     | 5 |
| Combination      | Species                                  | Fbs                                                      | F <sub>bx</sub>                                 |                 | 61.8                           | F <sub>vx</sub> (2)        | E,                              | Exmin                             | NDS                            |   |
| Symbol           | Outer/ Core                              | (psi)                                                    | (pei)                                           |                 | (24)                           | (pu)                       | (10 <sup>6</sup> psi)           | (10 <sup>4</sup> psi)             | - Annes Deng Symmetry Co.      |   |
| 24F-             | 20 C C C C C C C C C C C C C C C C C C C | 2400                                                     | 1450                                            |                 | 550                            | 265                        | 1.8                             | 0.95                              | Bergy mint be free interaction |   |
| 24F-V4<br>24F-V8 | DF/DF<br>DF/DF                           | 2400                                                     | 1850 2400                                       | 650<br>650      | 650<br>650                     | 265                        | 1.8                             | 0.95                              |                                |   |
| 04F-90           | DF/DF                                    | 2400                                                     | 1450                                            | 650             | 650                            | 265                        | 1.0                             | 0.96                              |                                |   |
| 24F-E13          | DF/DF                                    | 2400                                                     | 2400                                            | 650             | 650                            | 265                        | 1.8                             | 0.95                              |                                |   |
| 24F-E18          | DF/DF                                    | 2400                                                     | 2400                                            | 650             | 650                            | 265                        | 1.8                             | 0.95                              |                                |   |
| 4F-V3            | SP/SP                                    | 2400                                                     | 2000                                            | 740             | 740                            | 300                        | 1.8                             | 0.95                              | autorian                       | 1 |
| 24F-VB           | SP/SP                                    | 2400                                                     | 2400                                            | 740             | 740                            | 300                        | 1.8                             | 0.95                              | COLUMN TO A                    | 9 |
| 24F-E1           | SP/SP<br>SP/SP                           | 2400                                                     | 1450 2400                                       | 805             | 650<br>805                     | 300                        | 1.8                             | 0.95                              |                                |   |

| 000                             | GLAS       | 7<br>FIR -           | LAR                                  | СН                         |                                      | THE                                  | AME                                  | RICA                       | N INS                      | TITUT                      | E OF                       | TIME                       | ER C                       | ONST                                 | RUC                        | TION   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------|------------|----------------------|--------------------------------------|----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--------------------------------------|----------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| See.                            |            | 41.778               | 49                                   |                            |                                      | Stru                                 | ctura                                | Glue                       | d Lar                      | ninate                     | ed Tin                     | nber                       |                            |                                      |                            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                 | ORE        |                      |                                      | i.                         |                                      | 300                                  | Carlos C                             |                            |                            | 3.00                       |                            |                            |                            |                                      |                            |        | Patrick Lawrence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| FLO                             | OR L       | IVE L                | OA                                   | D                          |                                      | F <sub>b</sub>                       | ۴,                                   | Ε                          |                            | Co                         | Defle                      | otion                      | limit                      |                                      |                            |        | <b>SLUED LOMINATED</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                 |            |                      |                                      |                            |                                      | 2400                                 | 240                                  | 1.8                        |                            | 1.00                       |                            | / 360                      |                            |                                      |                            |        | BERM DESIGN TARIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                 | e Span     |                      |                                      |                            |                                      | psi                                  | psi                                  | millio                     | nc                         |                            | for L                      | JVE LO                     | DAD                        |                                      |                            |        | BEATT BEFTER TREEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                 | olimina    |                      |                                      |                            | 5                                    |                                      |                                      | psi                        |                            |                            |                            | 0.00                       |                            |                                      |                            |        | 100 million (100 million)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                 | ation th   |                      | 1.50                                 | ψin.                       |                                      |                                      | DEAL                                 | I A A B                    | AFITO                      | UNIF                       | COAD FA                    |                            | 0.80                       | 1                                    |                            |        | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Wide                            | Dept       | WEIGHT               | 1044                                 | -                          |                                      |                                      | DEA                                  | E GAP                      | ACTIV                      | , ONIP                     | CHCM L                     | URD 1                      | , per                      |                                      |                            |        | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6 m                             | 6.6.       | #                    |                                      |                            | 10                                   | . 11                                 |                                      |                            |                            |                            | . 18                       | .17                        |                            | 18                                   | - 25                       | 21     | 10 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 61.0                            |            | 7.8                  | 007 D                                | 432.0                      | 107 D                                | 2310                                 | 178.0                                | 140.0                      | 112.0                      | #1 D .                     | · · · ·                    |                            | 4.0                        | -                                    | -                          | -      | Second Local Division of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| \$18                            | 110        | 8.3                  | 11750                                | R2H D                      | 0108                                 | 401.0                                | 348.0                                | 273.0                      | 219.0                      | 178 D                      | 147.0                      | 122.0                      | 100.0                      | ÷0.11                                | * 21                       | -      | 1000 000 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 518                             |            | 11.2                 | 1730.8                               | 1367 8                     | 1036.0                               | 780.0                                | 0.106                                | 475 D                      | 378 D                      | 307 D                      | 263 D                      | 211 D                      | 176 0                      | 181.0                                | 190.0                      | 112.0  | CONTRACTOR OF STREET, |
| 518                             | 10.12      | 13.1                 | 1254 8                               | 1860 8                     | 1507 8                               | 1238 D                               | 954.0                                | 750 D                      | 401 D                      | 488 D                      | 402 D                      | 336 D                      | 289.0                      | 240.0                                | 206.0                      | 178.0  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5.548                           | 9          | 348                  | 3075 8                               | 2450 B                     | 1008 8                               | 1426.8                               | 1367.8                               | 1120 0                     | 194.0                      | 729.0                      | 601 D                      | 501 D                      | 422 D                      | 359-0                                | 907 D                      | 208 0  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 518                             | 13.12      | 18.8                 | 3850 5                               | JOIN N                     | 2491 8                               | 2058 8                               | 1730 8                               | 1474.3                     | 1211 8                     | 1038.0                     | 806.0                      | 713.0                      | 801 D                      | 811.0                                | 438.0                      | 378.0  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                 | 15         | 98.7                 | 4473.5                               | 3798 5                     | 3075 8                               | 2541 8                               | 2188                                 | 1620.0                     | 1069 8                     | 1367.8                     | 11/30                      | 876.0                      | 604 D                      | 100-D                                | 401.0                      | 519.D  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 518                             | 16.10      | 20.0                 | 1154 5                               | 4300 5                     | 3721 #                               | 3075.8                               | 2584.8                               | 2202.9                     | 1000 0                     | 1854 @                     | 1447.8                     | 1274 8                     | 1097 D                     | W02.D                                | 199.0                      | MP1 D  | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 51/8                            |            |                      | ENGINE 15                            | 10000                      | 4217.8                               | 2080 8                               | 2015-8                               | 2620.8                     | 2258 8                     | 1954 8                     | 1707 8                     | 1903.0                     | 1333 B                     | 1190 8                               | 1006.0                     | 996.0  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 518<br>518                      | 18         | 22.4                 | 1000                                 | -                          |                                      |                                      |                                      |                            | 26.35 8                    | 2275.8                     | 1957 8                     | 1750 8                     | 1002.8                     | 1285 8                               | 5344 B                     | 1123-8 | 474                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 518<br>518<br>518               | 18<br>1912 | 24.3                 | 9000-                                | 5562.5                     | 4738 5                               | 4126.5                               | 2009.0                               | 2072.9                     | 410000-00                  |                            |                            |                            |                            |                                      |                            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 518<br>518<br>518<br>518        | 1912<br>21 | 24.3                 | 8000 *                               | 5562 S<br>8000 *           | 4738 S                               | 4126 5 4092 5                        | 4052 5                               | 3536.8                     | 3028 8                     | 2620 8                     | 2295 B                     | 2014 8                     | 1786.8                     | 1595 10                              | 1432.0                     | 1292.8 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 518<br>518<br>518<br>518<br>518 |            | 24.3<br>26.3<br>26.0 | 9000 *<br>9000 *<br>9000 *           | 8000 *<br>8000 *           | 4738 S<br>5298 S<br>5904 B           | 4126 5<br>4062 5<br>5040 5           | 4052 S<br>4472 S                     | 3536 B<br>3069 0           | 2028 B<br>1452 B           | 2820 B<br>2986 B           | 2295 B<br>2605 B           | 2014 B<br>2296-B           | 1786.8<br>2006-8           | 1596 10                              | 1432 B<br>1632 B           | 1292.8 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 518<br>518<br>518<br>518        | 1912<br>21 | 24.3                 | 8000 *<br>8000 *<br>8000 *<br>8000 * | 5562 S<br>8000 *<br>8000 * | 4738 S<br>5298 S<br>5904 B<br>6000 * | 4126 5<br>4082 5<br>5090 5<br>5623 8 | 4052 S<br>4072 S<br>4472 S<br>4920 S | 3536 8<br>3068 0<br>4373 5 | 2028 B<br>3452 B<br>3902 B | 2620 B<br>2986 B<br>2078 B | 2249 B<br>2608 B<br>2940 B | 2014 B<br>2296 B<br>2006 B | 1786.8<br>2006-8<br>2002-8 | 1596 B<br>1818 B<br>2595 B<br>2595 B | 1432 B<br>1632 B<br>1545 B |        | SOURCE: APA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

# **GLULAM STRUCTURAL DESIGN**


### **GLULAM CAMBER**

- GLULAM CAN BE MANUFACTURED WITH CAMBER TO OFFSET DEAD LOAD DEFLECTION
- VERY IMPORTANT FOR LONG SPAN MEMBERS
- GLULAM INDUSTRY RECOMMENDS CAMBER = 1.5 TIMES CALCULATED DEAD LOAD DEFLECTION



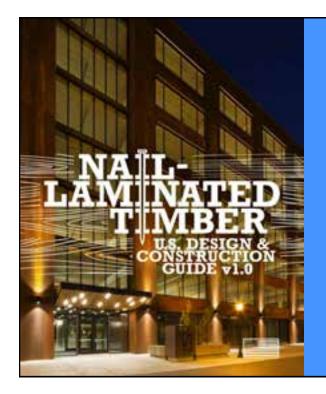











# **NLT STRUCTURAL DESIGN**

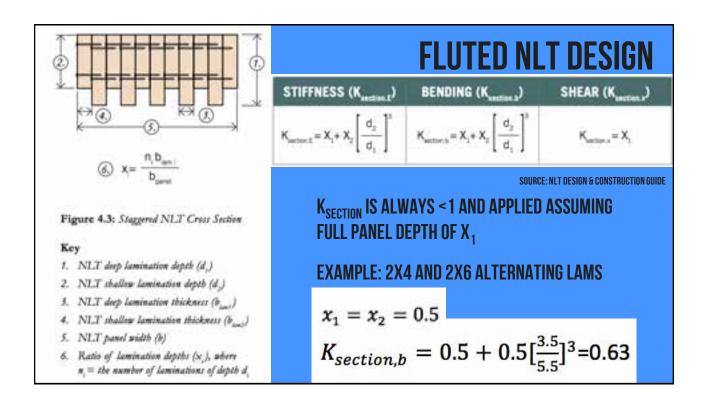
# NAIL-LAMINATED TIMBER (NLT) =

A STRUCTURAL PANEL OF SQUARE-EDGED Dimensional lumber laminations (usually 2X) Set on edge and nailed wide face together

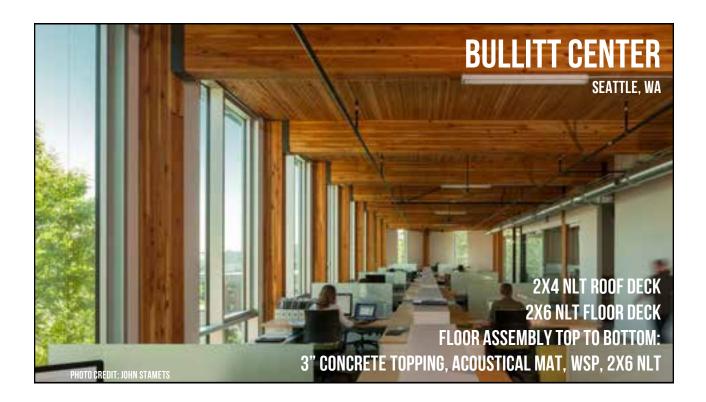
- RECOGNIZED IN IBC 2304.9.3 (MECHANICALLY LAMINATED DECKING)
- NDS 15.1.1 PROVIDES DISTRIBUTION FACTORS For concentrated loads
- CAN BE USED FOR FLOOR, ROOF DECKING. Occasionally used for shaft walls






# **NLT STRUCTURAL DESIGN**

### **CONTENT INCLUDES:**


- ARCHITECTURE
- FIRE
- STRUCTURE
- ENCLOSURE
- SUPPLY AND FABRICATION
- CONSTRUCTION AND INSTALLATION
- ERECTION ENGINEERING

HTTPS://WWW.RETHINKWOOD.COM/WEBFORM/DOWNLOAD-NLT-Handbook



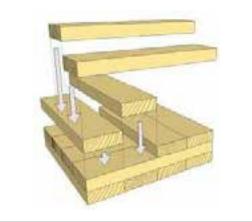


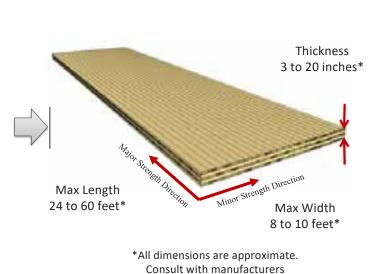




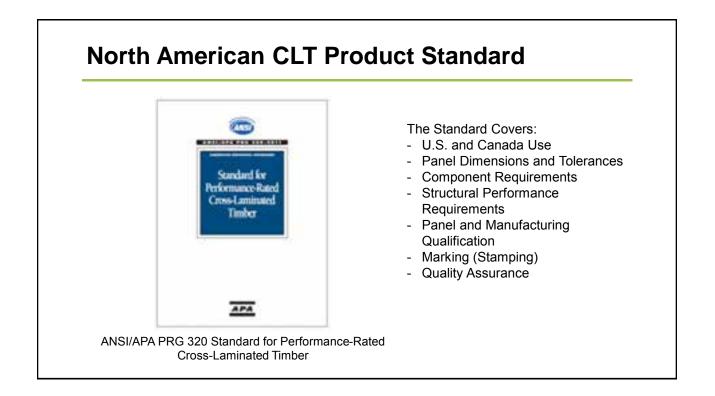
### **Cross Laminated Timber**




Considerations:


- Large light-weight panels
- Dimensionally stable
- Precise CNC machining available
- Recognized by IBC
- Dual Directional span capabilities
- · Often architecturally exposed
- Fast on-site construction

Graphic Credit: StructureCraft


### What is CLT?

3+ layers of laminations Typically Solid Sawn Laminations Cross-Laminated Layup





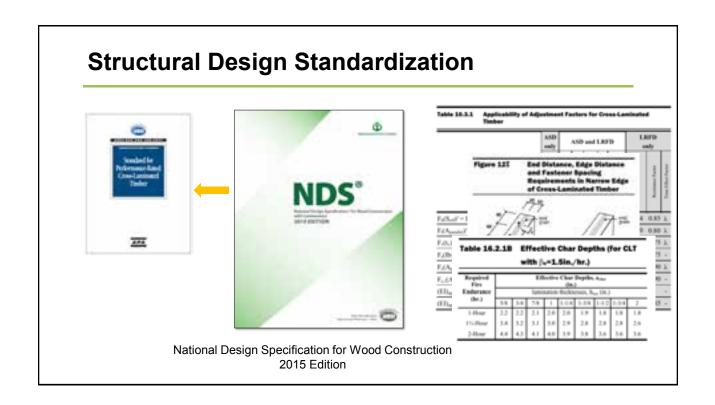


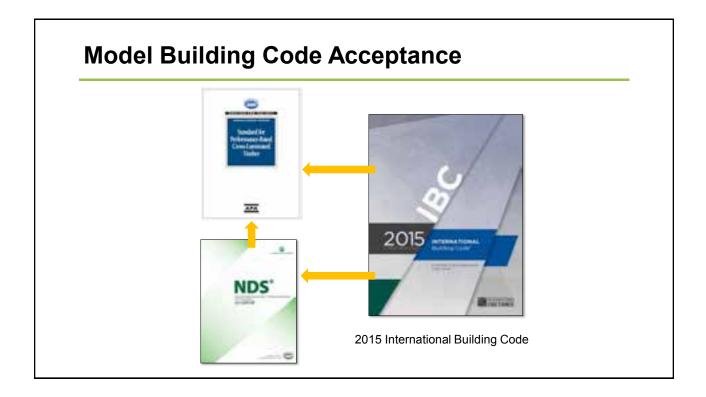


### **CLT Stress Grades**

| Stress Grade | Major Strength<br>Direction | Minor Strength Direction |
|--------------|-----------------------------|--------------------------|
| E1           | 1950f-1.7E MSR SPF          | #3 Spruce Pine Fir       |
| E2           | 1650f-1.5E MSR DFL          | #3 Doug Fir Larch        |
| E3           | 1200f-1.2E MSR Misc         | #3 Misc                  |
| E4           | 1950f-1.7E MSR SP           | #3 Southern Pine         |
| V1           | #2 Doug Fir Larch           | #3 Doug Fir Larch        |
| V2           | #1/#2 Spruce Pine Fir       | #3 Spruce Pine Fir       |
| V3           | #2 Southern Pine            | #3 Southern Pine         |

Standard (Non-mandatory) CLT stress grade in PRG 320-2012. Other custom stress grades including structural composite lumber (SCL) permitted


| Common CL     | T Layups |   |               |
|---------------|----------|---|---------------|
| 3-ply 3-layer |          | - |               |
| 5-ply 5-layer |          |   | y             |
| 7-ply 7-layer |          |   | 7-ply 5-layer |
| 9-ply 9-layer |          |   | 9-ply 7-layer |

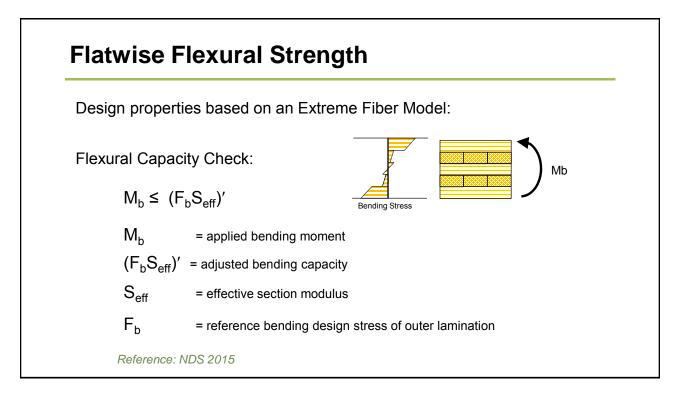

| TABLE        |       |       |       |        |         |           |            |                           |                                               |            |                 |                                             |         |
|--------------|-------|-------|-------|--------|---------|-----------|------------|---------------------------|-----------------------------------------------|------------|-----------------|---------------------------------------------|---------|
| THE A        |       |       | ENDIN | io ca  | PACT    | nes-      | - FOR CUT  | LISTED IN                 | TABLE A                                       | i (Foe use | IN THE U        | 1.)                                         |         |
|              |       | Lain  | -     | Thick  | inter ( | pin 3 las | Cl.T.Lapup | Matter                    | liveregth D                                   | Inaction   | Minar           | Meaningth 2                                 | New Nam |
| CLT<br>Grade | -     |       |       |        |         |           |            | A.S.ast<br>(Ball-In) Page | 10,000<br>(107-545,<br>(107-545,<br>(10,1/10) | 64         | f.t.en<br>(MAR) | 87 <sub>2010</sub><br>(10° 364<br>(10° 364) | CA      |
|              | 41,8  | 128   | 1.118 | 1.5.8  |         |           | 1. 1       | 4,125                     | 118 -                                         | 6.44       | had.            | #1                                          | ti ali  |
| 10           | +1+   | 139   | 1.110 | 1.54   | 1.3.9   | 138       |            | 10.406                    | 440                                           | 0.92       | 1,879           | 81                                          | 18      |
|              | 11.0  | 138   | 1.8.8 | 1.1.8  | 1.0.8   | 128       | 129.129    | 18,375                    | 1.084                                         | 1.4        | 8,105           | 308                                         | 1.8     |
|              | 4.1/8 | 1.3.9 | 1.1.0 | 1.5.8  |         |           |            | 3,925                     | hed 1                                         | 0.62       | 145             | 3.4                                         | 15.94   |
| 80           | 4.7.8 | 128   | 1.2.0 | 1.2.0  | 1.2.8   | 134       |            | 8.825                     | 1.089111                                      | 11         | 10435           |                                             | 11      |
|              | +1.8  | 1.3.9 | 1.1.0 | 1.1.10 | 1.1.8   | 128       | 138 138    | Td.ape.                   | 96.2                                          | 1.4        | 1.275           | 3mil .                                      | 1.8     |
|              | 41.8  | 1.2.8 | 1.2.0 | 1.5.8  | 1.1     |           | 1          | 1,806                     | 1.00111                                       | 8.32       | 100             | 2.2                                         | 0.44    |
| 13           | 4.58  | 1.1.9 | 1.8.0 | 1.18   | 1.2.8   | 134       |            | 6,400                     | 2.845                                         | 1.44       | +05             | 44                                          | 11.87   |
|              | 11.0  | 1.8.9 | 1.8.0 | 1.1.10 | 1.2.8   | 1.2.8     | 118 118    | 11,228                    | 1.044                                         | 1.0        | 2,185           | 101                                         | 1.8     |
|              | 41/8  | 1.8.8 | 1.3/8 | 1.14   | 100     |           | 100        | 4.526                     | 110                                           | 8.82       | 180             | 34                                          | 143     |
| 100          | 417   | 1.00  | 1.1/8 | 13.8   | 138     | 138       |            | 10.479                    | 441                                           | 11         | 1.679           |                                             | 1.8     |
|              | 11.0  | 1.2.9 | 1.3/8 | 13.0   | 129     | 1.8.8     | 139 139    | 18,438                    | LEPE                                          | 1.6        | 1.03            | 5410                                        | 1.9     |
|              | 41.0  | 1.00  | 1.5/8 | 13/8   | -       |           |            | 0.040                     | 100                                           | 4.13       | 145             | 2.4                                         | 11.10   |
| 142          |       |       | 1.5/8 | -      | _       | 138       |            | 4.808                     | +10                                           | - 11       | 1.430           | - #6                                        | U.F.    |
|              |       |       |       |        |         |           | 129 129    | 4,000                     | Lagr                                          | 1.4        | 1.015           | 540                                         | 1.8     |
|              |       |       | 1.3/8 |        | _       |           | -          | 3.434                     | 99                                            | 0.44       | lab -           | 11                                          | 6.30    |
| 140          | 4.118 |       | 1.3/8 |        | _       | 138       |            | 4.479                     | 34.5                                          | 6.91       | 1.879           |                                             | 3.0     |
| 100          | 11.0  |       |       |        |         |           | 120 120    | 6.179                     | 879                                           | 1.4        | 8.025           | 100                                         | 1.4     |
|              |       |       | 1.5/8 | 1000   | _       |           |            | 1.170                     | 108                                           | 0.52       | 180             |                                             | 11.10   |
| 10           |       |       | 1.1/0 | -      |         | 1.14      |            | 1.000                     | 410                                           |            | 1.8/0           |                                             | 18      |
| 100          |       |       |       |        | _       |           | 128 128    | 8,200                     | 1.007                                         | 1.4        | 1.175           | 100                                         | 1.8     |
| A            |       |       |       | -      |         |           |            |                           | 10000                                         |            |                 |                                             |         |

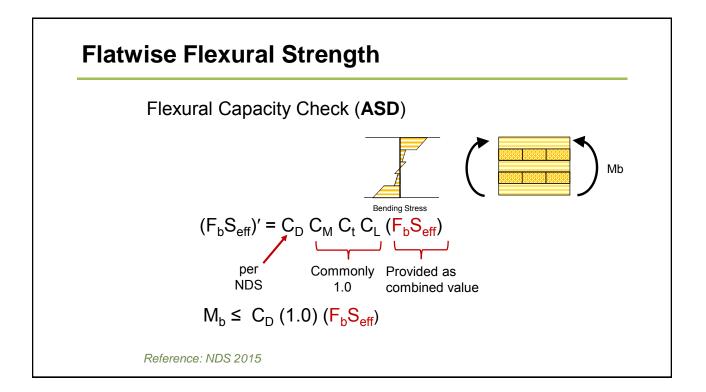
# <section-header>

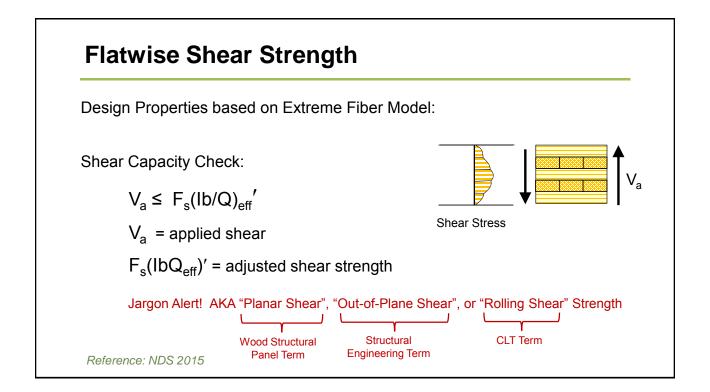
## **CLT Product Reports**

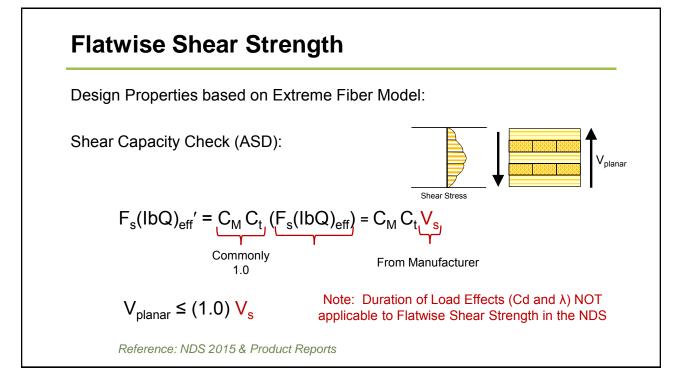
| Stress Grade<br>standard or custom) |                              |                                    |                                   |                    |                                     | (st       | ano     |                    | yup<br>or c | custo                         | om)             |                     |                     |                        | Ρ           | anel           | Pro                  | pert                 | ies                              |
|-------------------------------------|------------------------------|------------------------------------|-----------------------------------|--------------------|-------------------------------------|-----------|---------|--------------------|-------------|-------------------------------|-----------------|---------------------|---------------------|------------------------|-------------|----------------|----------------------|----------------------|----------------------------------|
| A second                            | duct Re<br>August<br>Access  | 15,201                             | 7                                 | peries             |                                     |           |         | /                  | ns Use      | din S                         | partia          | n CLT (             | for Use             |                        |             |                | /                    | Page                 | 3 of 5                           |
| CLT Gro                             | V                            | 10<br>10<br>75                     | Eo<br>(10 <sup>p</sup> pe)<br>1,1 |                    | (50erg)<br>(5<br>(6)<br>(6)         | F.,<br>08 |         | F.)<br>(90)<br>135 |             | F <sub>13</sub><br>(pe)<br>45 | た.<br>(別)<br>75 |                     | Exe<br>7 ps)<br>1.1 | F.s.<br>(211)<br>350   | _           | /              | F.,e<br>(29)<br>1.15 | 1                    | F <sub>1,20</sub><br>[298]<br>45 |
| desig<br>manu                       | ated values a<br>facturing f | es are al<br>ihali be u<br>the CLT | lowable<br>used in<br>panel ()    | conjunc<br>see Tab | tion will<br>Res 2 ar               | Ł         | section | prope              | rties pr    | ovided t                      | ly the O        | LT manu             | Acture              |                        |             |                |                      |                      | 5. The                           |
| Table 2.                            | Alcest                       |                                    | on Cas                            |                    | s <sup>i×i</sup> for 5<br>.aminatio |           |         |                    |             |                               | ise in t        |                     |                     | ph Direct              | ion         | Min            | or Streng            | (h Direct            | tion                             |
| CLT<br>Grade                        | Layup<br>#                   | Thick-<br>ness<br>(in.)            |                                   | *                  | -                                   | à.        |         | 4                  |             | *                             | -               | F.Lev<br>(M)<br>10) | 10.0                | (Arc)<br>(127<br>(147) | х.,<br>(мл) | NLca<br>部<br>朝 | Den<br>(P.M.         | 04.1<br>(10)<br>(10) | V. #<br>(60%)                    |
|                                     | 3-at                         | 4.18                               | 130                               | 138                | 138                                 | _         |         |                    |             |                               |                 | 1,800               | 74                  | 041                    | 1,430       | 245            | 2.9                  | 0.41                 | 405                              |
|                                     | 4-mass                       | 5.12                               | 138                               | 138                | 138                                 |           |         |                    |             |                               |                 | 2,825               | 161                 | 0.49                   | 1,740       | 975            | 23                   | 0.85                 | 990                              |
|                                     | 5-48                         | 678                                |                                   |                    | 1.38                                | 138       | 1.38    |                    |             |                               |                 | 4,190               | 296                 | 6.80                   | 1,980       | 2.120          | 24                   | 0.80                 | 1,430                            |
|                                     | 5-mass                       | 678                                | 138                               | 138                | 138                                 |           |         |                    |             |                               |                 | 5,190               | 355                 | 14                     | 2,460       | 245            | 2.9                  | 0.86                 | 405                              |
|                                     | 6-mass                       | 8.54                               | 138                               | 158                | 138                                 |           |         |                    |             |                               |                 | 7,290               | 596                 | 12                     | 2,675       | 975            | 23                   | 13                   | 990                              |
| SL-144H                             | Tat                          | 958                                | 138                               | 138                | 138                                 | 138       | 138     | 138                | 138         |                               |                 | 7,325               | 797                 | 1.2                    | 2,500       | 4,825          | 283                  | 12                   | 1,960                            |
|                                     | 1                            |                                    | 1.34                              | 1.14               | 1.14                                |           | 1.58    |                    |             |                               |                 | 4.4%                | -                   | 4.2                    | 1,000       | 3.436          | 114                  |                      | 1,430                            |

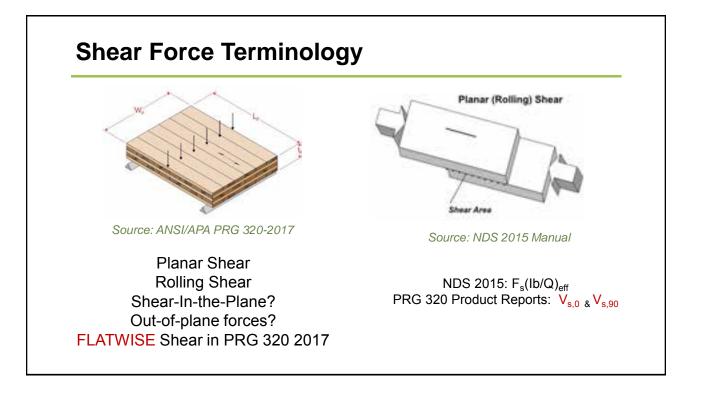


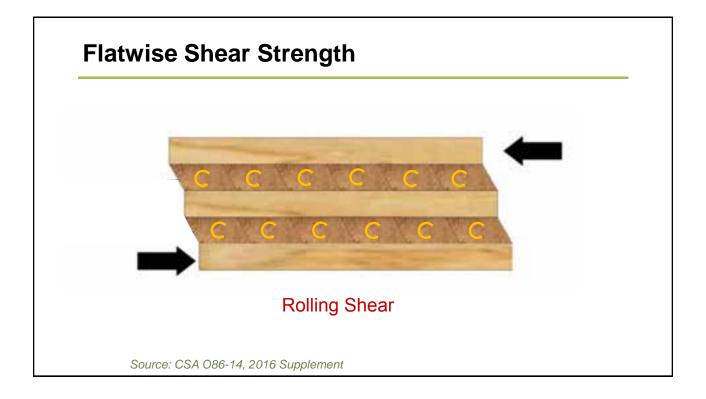


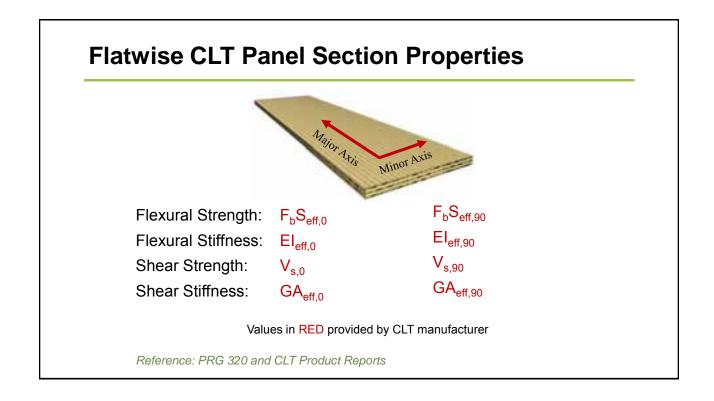


### Highlights of CLT Provisions in IBC 2015


- CLT is generally available for use in Type III, IV and V construction.
- IBC 2015 Chapter 6 Defines Dimensions of CLT to qualify as Heavy Timber (Type IV Construction)
  - 6" Walls
  - 4" Floors
  - 3" Roofs
  - Non Fire-Retardant Treated CLT allowed in Exterior Walls of Type IV construction in many conditions. (IBC 2015 602.4)


The <u>Heavy Timber</u> construction size requirements only apply to Type IV Construction


# <section-header><complex-block><text><text>





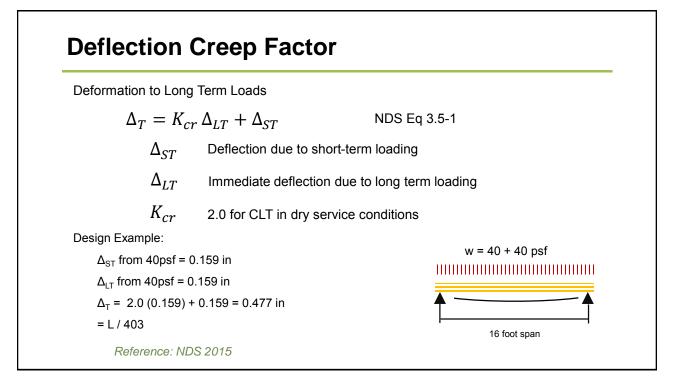









### Using PRG 320 Standard Grades for Design?


|       |       | 1.4   | -     | e Thiai | inerit i | in ( in | SUT Lines |        | No.    | livesigh D                  | (red)ard | Hiter  | Drangth E   | iverfied. |
|-------|-------|-------|-------|---------|----------|---------|-----------|--------|--------|-----------------------------|----------|--------|-------------|-----------|
| CU.   | 001   |       |       |         | -        |         |           |        | A      | Hate<br>(Ser Sel-<br>an Veg | -        | Man    | Harn Street |           |
|       | +18   | 118   | 1.84  | 1.84    | -        |         |           |        | in.    | 111                         | 2.04     | -      | .84         | 1.00      |
| 14    | 418   | 110   | 1.01  | 1100    | 128      | 1.119   |           | 1.0    | and .  | 440                         | 10.00    | 1.279  | 41.1        | 12 -      |
|       | 114   | 1.04  | 1.34  | 11.08   | 100      | 1.816   | 104.11    | 10.10. | 278    | 1,000                       | 141      | 1.010  | 10.0        | 1144      |
|       | 418   | 1.5.0 | 1.94  | 1.128   | 100      | 100     |           | 1.1    | 613    | 162                         | 0.51     | 143    | .2.8        | 0.56      |
| 42.   | 818   | 1.18  | 1.24  | 12.88   | 7.84     | 1.94    |           |        | 87.8   | 100                         | 13       | 1.428. | 10          | 1.4       |
|       | + 1-4 | 1.04  | 1.14  | 104     | 124      | 1.219   | 148.31    | 14.70  | path . | . 463                       | 14       | 1.1**  | 1440        | . 17      |
|       | 41.8  | 110   | 1.64  | 1.018   |          |         |           | 1      | hid    | . 81                        | 1.11     | 1000   | 1.1         | 8.44      |
| 88    | 410   | 100   | 1.0.0 | 184     | 104      | 1.818   |           |        | 104    | 811                         | 6.01     | 110    | 10          | 1.0.01    |
|       | +1.0  | 1)=   | 1.64  | 1.04    | 1.0.0    | 1.2/8   | 104.11    | 18.75  | 194    | 104                         | 1.0      | 3,99   | 888         | 18        |
|       | 416   | 154   | 1.54  | 1.04    | 10       |         |           |        | 114    | - 114 -                     | 4.81     | 100    | 4.6         | 0.41      |
| 10    | 414   | 1.04  | 134   | 104     | 1,54     | 1.818   |           | 10.    | 111    | . 441                       | 10       | 1,070  | . 40        | 1.1       |
|       | 154   | 1.6.0 | 1.94  | 1.6.0   | 134      | 1.64    | 1.6.6.11  | 18.16  | and    | 1.090                       | 14       | 8.675  | 180         | 1.0       |
|       | 418   | 1.84  | 1.84  | 1.88    | 100      |         |           |        | (10)   | 108                         | 0.04     | 148    | 2.4         | 0.04      |
| 10    | 410   | 1.04  | 1.84  | 104     | 124      | 1.84    |           | 4      | part.  | 1.418                       | 1.0      | 1.4.80 | 10          | 1.8       |
|       |       |       |       | 1.64    | 124      | 1.8/8   | 1.218-111 | 14 6   | 114    | 1.000                       | 14       | 1.1/6  | 441         | 18.1      |
|       |       | 110   |       | 1.84    | 6        |         | 10        | 1.1    | -      | 198                         | 0.01     | -      | .84         | 0.04      |
| -18-1 | 414   | 1.2.0 | 1.84  | 1.68    | 128      | 1.3/6   |           |        | 415    | deal -                      | 0.81     | 1,278  |             |           |
|       | 714   | 1.0.0 | 1.24  | 1168    | 104      | 1.0.0   | 108.11    | 18. 8. | 276    |                             | 141      | 8.08   | 310         | 144       |
|       | 118   | 114   | 138   | 1.88    | for set  | 1.1-    |           | 1.1    | -      | 108                         | 4.11     | 188    | 3.8         | 10.00     |
| 10.   | 478   | 1.53  | 134   | 1.64    | 124      | 1.2/8   |           | A 14   | 200    | 415                         | 3.3      | 1.070  | -98         | 1.0.2     |
|       | 714   | 108   | 1.24  | 110     | 100      | 1.0.0   | 128.11    | 18. 1  | 201    | 1.007                       | 14       | 1171   | 841         | 1.4       |

at 1717 an index that and had been be a sale bastess 7.8.1.

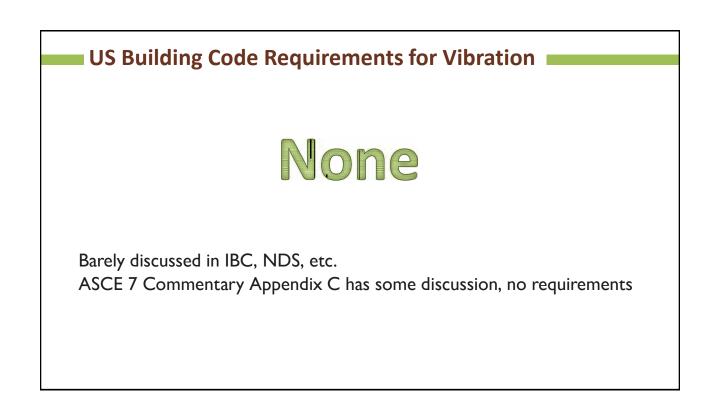
PRG 320 includes predefined Stress Grades, Layups and related Design **Properties** 

Is doesn't tell you what CLT grades and layups are available.

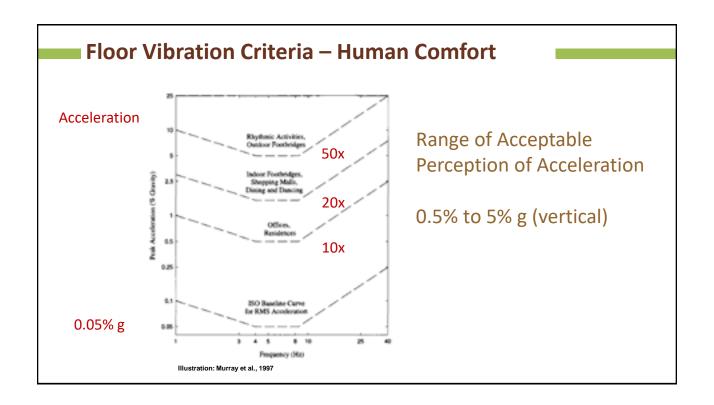
Coordinate your design with manufactures availability and information



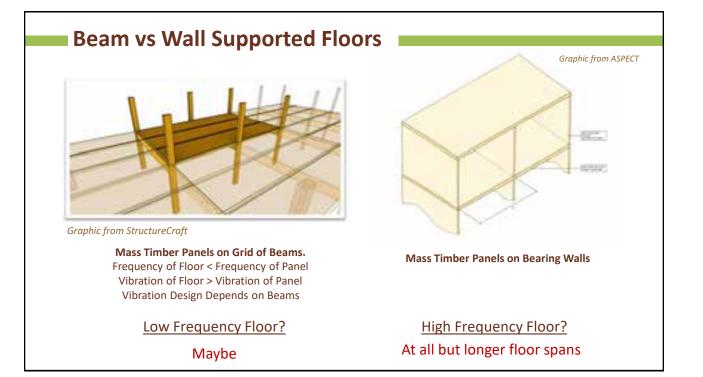
### Working with CLT: Know Your Supply Chain

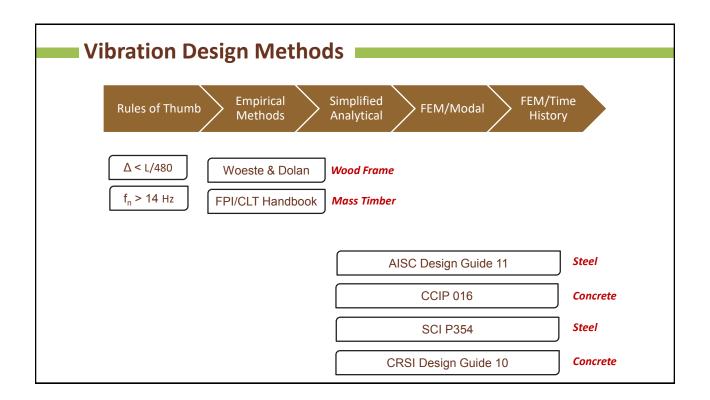

- CLT Manufactures different CLT grades and maximum panel sizes
- CLT Manufacturers have specific CNC capabilities
- 3<sup>rd</sup> Party Fabricators can have additional CNC capabilities

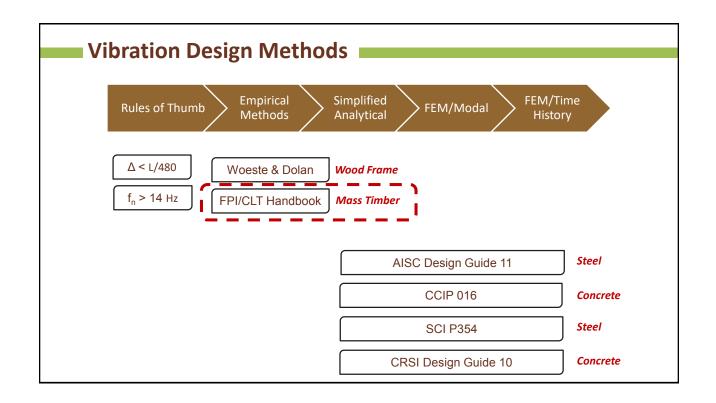


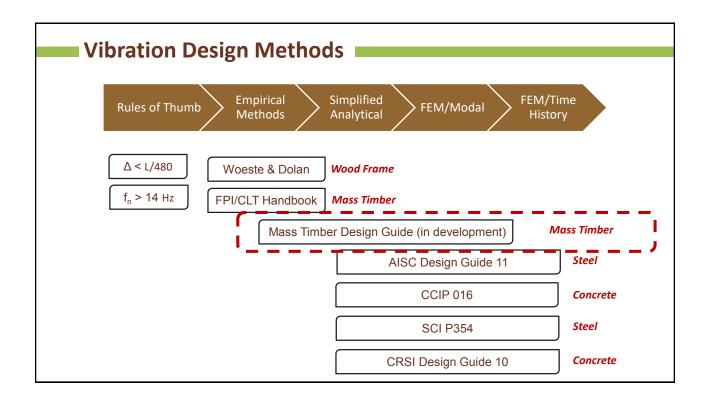

Photo: DR Johnson

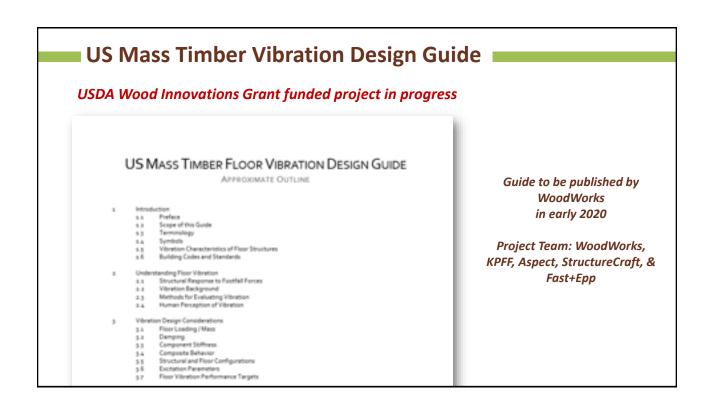


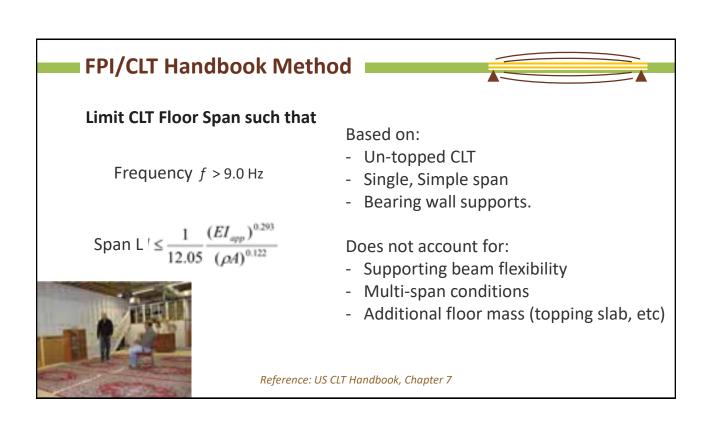

Photo: Sauter Timber





| Shoulder Gindle<br>(4-5 Hz)<br>Lung Volume<br>Lover Arm<br>(30-40 Hz)<br>Spinal Column<br>(adial mode)<br>(10-12 Hz)<br>Standing Person<br>Loge<br>(warlable from ca<br>2 Hz with insee<br>Rexing to over 20<br>Hz with rigid poslure) | Human Body<br>Dynamics |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Standing Person Full Body Illustration: Sven-Olof Emanuelsson                                                                                                                                                                          |                        |





| Material    | Floor Weight<br>(psf) | Damping | Material<br>Stiffness<br>(10 <sup>6</sup> psi) | Material Mass<br>(pcf) | Example Floor<br>System                                |
|-------------|-----------------------|---------|------------------------------------------------|------------------------|--------------------------------------------------------|
| Concrete    | 100-150               | 1-5%    | 3.2-5.8                                        | 120-150                | 2-way slab on columns                                  |
| Steel       | 50-100                | 0.5-5%  | 30                                             | 490                    | Concrete on<br>metal deck on<br>purlins and<br>girders |
| Mass Timber | 15-65                 | 1-6%    | 1.2-1.8                                        | 30-40                  | Beam <i>or</i> wall<br>supported                       |
| Wood Frame  | 10-40                 | 2-12%   | 1.2-2.0                                        | 30-40                  | Wall supported                                         |













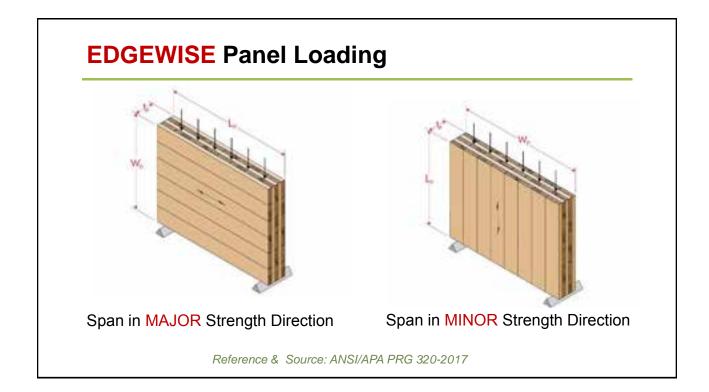

### FPI Span Limit for Basic CLT Grades / Layups

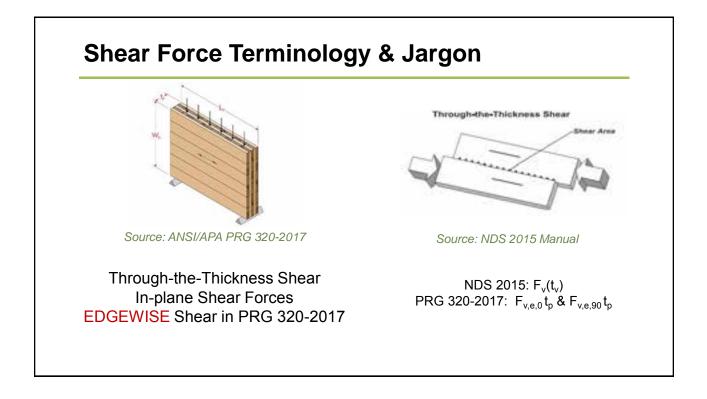
| Grade | Layup | Thickness | FPI Span Limit |
|-------|-------|-----------|----------------|
|       | 3ply  | 4 1/8"    | 12' 5"         |
| E1    | 5ply  | 6 7/8"    | 17' 4"         |
|       | 7ply  | 9 5/8"    | 21' 8"         |
|       | 3ply  | 4 1/8"    | 12' 0"         |
| E2    | 5ply  | 6 7/8"    | 16' 8"         |
|       | 7ply  | 9 5/8"    | 20' 10"        |
|       | 3ply  | 4 1/8"    | 11' 7"         |
| E3    | 5ply  | 6 7/8"    | 16' 1"         |
|       | 7ply  | 9 5/8"    | 20' 1"         |
|       | 3ply  | 4 1/8"    | 12' 2"         |
| E4    | 5ply  | 6 7/8"    | 17' 0"         |
|       | 7ply  | 9 5/8"    | 21' 3"         |

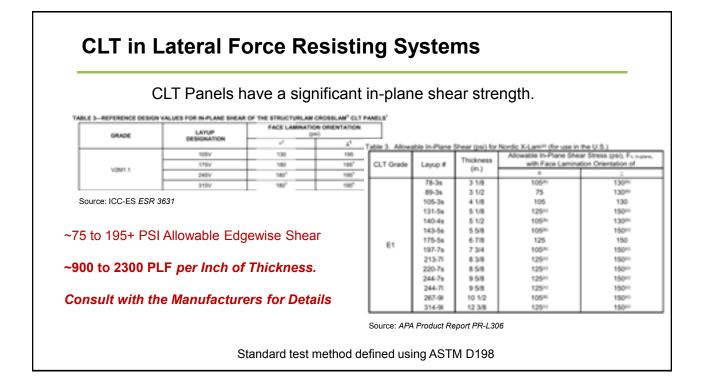
| Grade | Layup | Thickness | FPI Span Limit |
|-------|-------|-----------|----------------|
|       | 3ply  | 4 1/8"    | 12' 2"         |
| V1    | 5ply  | 6 7/8"    | 17' 0"         |
|       | 7ply  | 9 5/8"    | 21' 3"         |
|       | 3ply  | 4 1/8"    | 11' 11"        |
| V2    | 5ply  | 6 7/8"    | 16' 8"         |
|       | 7ply  | 9 5/8"    | 20' 10"        |
|       | 3ply  | 4 1/8"    | 12' 0"         |
| V3    | 5ply  | 6 7/8"    | 16' 9"         |
|       | 7ply  | 9 5/8"    | 21' 0"         |

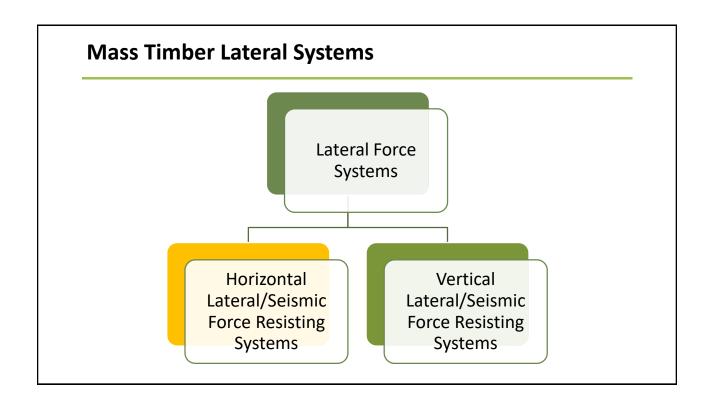
### .. ..

Approximate FPI Span Limits:


3-ply: 11 to 12 ft 5-ply: 16 to 17 ft

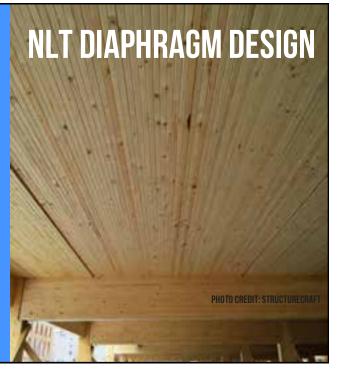

- 5-ply: 16 to 17 ft 7-ply: 20 to 21 ft
- *i-piy.* 2010211


### Limitations:

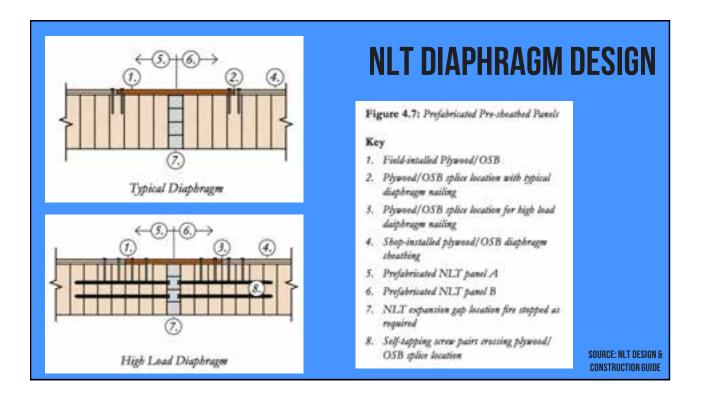

- Does not account for strength or deflections
- Does not account for beam flexibility
- Does not account for project specifics

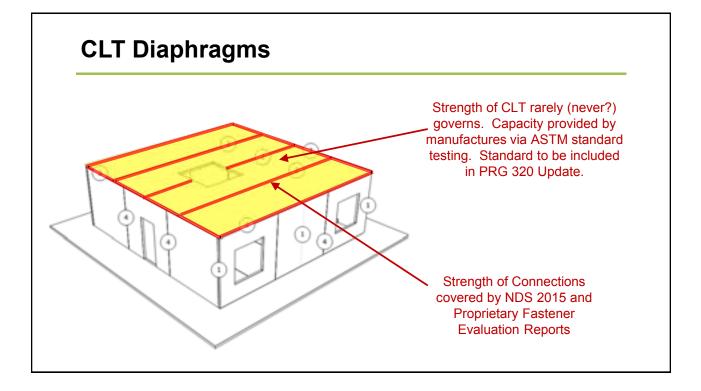
### **Edgewise Structural Properties**

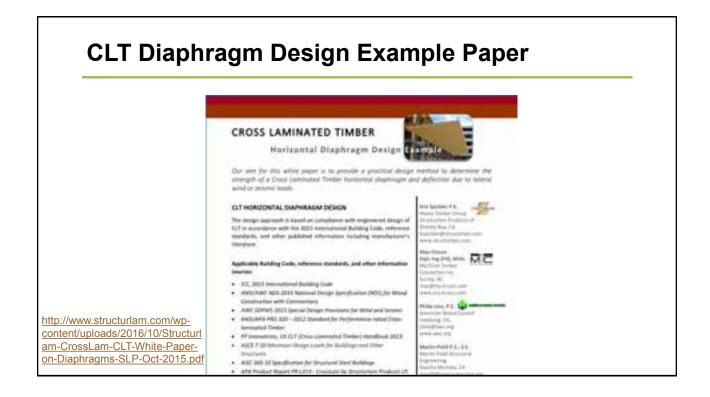


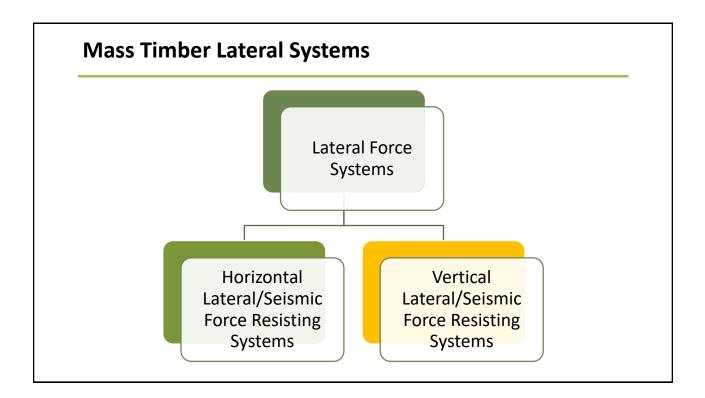


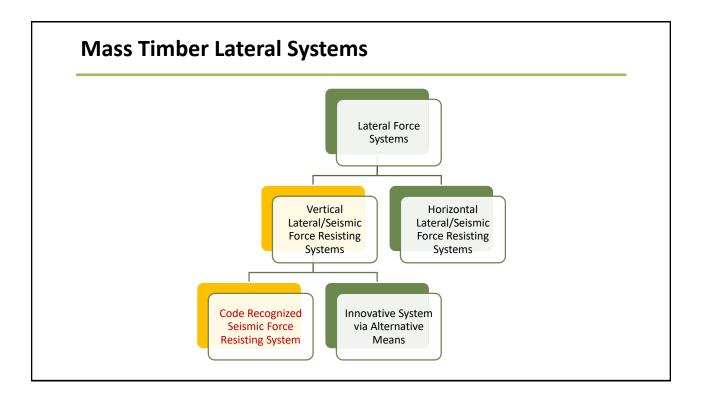


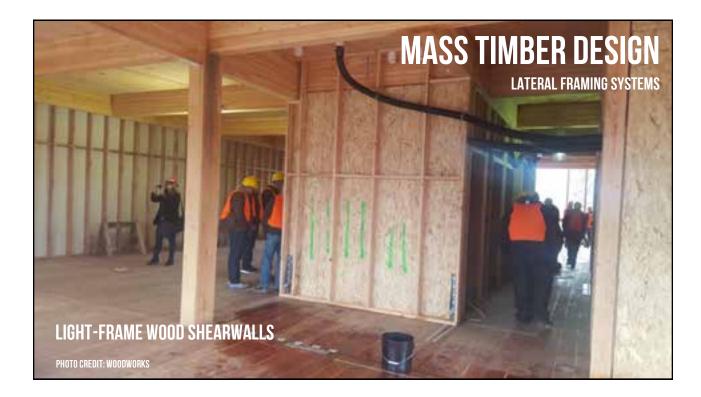





**NLT DIAPHRAGM DESIGN:** LACK OF TESTED, PUBLISHED DIAPHRAGM VALUES FOR BARE NLT LEAD MANY ENGINEERS TO COVERING WITH WOOD STRUCTURAL PANELS. DESIGN AS A BLOCKED, SHEATHED DIAPHRAGM. USE SDPWS TABLE 4.2A/4.2B

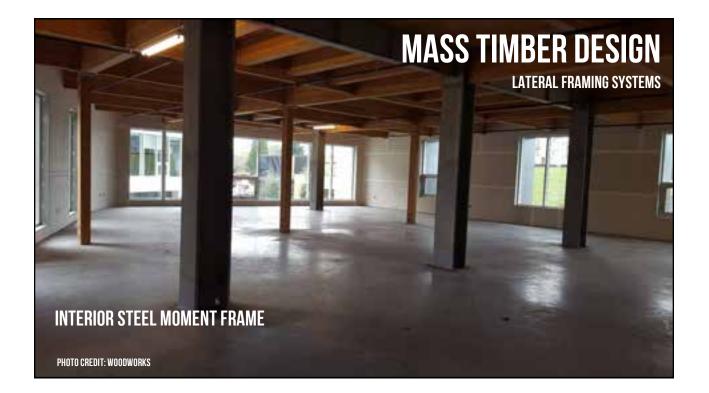


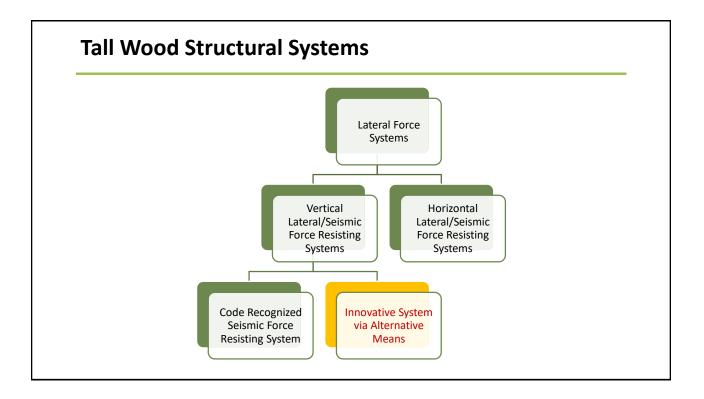



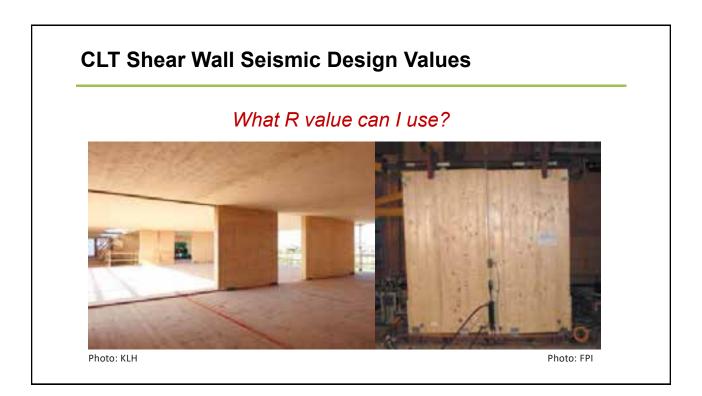


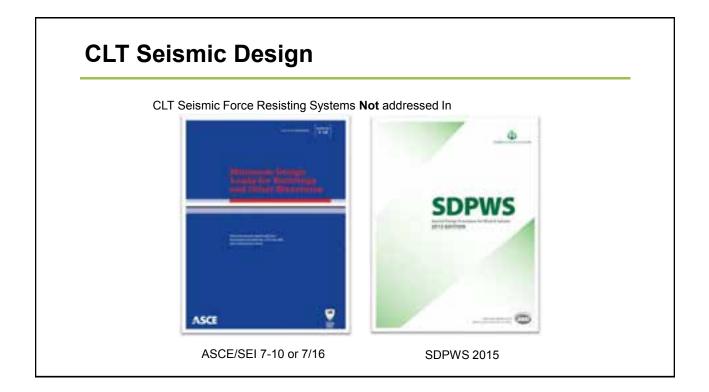


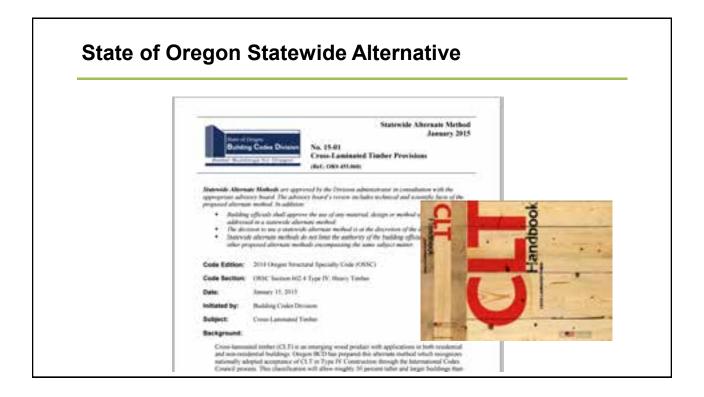





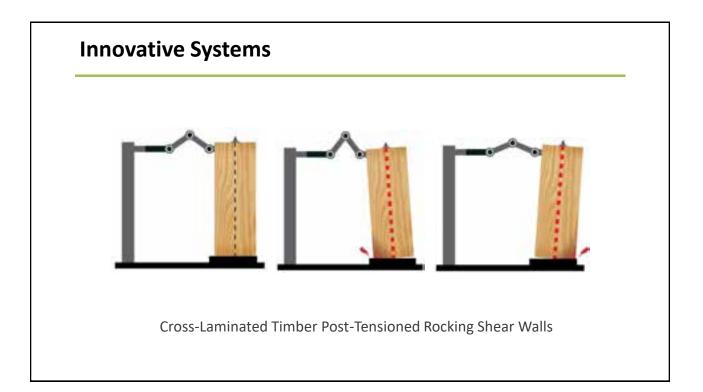



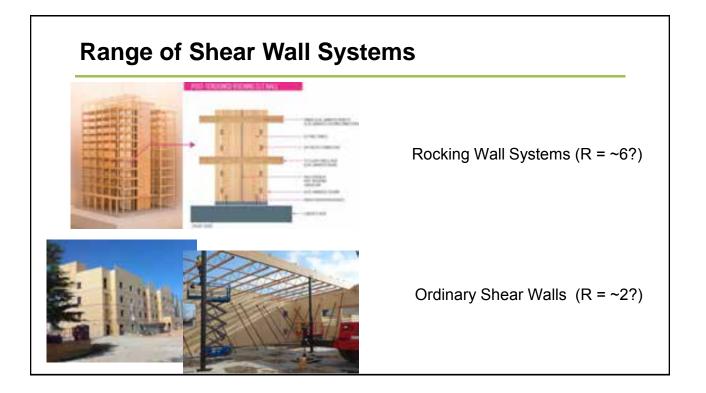



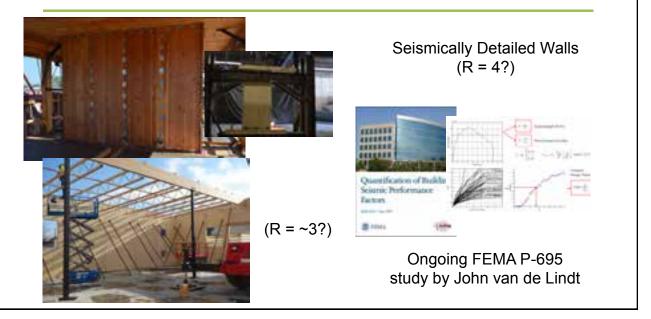







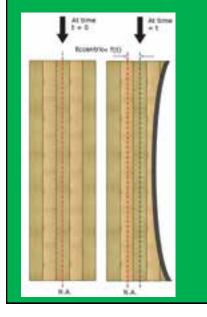




| ASCE 7-10 Tab                                                                                      | ole 12.2-1 m                                                             | odified by   | Oregon E                                 | Buildings C                 | ode                                                                                             | Divis     | sion      |           |           |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------|------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------|-----------|-----------|-----------|-----------|
| Table 12.2-1 Des                                                                                   | ign Coefficien                                                           | ts and Facto | rs for Seisn                             | nic Force-Re                | sistin                                                                                          | g Syst    | tems      |           |           |
|                                                                                                    | ASCE 7<br>Section<br>Where<br>Detailing<br>Requirements<br>Are Specified |              | Overstrength<br>Factor, Ω <sub>l</sub> t |                             | Structural System<br>Limitations Including<br>Structural Height, A <sub>n</sub> (ft)<br>Limits' |           |           |           |           |
|                                                                                                    |                                                                          |              |                                          | Deflection<br>Amplification | Seismic Design Category                                                                         |           |           | ny        |           |
| Seismic Force-Resisting System<br>A. BEARING WALL SYSTEMS                                          |                                                                          |              |                                          | Factor, C <sub>d</sub> *    | В                                                                                               | с         | D'        | ' E'      | r         |
| 15. Light-frame (wood) walls sheathed<br>with wood structural penels rated for<br>shear revistance | 14.5                                                                     | 6%           | 3                                        | 4                           | NL                                                                                              | NL        | 65        | 65        | 65        |
| 19. Cross-laminated timber shear walls <sup>1</sup>                                                | 14.1 and 14.5                                                            | 2            | <u>2 ½</u>                               | 2                           | <u>NL</u>                                                                                       | <u>NL</u> | <u>NL</u> | <u>NL</u> | <u>NL</u> |

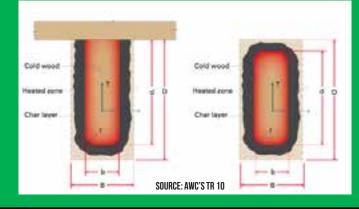




## **Range of CLT Shear Wall Systems**








**FIRE RESISTANCE** 



### SIMILAR TO HEAVY TIMBER, MASS TIMBER PRODUCTS HAVE INHERENT FIRE RESISTANCE PROPERTIES



**FIRE RESISTANCE** 

#### FOR EXPOSED WOOD MEMBERS: IBC 722.1 REFERENCES AWC'S NDS Chapter 16 (AWC's TR 10 is a design aid to NDS Chapter 16)





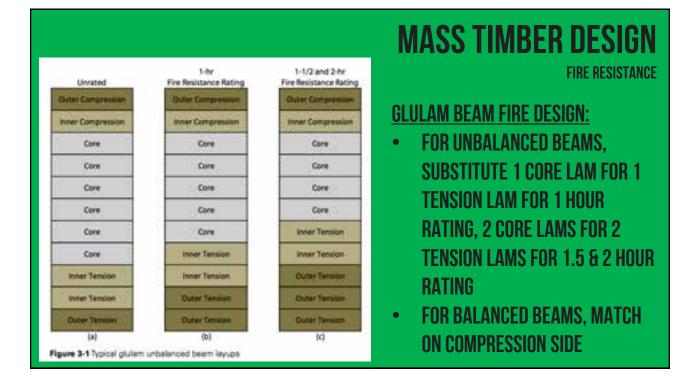
2015 NDS CHAPTER 16 INCLUDES Calculation of fire resistance of NLT, CLT, GLULAM, Solid Sawn AND SCL WOOD PRODUCTS

# MASS TIMBER DESIGN

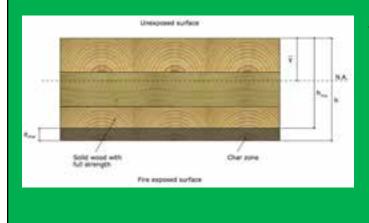
FIRE RESISTANCE

## NOMINAL CHAR RATE FOR MOST Wood Products IS 1.5"/hr

Table 16.2.1B Effective Char Depths (for CLT


with Ba=1.5in./hr.)

| Required<br>Fire<br>Endurance<br>(hr.) 5/ | Effective Char Depths, a <sub>that</sub><br>(in.)<br>lamination thicknesses, h <sub>um</sub> (in.) |     |     |     |       |       |       |       |     |  |
|-------------------------------------------|----------------------------------------------------------------------------------------------------|-----|-----|-----|-------|-------|-------|-------|-----|--|
|                                           | 5/8                                                                                                | 3/4 | 7/8 | 1   | 1-1/4 | 1-3/8 | 1-1/2 | 1-3/4 | 2   |  |
| 1-Hour                                    | 22                                                                                                 | 2.2 | 2.1 | 2.0 | 2.0   | 1.9   | 1.8   | 1.8   | 1.8 |  |
| 1%-Hour                                   | 3.4                                                                                                | 3.2 | 3.1 | 3.0 | 2.9   | 2.8   | 2.8   | 2.8   | 2.6 |  |
| 2-Hour                                    | 4.4                                                                                                | 43  | 4.1 | 4.0 | 3.9   | 3.8   | 3.6   | 3.6   | 3.6 |  |


**FIRE RESISTANCE** 

NDS TABLE 16.2.2 Design stress Adjustment Factors applied to Adjust to average Ultimate strength

|                          |                  |    | · · · ·                                      | _                         |                            |                              |                       |                            |
|--------------------------|------------------|----|----------------------------------------------|---------------------------|----------------------------|------------------------------|-----------------------|----------------------------|
|                          |                  |    | Design Strew to<br>Member Strength<br>Factor | Size Factor <sup>1</sup>  | Volume Factor <sup>1</sup> | Flat Use Factor <sup>1</sup> | Rom Sublity<br>Factor | Column Stability<br>Factor |
| Bending Strength         | F <sub>b</sub>   | х. | 2.85                                         | $\mathbf{C}_{\mathrm{f}}$ | Cv                         | Ch                           | CL                    |                            |
| Beam Buckling Strength   | FME              | x  | 2.03                                         |                           |                            |                              |                       |                            |
| Tensile Strength         | $\mathbf{F}_{t}$ | x  | 2.85                                         | $C_{\rm F}$               | - 22                       |                              | 1.4                   |                            |
| Compressive Strength     | F.               | x  | 2.58                                         | $\mathbf{C}_{\mathbf{f}}$ | +                          |                              |                       | Cr                         |
| Column Buckling Strength | Fee              | x  | 2.03                                         |                           |                            |                              | 1.1                   |                            |



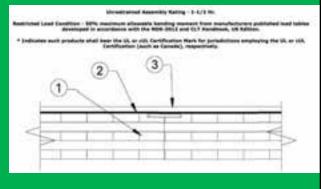
**FIRE RESISTANCE** 

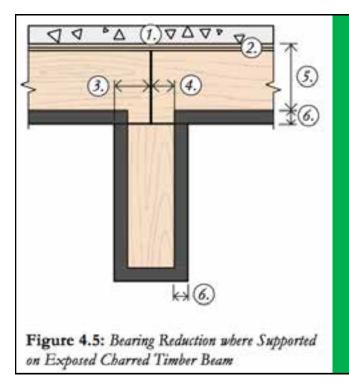


## **<u>CLT FIRE DESIGN:</u>**

- LAM THICKNESS AFFECTS CHAR
   DEPTH
- PARTIALLY CHARRED CROSS Layers are typically Neglected for structural Checks

# MASS TIMBER DESIGN


**FIRE RESISTANCE** 


## **MASS TIMBER FIRE DESIGN METHODS:**

NDS Chapter 16 Char Calculations vs. ASTM E119 Tested Assembly

- NDS Chpt 16 calcs check structural integrity
- E119 checks structural integrity, hose stream and unexposed surface temperature

Reasonable to assume other assembly components such as concrete topping aid in other 2 criteria





**FIRE RESISTANCE** 

WHEN MASS TIMBER PANELS ARE SUPPORTED ON EXPOSED WOOD BEAMS, CONSIDER REDUCED PANEL BEARING LENGTH DUE TO FIRE DESIGN

# MASS TIMBER DESIGN

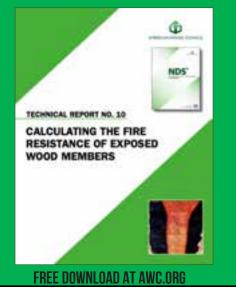
#### **FIRE RESISTANCE**

## AWC'S TECHNICAL REPORT 10 INCLUDES DISCUSSION OF FIRE TESTS AND DESIGN EXAMPLES

#### 4.5 Exposed CLT Floor Example (Allowable Stress Design)

Simply-supported cross-laminated timber (CL3) floor spanning L=18 fl in the arrong-axis direction. The design loads are  $q_{\rm cost} = 90$  psf and  $q_{\rm anst} = 30$  psf including seminated self-weight of the CLT panel. Floor docking, malled to the unexposed face of CLT panel, is spaced to restrict hol gases from venting through half-lap joints at edges of CLT panel, scheduler the required section dimensions for a one-hoor flow maintenet time.

For the enumeral design of the CLT panel, calculate the maximum induced moment. Calculate panel load (per first of width):


W<sub>tool</sub> = (q<sub>tool</sub> + q<sub>tool</sub>) = (30 pef = 80 pef)(16 width) = 110 p01% of width

Calculate maximum induced moment (per foot of width):

 $M_{max} = w_{inst} L^2 / B = (100)(10^2)/B = 4,455$  f5-lb/fb of width

From PRG 320, select a 5-ply CLT floor panel made from 1% in a 3% inch hather boards (CLT thickness of 4 % inches). For CLT grade V2, ubulated properties are:

Bending moment, F<sub>4</sub>S<sub>462</sub> = 4,675 fi-liv?l of width (PRO 320 Annes A, Table A2)



**FIRE RESISTANCE** 

## **MASS TIMBER DESIGN**

## MANY SUCCESSFUL CLT FIRE TESTS HAVE BEEN Conducted, both with and without gypsum





### **Copyright Materials**

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

© The Wood Products Council 2018