

### An Engineer's Guide to Mass Timber Structures: Simplifying Design Steps and Connection Details

Scott Breneman, PhD, PE, SE Scott.Breneman@WoodWorks.org







### **Bullitt Center**

Seattle, WA

2x4 NLT roof deck 2x6 NLT floor deck Floor assembly top to bottom: 3" concrete topping, acoustical mat, WSP, 2x6 NLT

Photo Credit: John Stamets

## Framework

Portland, OR

Photo: joshua jay elliot

### HUDSON BUILDING VANCOUVER, WA

DEVELOPER: Killian Pacific and Mackenzie PHOTO CREDIT: Woodworks

# T3 Minneapolis

Minneapolis, MN

mage Credit: Blaine Brownell

## **UMass Design Building**

Amherst, MA

Photo Credit: alex schreyer



### BROCK COMMONS

VANCOUVER, BC

ects

acto

5 PLY CLT PANELS, 2-WAY SPAN ~9'X13' GRID OF COLUMNS

### **Chicago Horizon Pavilion**

Chicago, IL

56' square kiosk 2 Layers of 3-ply, 4-1/8" CLT roof panels in opposite directions, each panel 8' x 56', creating 2 way spanning plate

Photo Credit: Tom Harris

International Community Health Services Shoreline, WA

Photo Credit: Andrew Pogue Photography

and the local division of the local division

5

HICHS Medical & Dental Clinic

#### **Cooley Landing Education Center**



photo: Michael O'Callahan



#### Virtuoso, Vancouver, BC

Image: Adera

Image: Seagate Structures

1 Maria

Cheney Park Apartments CLT floor on Panelized Light Frame Walls

Photo Credit: WoodWorks



United Records 05-1930

1000

Photo Credit: WoodWorks

Photo Credit: Mike Bradley, Beacon Builders



# Candlewood Suites

**Redstone Arsenal**, AL

62,600 SF, 4 story hotel, 92 private rooms
CLT utilized for walls, roof panels, and floor panels
Image Credit: Lend Lease Redstone Arsenal Hotel Huntsville, AL

Image Credit: Lend Lease

### Candlewood Suites

Redstone Arsenal, AL

Photo Credit: Lendlease



### **Glulam Design Values**

|             |             | Bending About X-X Axis              |                    |                  |             |                |                       |                       |
|-------------|-------------|-------------------------------------|--------------------|------------------|-------------|----------------|-----------------------|-----------------------|
|             |             | (Loaded Perpendicular to Wide Faces |                    |                  |             |                |                       |                       |
|             |             | of Laminations)                     |                    |                  |             |                |                       |                       |
|             |             |                                     |                    | Compression      |             | Shear Parallel | Modulus               |                       |
|             |             | Bending                             |                    | Perpendicular    |             | to Grain       | of                    |                       |
|             |             |                                     |                    |                  | Grain       |                | Elasticity            |                       |
|             |             |                                     |                    | Tension          | Compression |                | For                   | For                   |
|             |             | Bottom of Beam                      | Top of Beam        | Face             | Face        |                | Deflection            | Stability             |
|             |             | Stressed in                         | Stressed in        |                  |             |                | Calculations          | Calculations          |
|             |             | Tension                             | Tension            |                  |             |                |                       |                       |
|             |             | (Positive Bending)                  | (Negative Bending) |                  |             |                |                       |                       |
| Combination | Species     | $\mathbf{F_{bx}}^+$                 | F <sub>bx</sub>    | F <sub>c⊥x</sub> |             | $F_{vx}^{(2)}$ | Ex                    | E <sub>x min</sub>    |
| Symbol      | Outer/ Core | (psi)                               | (psi)              | (psi)            |             | (psi)          | (10 <sup>6</sup> psi) | (10 <sup>6</sup> psi) |
| 24F-1.8E    |             | 2400                                | 1450               | 650              |             | 265            | 1.8                   | 0.95                  |
| 24F-V4      | DF/DF       | 2400                                | 1850               | 650              | 650         | 265            | 1.8                   | 0.95                  |
| 24F-V8      | DF/DF       | 2400                                | 2400               | 650              | 650         | 265            | 1.8                   | 0.95                  |
| 24F-E4      | DF/DF       | 2400                                | 1450               | 650              | 650         | 265            | 1.8                   | 0.95                  |
| 24F-E13     | DF/DF       | 2400                                | 2400               | 650              | 650         | 265            | 1.8                   | 0.95                  |
| 24F-E18     | DF/DF       | 2400                                | 2400               | 650              | 650         | 265            | 1.8                   | 0.95                  |
| 24E-V/3     | SP/SP       | 2400                                | 2000               | 740              | 740         | 300            | 18                    | 0.95                  |
| 24F-V8      | SP/SP       | 2400                                | 2400               | 740              | 740         | 300            | 1.8                   | 0.95                  |
| 24F-F1      | SP/SP       | 2400                                | 1450               | 805              | 650         | 300            | 1.0                   | 0.00                  |
| 24F-E4      | SP/SP       | 2400                                | 2400               | 805              | 805         | 300            | 1.9                   | 1.00                  |



#### Mass Timber and Steel Framing?







## Mass Timber Products





## **NLT Structural Design**

#### NLT Design Guide includes:

- Architecture
- Fire
- Structure
- Enclosure
- Supply and Fabrication
- Construction and Installation
- Erection engineering

Free download from www.thinkwood.com

### **NLT Structural Design**



NLT shrinkage/expansion design: Rule of thumb: leave gap between ½" and one ply wide per 8'-10' wide panel



Figure 4.3: Staggered NLT Cross Section

#### Key

- 1. NLT deep lamination depth  $(d_1)$
- 2. NLT shallow lamination depth  $(d_2)$
- 3. NLT deep lamination thickness (b<sub>lam1</sub>)
- 4. NLT shallow lamination thickness (b<sub>lam2</sub>)
- 5. NLT panel width (b)
- 6. Ratio of lamination depths  $(x_i)$ , where  $n_i =$  the number of laminations of depth  $d_i$

## Fluted NLT Design



K<sub>section</sub> is always <1 and applied assuming full panel depth of x<sub>1</sub>

Example: 2x4 and 2x6 alternating lams

$$x_1 = x_2 = 0.5$$
  
 $K_{section,b} = 0.5 + 0.5 [\frac{3.5}{5.5}]^3 = 0.63$ 

See NLT Design & Construction Guide for Details

## **Cross-Laminated Timber**

#### **Cross Laminated Timber**



**Considerations:** 

- Large light-weight panels
- Dimensionally stable
- Precise CNC machining available
- Recognized by IBC
- Dual Directional span capabilities
- Often architecturally exposed
- Fast on-site construction

### What is CLT?

3+ layers of laminationsTypically Solid Sawn LaminationsCross-Laminated LayupGlued with Structural Adhesives





\*All dimensions are approximate. Consult with manufacturers First Tech Credit Union Hillsboro, Oregon

Photo Credit: Structurlam Products

#### **Building Code Acceptance of CLT**



#### **North American CLT Product Standard**



ANSI/APA PRG 320 Standard for Performance-Rated Cross-Laminated Timber

The Standard Covers:

- U.S. and Canada Use
- Panel Dimensions and Tolerances
- Component Requirements
- Structural Performance Requirements
- Panel and Manufacturing Qualification
- Marking (Stamping)
- Quality Assurance
#### **CLT Basic Stress Grades**

| Stress Grade | Major Strength Direction   | Minor Strength Direction   |
|--------------|----------------------------|----------------------------|
| E1           | 1950f-1.7E MSR SPF         | #3 Spruce Pine Fir         |
| E2           | 1650f-1.5E MSR DFL         | #3 Doug Fir Larch          |
| E3           | 1200f-1.2E MSR Misc        | #3 Misc                    |
| E4           | 1950f-1.7E MSR SP          | #3 Southern Pine           |
| E5           | 1650f-1.5E MSR Hem-Fir     | #3 Hem-Fir                 |
| V1           | #2 Doug Fir Larch          | #3 Doug Fir Larch          |
| V2           | #1/#2 Spruce Pine Fir      | #3 Spruce Pine Fir         |
| V3           | #2 Southern Pine           | #3 Southern Pine           |
| V4           | #2 Spruce Pine Fir (South) | #3 Spruce Pine Fir (South) |
| V5           | #2 Hem-Fir                 | #3 Hem-Fir                 |

Basic solid sawn CLT stress grade in PRG 320-2019.

Other custom stress grades including structural composite lumber (SCL) permitted

#### **Common CLT Layups**



#### **PRG 320 Defined Layups**

#### TABLE A2. THE ALLOWABLE BENDING CAPACITIES<sup>(a,b,c)</sup> FOR CLT LISTED IN TABLE A1 (FOR USE IN THE U.S.)

|              |                | Lam   | inatio  | n Thicl | cness   | (in.) in | CLT L   | ayup  | Major S                             | Strength D                                               | irection                                        | Minor Strength Direction             |                                                           |                                                  |  |
|--------------|----------------|-------|---------|---------|---------|----------|---------|-------|-------------------------------------|----------------------------------------------------------|-------------------------------------------------|--------------------------------------|-----------------------------------------------------------|--------------------------------------------------|--|
| CLT<br>Grade | CLT t<br>(in.) | =     | $\perp$ | =       | $\perp$ | =        | $\perp$ | =     | F₅S <sub>eff,0</sub><br>(Ibf-ft/ft) | El <sub>eff,0</sub><br>(10 <sup>6</sup> lbf-<br>in.²/ft) | GA <sub>eff,0</sub><br>(10 <sup>6</sup> lbf/ft) | F₅S <sub>eff,90</sub><br>(Ibf-ft/ft) | El <sub>eff,90</sub><br>(10 <sup>6</sup> lbf-<br>in.²/ft) | GA <sub>eff,90</sub><br>(10 <sup>6</sup> lbf/ft) |  |
|              | 4 1/8          | 1 3/8 | 1 3/8   | 1 3/8   |         |          |         |       | 4,525                               | 115                                                      | 0.46                                            | 160                                  | 3.1                                                       | 0.61                                             |  |
| E1           | 6 7/8          | 1 3/8 | 1 3/8   | 1 3/8   | 1 3/8   | 1 3/8    |         |       | 10,400                              | 440                                                      | 0.92                                            | 1,370                                | 81                                                        | 1.2                                              |  |
|              | 9 5/8          | 1 3/8 | 1 3/8   | 1 3/8   | 1 3/8   | 1 3/8    | 1 3/8   | 1 3/8 | 18,375                              | 1,089                                                    | 1.4                                             | 3,125                                | 309                                                       | 1.8                                              |  |
|              | 4 1/8          | 1 3/8 | 1 3/8   | 1 3/8   |         |          |         |       | 3,825                               | 102                                                      | 0.53                                            | 165                                  | 3.6                                                       | 0.56                                             |  |
| E2           | 6 7/8          | 1 3/8 | 1 3/8   | 1 3/8   | 1 3/8   | 1 3/8    |         |       | 8,825                               | 389                                                      | 1.1                                             | 1,430                                | 95                                                        | 1.1                                              |  |
|              | 9 5/8          | 1 3/8 | 1 3/8   | 1 3/8   | 1 3/8   | 1 3/8    | 1 3/8   | 1 3/8 | 15,600                              | 963                                                      | 1.6                                             | 3,275                                | 360                                                       | 1.7                                              |  |
|              | 4 1/8          | 1 3/8 | 1 3/8   | 1 3/8   |         |          |         |       | 2,800                               | 81                                                       | 0.35                                            | 110                                  | 2.3                                                       | 0.44                                             |  |
| E3           | 6 7/8          | 1 3/8 | 1 3/8   | 1 3/8   | 1 3/8   | 1 3/8    |         |       | 6,400                               | 311                                                      | 0.69                                            | 955                                  | 61                                                        | 0.87                                             |  |
|              | 9 5/8          | 1 3/8 | 1 3/8   | 1 3/8   | 1 3/8   | 1 3/8    | 1 3/8   | 1 3/8 | 11,325                              | 769                                                      | 1.0                                             | 2,180                                | 232                                                       | 1.3                                              |  |
|              | 4 1/8          | 1 3/8 | 1 3/8   | 1 3/8   |         |          |         |       | 4,525                               | 115                                                      | 0.53                                            | 180                                  | 3.6                                                       | 0.63                                             |  |
| E4           | 6 7/8          | 1 3/8 | 1 3/8   | 1 3/8   | 1 3/8   | 1 3/8    |         |       | 10,425                              | 441                                                      | 1.1                                             | 1,570                                | 95                                                        | 1.3                                              |  |
|              | 9 5/8          | 1 3/8 | 1 3/8   | 1 3/8   | 1 3/8   | 1 3/8    | 1 3/8   | 1 3/8 | 18,400                              | 1,090                                                    | 1.6                                             | 3,575                                | 360                                                       | 1.9                                              |  |
|              | 4 1/8          | 1 3/8 | 1 3/8   | 1 3/8   |         |          |         |       | 2,090                               | 108                                                      | 0.53                                            | 165                                  | 3.6                                                       | 0.59                                             |  |
| V1           | 6 7/8          | 1 3/8 | 1 3/8   | 1 3/8   | 1 3/8   | 1 3/8    |         |       | 4,800                               | 415                                                      | 1.1                                             | 1,430                                | 95                                                        | 1.2                                              |  |
|              | 9 5/8          | 1 3/8 | 1 3/8   | 1 3/8   | 1 3/8   | 1 3/8    | 1 3/8   | 1 3/8 | 8,500                               | 1,027                                                    | 1.6                                             | 3,275                                | 360                                                       | 1.8                                              |  |
|              | 4 1/8          | 1 3/8 | 1 3/8   | 1 3/8   |         |          |         |       | 2,030                               | 95                                                       | 0.46                                            | 160                                  | 3.1                                                       | 0.52                                             |  |
| V2           | 6 7/8          | 1 3/8 | 1 3/8   | 1 3/8   | 1 3/8   | 1 3/8    |         |       | 4,675                               | 363                                                      | 0.91                                            | 1,370                                | 81                                                        | 1.0                                              |  |
| -            | 0 5 10         | 1.0/0 | 1.0/0   | 1.0/0   | 1.0/0   | 1.0/0    | 1.0/0   | 1.0/0 | 0.075                               | 000                                                      | 1.4                                             | 0.105                                | 200                                                       | 1.4                                              |  |

## **3<sup>rd</sup> Party Product Qualification of CLT**





## **CLT Product Reports**

| CLT Grade |                   |                     |                                  |                       |                                                                      |              | Layup        |        |         |       |         |         |                            |                                                |                                                                | Panel Properties             |                            |                                                 |                                                    |                              |      |     |
|-----------|-------------------|---------------------|----------------------------------|-----------------------|----------------------------------------------------------------------|--------------|--------------|--------|---------|-------|---------|---------|----------------------------|------------------------------------------------|----------------------------------------------------------------|------------------------------|----------------------------|-------------------------------------------------|----------------------------------------------------|------------------------------|------|-----|
|           | SION              | <i>י</i>            |                                  |                       |                                                                      |              |              |        |         |       |         |         |                            |                                                |                                                                |                              |                            |                                                 |                                                    |                              |      |     |
| AP<br>Re  | A Prod<br>vised A | uct Rep<br>lugust 1 | oort <sup>®</sup> PF<br>15 , 201 | R-L319<br>7           |                                                                      |              |              |        |         |       |         |         |                            |                                                |                                                                |                              |                            |                                                 | Page                                               | 3 of 5                       |      |     |
| Ta        | ble 1. /          | Howab               | le Desi                          | gn Pro                | perties                                                              | (a) for      | Lumb         | er Lan | ninatio | ns Us | ed in S | martLar | n CLT                      | for Use                                        | in the                                                         | U.S.)                        |                            |                                                 |                                                    |                              |      |     |
| C         | I T Grade         | E                   |                                  | Fo                    | Majo                                                                 | Fin          | gth Dire     | cion   | E.a     |       | E.a     | E. m    |                            | Em                                             | Free                                                           | rength D                     | Feat                       | F. on                                           | F                                                  |                              |      |     |
| - V       |                   | D                   | si) (                            | (10 <sup>6</sup> psi) | (                                                                    | psi)         | (ps          | 6      | (psi)   |       | (psi)   | (psi)   | (1                         | 0 <sup>6</sup> psi)                            | (psi)                                                          | 1                            | psi)                       | (psi)                                           | i                                                  | psi)                         |      |     |
|           | SL-V4             | 77                  | 75                               | 1.1                   | 3                                                                    | 50           | 1,00         | 00     | 135     |       | 45      | 775     |                            | 1.1                                            | 350                                                            | 1                            | .000                       | 135                                             |                                                    | 45                           |      |     |
| Ta        | ble 2. /          | Allowab             | le Desi                          | gn Cap                | n Capacities <sup>(a)</sup> for SmartLam Balanced CLT (for Use in th |              |              |        |         |       |         |         |                            |                                                | the U.S.)<br>Major Strength Direction Minor Strength Direction |                              |                            |                                                 |                                                    |                              |      |     |
| G         | CLT<br>Grade      | Layup<br>#          | Thick-<br>ness<br>(in.)          | =                     | T                                                                    | =            | 1.<br>1.     | =      | ⊥       | =     |         | -       | FsSer.0<br>(Ibf-<br>ft/ft) | Eler.0<br>(10 <sup>s</sup><br>lbf-<br>in.2/ft) | GA <sub>et.0</sub><br>(10 <sup>6</sup><br>Ibf/ft)              | V <sub>s.0</sub><br>(ibf/ft) | FbSetso<br>(lbf-<br>ft/ft) | Elet so<br>(10 <sup>6</sup><br>lbf-<br>in 2/ft) | GA <sub>et 30</sub><br>(10 <sup>6</sup><br>Ibfift) | V <sub>s.30</sub><br>(Ibf/R) |      |     |
|           |                   | 3-alt               | 4 1/8                            | 1 3/8                 | 1 3/8                                                                | 1 3/8        |              |        |         |       |         |         | 1,800                      | 74                                             | 0.41                                                           | 1,430                        | 245                        | 2.9                                             | 0.41                                               | 495                          |      |     |
|           | 4                 | ŀ                   | 3                                | 3-alt<br>4-maxx       | ax 51/2                                                              | 1 3/8        | 1 3/8<br>x 2 | 1 3/8  |         |       |         |         |                            |                                                | 2,925                                                          | 161                          | 0.49                       | 1,740                                           | 975                                                | 23                           | 0.85 | 990 |
|           |                   | 5-alt               | 6 7/8                            | 1 3/8                 | 1 3/8                                                                | 1 3/8        | 1 3/8        | 1 3/8  |         |       |         |         | 4,150                      | 286                                            | 0.83                                                           | 1,980                        | 2,120                      | 74                                              | 0.83                                               | 1,430                        |      |     |
|           |                   | 5-maxx              | 6 7/8                            | 1 3/8<br>x 2          | 1 3/8                                                                | 1 3/8<br>x 2 |              |        |         |       |         |         | 5,150                      | 355                                            | 1.4                                                            | 2,460                        | 245                        | 2.9                                             | 0.86                                               | 495                          |      |     |
| S         | -V4(b)            | 6-maxx              | 8 1/4                            | 1 3/8<br>x 2          | 1 3/8<br>x 2                                                         | 1 3/8<br>x 2 |              |        |         |       |         |         | 7,200                      | 596                                            | 1.2                                                            | 2,875                        | 975                        | 23                                              | 1.3                                                | 990                          |      |     |
|           |                   | 7-alt               | 9 5/8                            | 1 3/8                 | 1 3/8                                                                | 1 3/8        | 1 3/8        | 1 3/8  | 1 3/8   | 1 3/8 |         |         | 7,325                      | 707                                            | 1.2                                                            | 2,500                        | 4,825                      | 283                                             | 1.2                                                | 1,960                        |      |     |
|           |                   | 7                   | 0.5/0                            | 1 3/8                 | 4.2/0                                                                | 4.0.0        | 4 2/0        | 1 3/8  |         |       |         |         | 0.405                      | 000                                            | 47                                                             | 0.000                        | 0.400                      | 74                                              | 4.0                                                | 4.400                        |      |     |

#### **Structural Design Standardization**



National Design Specification for Wood Construction 2015 & 2018 Edition

#### **Model Building Code Acceptance**



#### **Highlights of CLT Provisions in IBC 2015**

- CLT is generally available for use in Type III, IV and V construction.
- IBC 2015 Chapter 6 Defines Dimensions of CLT to qualify as Heavy Timber (Type IV Construction)
  - 4" Interior walls
  - 4" Floors
  - 3" Roofs
  - Non Fire-Retardant Treated CLT allowed in Exterior Walls of Type IV construction in many conditions. (IBC 2015 602.4)

The <u>Heavy Timber</u> construction size requirements only apply to Type IV Construction



#### **FLATWISE** Panel Loading



Span in MAJOR Strength Direction "Parallel" Direction Span in MINOR Strength Direction "Perpendicular" Direction

*Reference & Source: ANSI/APA PRG 320* 

#### **EDGEWISE** Panel Loading



Span in MAJOR Strength Direction



Span in MINOR Strength Direction

Reference & Source: ANSI/APA PRG 320

#### **Flatwise Flexural Strength**

Design properties based on an Extreme Fiber Model:

Flexural Capacity Check:

S<sub>eff</sub>

**F**<sub>b</sub>

 $M_b \leq (F_b S_{eff})'$ 



```
Bending Stress
```

- $M_b$  = applied bending moment  $(F_b S_{eff})'$  = adjusted bending capacity
  - = effective section modulus
  - = reference bending design stress of outer lamination

#### **Flatwise Flexural Strength**

Flexural Capacity Check (ASD)



$$M_{b} \leq C_{D} (1.0) (F_{b}S_{eff})$$

*Reference: NDS 2015* 

## **Flatwise Flexural Strength Design Example**

# Select acceptable CLT section **Given**:

16 foot span floor40 psf live load, 40 psf total dead load



16 foot span

#### Assume:

one-way spanning action in major axis of CLT Analysis of a 1 ft strip of panel as beam

Calculate ASD Applied Moment (1.0D + 1.0L)

$$M_b = w L^2 / 8 = (40+40 psf) (16 ft)^2 / 8 = 2560 lb-ft/ft$$

#### **Flatwise Flexural Strength Design Example**

Look for Acceptable CLT Grade from PRG 320:  $F_b S_{eff,0} > 2560 \text{ lb-ft/ft}$ 

|              |                | Lamination Thickness (in.) in CLT Layup |         |       |         |       |         |       | Major S                             | Strength D                                               | irection                            | <b>Minor Strength Direction</b>      |                                                           |                                                  |  |
|--------------|----------------|-----------------------------------------|---------|-------|---------|-------|---------|-------|-------------------------------------|----------------------------------------------------------|-------------------------------------|--------------------------------------|-----------------------------------------------------------|--------------------------------------------------|--|
| CLT<br>Grade | CLT t<br>(in.) | =                                       | $\perp$ | =     | $\perp$ | =     | $\perp$ | =     | F₅S <sub>eff,0</sub><br>(Ibf-ft/ft) | El <sub>eff,0</sub><br>(10 <sup>6</sup> lbf-<br>in.²/ft) | GA <sub>eff,0</sub><br>(10º lbf/ft) | F₅S <sub>eff,90</sub><br>(Ibf-ft/ft) | EI <sub>eff,90</sub><br>(10 <sup>6</sup> lbf-<br>in.²/ft) | GA <sub>eff,90</sub><br>(10 <sup>6</sup> lbf/ft) |  |
|              | 4 1/8          | 1 3/8                                   | 1 3/8   | 1 3/8 |         |       |         |       | 2,090                               | 108                                                      | 0.53                                | 165                                  | 3.6                                                       | 0.59                                             |  |
| V1           | 6 7/8          | 1 3/8                                   | 1 3/8   | 1 3/8 | 1 3/8   | 1 3/8 |         |       | 4,800                               | 415                                                      | 1.1                                 | 1,430                                | 95                                                        | 1.2                                              |  |
|              | 9 5/8          | 1 3/8                                   | 1 3/8   | 1 3/8 | 1 3/8   | 1 3/8 | 1 3/8   | 1 3/8 | 8,500                               | 1,027                                                    | 1.6                                 | 3,275                                | 360                                                       | 1.8                                              |  |
|              | 4 1/8          | 1 3/8                                   | 1 3/8   | 1 3/8 |         |       |         |       | 2,030                               | 95                                                       | 0.46                                | 160                                  | 3.1                                                       | 0.52                                             |  |
| V2           | 6 7/8          | 1 3/8                                   | 1 3/8   | 1 3/8 | 1 3/8   | 1 3/8 |         |       | 4,675                               | 363                                                      | 0.91                                | 1,370                                | 81                                                        | 1.0                                              |  |
|              | 9 5/8          | 1 3/8                                   | 1 3/8   | 1 3/8 | 1 3/8   | 1 3/8 | 1 3/8   | 1 3/8 | 8,275                               | 898                                                      | 1.4                                 | 3,125                                | 309                                                       | 1.6                                              |  |
|              |                | -                                       |         |       |         |       |         |       |                                     |                                                          |                                     |                                      |                                                           |                                                  |  |

Select 5-Ply 6 7/8" Thick V1 Panel with  $F_b S_{eff.0} = 4800$  lb-ft/ft

Reference: ANSI/APA PRG 320-2012

#### Flatwise Flexural Strength Design Example



$$M_b = 2560 \text{ lb-ft/ft} \leq (F_b S_{eff})' = 4800 \text{ lb-ft/ft}$$

**Flexural Strength OK** 

#### **Flatwise Shear Strength**

Design Properties based on Extreme Fiber Model:

Shear Capacity Check:  $V_a \leq F_s(Ib/Q)_{eff}'$   $V_a = applied shear$   $F_s(IbQ_{eff})' = adjusted shear strength$  $V_a = applied shear strength$ 



#### **Flatwise Shear Strength**

Design Properties based on Extreme Fiber Model:



 $V_{planar} \leq (1.0) V_{s}$ 

Note: Duration of Load Effects (Cd and  $\lambda$ ) NOT applicable to Flatwise Shear Strength in the NDS

Reference: NDS 2015 & Product Reports

#### **Flatwise Shear Strength**



#### **Rolling Shear**

Source: CSA 086-14, 2016 Supplement

#### **Flatwise Flexural Stiffness**

Shear Analogy Method



$$(EI)_{eff,f,0} = \sum_{i=1}^{n} E_i b_0 \frac{t_i^3}{12} + \sum_{i=1}^{n} E_i b_0 t_i z_i^2 \qquad S_{eff,f,0} = \frac{(EI)_{eff,f,0}}{E_{major}} \frac{2}{t_p}$$

Reference: ANSI/APA PRG 320 2019 Appendix X3.

#### **Flatwise Flexural Stiffness**



 $\mathsf{EI}_{\mathsf{eff}}$ 



**GA**<sub>eff</sub>



#### **Flatwise Flexural Stiffness**



#### **Flatwise CLT Panel Section Properties**



Flexural Strength: Flexural Stiffness: Shear Strength: Shear Stiffness:



Values in RED provided by CLT manufacturer

*Reference: PRG 320 and CLT Product Reports* 

#### **Deflection Calculations**



#### General Purpose: 1 Way, Beam Action Needed Stiffness: El<sub>eff,0</sub> GA<sub>eff,0</sub>



Can model multiple spans, cantilevers, etc.

#### **Flatwise Deflection Example**

Uniform loading on one way slab: Beam Analysis using Flexural Stiffness:  $El_{eff,0}$ Shear Stiffness: 5/6 GA<sub>eff,0</sub> Maximum Deflection @ Mid-Span





16 foot span

#### **Flatwise Deflection Example**

For selected 6 7/8" 5-Ply V1, lookup major strength stiffness values

|              |                | Lamination Thickness (in.) in CLT Layup |       |       |         |       |       | ayup  | Major                               | Strength D                                               | irection                            | Minor Strength Direction             |                                                           |                                                  |
|--------------|----------------|-----------------------------------------|-------|-------|---------|-------|-------|-------|-------------------------------------|----------------------------------------------------------|-------------------------------------|--------------------------------------|-----------------------------------------------------------|--------------------------------------------------|
| CLT<br>Grade | CLT t<br>(in.) | =                                       | Ţ     | =     | $\perp$ | =     | T     | =     | F₅S <sub>eff,0</sub><br>(Ibf-ft/ft) | El <sub>eff,0</sub><br>(10 <sup>6</sup> lbf-<br>in.²/ft) | GA <sub>eff,0</sub><br>(10º lbf/ft) | F₅S <sub>eff,90</sub><br>(Ibf-ft/ft) | EI <sub>eff,90</sub><br>(10 <sup>6</sup> lbf-<br>in.²/ft) | GA <sub>eff,90</sub><br>(10 <sup>6</sup> lbf/ft) |
|              | 4 1/8          | 1 3/8                                   | 1 3/8 | 1 3/8 |         |       |       |       | 2,090                               | 108                                                      | 0.53                                | 165                                  | 3.6                                                       | 0.59                                             |
| V1           | 6 7/8          | 1 3/8                                   | 1 3/8 | 1 3/8 | 1 3/8   | 1 3/8 |       |       | 4,800                               | 415                                                      | 1.1                                 | 1,430                                | 95                                                        | 1.2                                              |
|              | 9 5/8          | 1 3/8                                   | 1 3/8 | 1 3/8 | 1 3/8   | 1 3/8 | 1 3/8 | 1 3/8 | 8,500                               | 1,027                                                    | 1.6                                 | 3,275                                | 360                                                       | 1.8                                              |
|              | 4 1/8          | 1 3/8                                   | 1 3/8 | 1 3/8 |         |       |       |       | 2,030                               | 95                                                       | 0.46                                | 160                                  | 3.1                                                       | 0.52                                             |
| V2           | 6 7/8          | 1 3/8                                   | 1 3/8 | 1 3/8 | 1 3/8   | 1 3/8 |       |       | 4,675                               | 363                                                      | 0.91                                | 1,370                                | 81                                                        | 1.0                                              |
|              | 9 5/8          | 1 3/8                                   | 1 3/8 | 1 3/8 | 1 3/8   | 1 3/8 | 1 3/8 | 1 3/8 | 8,275                               | 898                                                      | 1.4                                 | 3,125                                | 309                                                       | 1.6                                              |

Reference: ANSI/APA PRG 320-2012

#### **Flatwise Deflection Example**

Uniform loading on one way slab: Beam Analysis using Flexural Stiffness:  $EI_{eff,0}$ Shear Stiffness: 5/6  $GA_{eff,0}$ Maximum Deflection @ Mid-Span



16 foot span

$$\Delta_{\max} = \frac{5}{384} \cdot \frac{wL^4}{EI_{eff}} + \frac{1}{8} \cdot \frac{wL^2}{5/6 \text{ GA}_{eff}}$$

$$= \frac{5}{385} \cdot \frac{80 \operatorname{psf} (16 \operatorname{ft})^4}{415 \times 10^6 \operatorname{lbf} \operatorname{in}^2/\operatorname{ft}} \cdot (\frac{12 \operatorname{in}}{1 \operatorname{ft}})^3 + \frac{1}{8} \cdot \frac{80 \operatorname{psf} (16 \operatorname{ft})^2}{\frac{5}{6} \operatorname{1.1} \times 10^6 \operatorname{lbf}/\operatorname{ft}} \cdot \frac{12 \operatorname{in}}{1 \operatorname{ft}}$$
$$= 0.284 \operatorname{in} + 0.034 \operatorname{in} = 0.318 \operatorname{in}$$
$$= L/604$$

#### **Deflection Creep Factor**

**Deformation to Long Term Loads** 

$$\begin{array}{lll} \Delta_T = K_{cr} \; \Delta_{LT} + \Delta_{ST} & \text{NDS Eq 3.5-1} \\ \Delta_{ST} & \text{Deflection due to short-term loading} \\ \Delta_{LT} & \text{Immediate deflection due to long term loading} \\ K_{cr} & 2.0 \text{ for CLT in dry service conditions} \\ \end{array}$$

 $\Delta_{LT}$  from 40psf = 0.159 in

$$\Delta_{\rm T} = 2.0 \ (0.159) + 0.159 = 0.477 \ {\rm in}$$

= L / 403

Reference: NDS 2015



#### **Deflection Calculations**

Simplified Beam Deflections:

For single span, simply supported uniform load

$$\Delta_{\max} = \frac{5}{384} \cdot \frac{wL^4}{EI_{eff}} + \frac{1}{8} \cdot \frac{wL^2}{5/6 \ GA_{eff}}$$

What is *Apparent* Flexural Stiffness, El<sub>app</sub>, such that

$$\Delta_{\max} = \frac{5}{384} \cdot \frac{wL^4}{El_{app}}$$

Set equal to each other and solve for  $EI_{app}$ 







#### Reference: US CLT Handbook & NDS

#### **Deflection Calculations**



#### General Purpose, 2 Way, Plate Action Flexural Stiffness $El_{eff,0}$ $El_{eff,90}$ Shear Stiffness: $5/6 \text{ GA}_{eff,0}$ $5/6 \text{ GA}_{eff,90}$ 5/6 from A' = 5/6 A shape factor for rectangular sections

#### **Point Supported Plates**



Possible, however not common.

Structural design issues include:

- Compression perp to grain at support points
- Bi-directional bending stress interactions
- Punching shear

Not covered in NDS

#### **Using PRG 320 Standard Grades for Design?**

#### TABLE A2.

THE ALLOWABLE BENDING CAPACITIES<sup>(a,b,c)</sup> FOR CLT LISTED IN TABLE A1 (FOR USE IN THE U.S.)

|              |                | Lam   | inatio  | n Thick | ness    | (in.) in | CLT L   | αγυρ  | Major S                                          | Strength D                                   | irection                                        | Minor Strength Direction                          |                                                           |                                                  |  |
|--------------|----------------|-------|---------|---------|---------|----------|---------|-------|--------------------------------------------------|----------------------------------------------|-------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------|--|
| CLT<br>Grade | CLT t<br>(in.) | =     | $\perp$ | =       | $\perp$ | =        | $\perp$ | =     | F <sub>b</sub> S <sub>eff,0</sub><br>(lbf-ft/ft) | El <sub>eff,0</sub><br>(10º lbf-<br>in.²/ft) | GA <sub>eff,0</sub><br>(10 <sup>6</sup> lbf/ft) | F <sub>b</sub> S <sub>eff,90</sub><br>(Ibf-ft/ft) | El <sub>eff,90</sub><br>(10 <sup>6</sup> lbf-<br>in.²/ft) | GA <sub>eff,90</sub><br>(10 <sup>6</sup> lbf/ft) |  |
|              | 4 1/8          | 1 3/8 | 1 3/8   | 1 3/8   |         |          |         |       | 4,525                                            | 115                                          | 0.46                                            | 160                                               | 3.1                                                       | 0.61                                             |  |
| E1           | 6 7/8          | 1 3/8 | 1 3/8   | 1 3/8   | 1 3/8   | 1 3/8    |         |       | 10,400                                           | 440                                          | 0.92                                            | 1,370                                             | 81                                                        | 1.2                                              |  |
|              | 9 5/8          | 1 3/8 | 1 3/8   | 1 3/8   | 1 3/8   | 1 3/8    | 1 3/8   | 1 3/8 | 18,375                                           | 1,089                                        | 1.4                                             | 3,125                                             | 309                                                       | 1.8                                              |  |
|              | 4 1/8          | 1 3/8 | 1 3/8   | 1 3/8   |         |          |         |       | 3,825                                            | 102                                          | 0.53                                            | 165                                               | 3.6                                                       | 0.56                                             |  |
| E2           | 6 7/8          | 1 3/8 | 1 3/8   | 1 3/8   | 1 3/8   | 1 3/8    |         |       | 8,825                                            | 389                                          | 1.1                                             | 1,430                                             | 95                                                        | 1.1                                              |  |
|              | 9 5/8          | 1 3/8 | 1 3/8   | 1 3/8   | 1 3/8   | 1 3/8    | 1 3/8   | 1 3/8 | 15,600                                           | 963                                          | 1.6                                             | 3,275                                             | 360                                                       | 1.7                                              |  |
|              | 4 1/8          | 1 3/8 | 1 3/8   | 1 3/8   |         |          |         |       | 2,800                                            | 81                                           | 0.35                                            | 110                                               | 2.3                                                       | 0.44                                             |  |
| E3           | 6 7/8          | 1 3/8 | 1 3/8   | 1 3/8   | 1 3/8   | 1 3/8    |         |       | 6,400                                            | 311                                          | 0.69                                            | 955                                               | 61                                                        | 0.87                                             |  |
|              | 9 5/8          | 1 3/8 | 1 3/8   | 1 3/8   | 1 3/8   | 1 3/8    | 1 3/8   | 1 3/8 | 11,325                                           | 769                                          | 1.0                                             | 2,180                                             | 232                                                       | 1.3                                              |  |
|              | 4 1/8          | 1 3/8 | 1 3/8   | 1 3/8   |         |          |         |       | 4,525                                            | 115                                          | 0.53                                            | 180                                               | 3.6                                                       | 0.63                                             |  |
| E4           | 6 7/8          | 1 3/8 | 1 3/8   | 1 3/8   | 1 3/8   | 1 3/8    |         |       | 10,425                                           | 441                                          | 1.1                                             | 1,570                                             | 95                                                        | 1.3                                              |  |
|              | 9 5/8          | 1 3/8 | 1 3/8   | 1 3/8   | 1 3/8   | 1 3/8    | 1 3/8   | 1 3/8 | 18,400                                           | 1,090                                        | 1.6                                             | 3,575                                             | 360                                                       | 1.9                                              |  |
|              | 4 1/8          | 1 3/8 | 1 3/8   | 1 3/8   |         |          |         |       | 2,090                                            | 108                                          | 0.53                                            | 165                                               | 3.6                                                       | 0.59                                             |  |
| V1           | 6 7/8          | 1 3/8 | 1 3/8   | 1 3/8   | 1 3/8   | 1 3/8    |         |       | 4,800                                            | 415                                          | 1.1                                             | 1,430                                             | 95                                                        | 1.2                                              |  |
|              | 9 5/8          | 1 3/8 | 1 3/8   | 1 3/8   | 1 3/8   | 1 3/8    | 1 3/8   | 1 3/8 | 8,500                                            | 1,027                                        | 1.6                                             | 3,275                                             | 360                                                       | 1.8                                              |  |
|              | 4 1/8          | 1 3/8 | 1 3/8   | 1 3/8   |         |          |         |       | 2,030                                            | 95                                           | 0.46                                            | 160                                               | 3.1                                                       | 0.52                                             |  |
| V2           | 6 7/8          | 1 3/8 | 1 3/8   | 1 3/8   | 1 3/8   | 1 3/8    |         |       | 4,675                                            | 363                                          | 0.91                                            | 1,370                                             | 81                                                        | 1.0                                              |  |
|              | 0.5/0          | 1.0/0 | 1.0/0   | 1.0/0   | 1.0.0   | 1.0/0    | 1.0/0   | 1.0/0 | 0.075                                            | 000                                          | 1.4                                             | 0.105                                             | 000                                                       | 1.4                                              |  |

PRG 320 includes pre-defined Stress Grades, Layups and related Design Properties

Is doesn't tell you what CLT grades and layups are available.

Coordinate with manufacturers availability and information

## Working with CLT: Know Your Supply Chain

- CLT Manufactures different CLT grades and maximum panel sizes
- CLT Manufacturers have specific CNC capabilities
- 3<sup>rd</sup> Party Fabricators can have additional CNC capabilities







Photo: Sauter Timber

# > Floor Vibration Design

## "One might almost say that strength is essential and otherwise unimportant"

- Hardy Cross

#### **US Building Code Requirements for Vibration**



#### Barely discussed in IBC, NDS, etc. ASCE 7 Commentary Appendix C has some discussion, no requirements

#### **Vibrations vs Acoustics**

| Structural<br>Vibrations                        | Acoustic<br>Vibrations                             |  |  |  |  |  |  |  |
|-------------------------------------------------|----------------------------------------------------|--|--|--|--|--|--|--|
| 1 Hz – 100 Hz                                   | <b>20 Hz – 15,000 Hz</b>                           |  |  |  |  |  |  |  |
| Transmitted through structure or through ground | Transmitted through<br>air, walls, floors, windows |  |  |  |  |  |  |  |
| Physical effects                                | Audible effects                                    |  |  |  |  |  |  |  |
|                                                 |                                                    |  |  |  |  |  |  |  |


# Human Body Dynamics

# **Common Vibration Sources for Buildings**

Vibration <u>sources</u> are complex:

- Footfall, running, aerobics, etc.
- Machinery and equipment
- Vehicular traffic, rail traffic, forklifts
- Ground-borne, structure-borne, air-borne
- Steady-state, episodic, periodic
- Harmonic, pulse, random
- Moving, stationary









### **Resonant vs Impulsive Response**



Excitation Frequency not >> Natural Frequency Excitation Creates Resonant Build-up of Vibration

Low Frequency Floor



Excitation Frequency >> Natural Frequency Responses decays out between load cycles

**High Frequency Floor** 

Ζ

$$f_n \sim 8 Hz$$
 For Walking Excitation  $f_n \sim 8 H$ 

## **Framing Materials Properties for Vibration**

| Material    | Floor Weight<br>(psf) | Damping | Material<br>Stiffness<br>(10 <sup>6</sup> psi) | Material Mass<br>(pcf) | Example Floor<br>System                                |
|-------------|-----------------------|---------|------------------------------------------------|------------------------|--------------------------------------------------------|
| Concrete    | 100-150               | 1-5%    | 3.2-5.8                                        | 120-150                | 2-way slab on<br>columns                               |
| Steel       | 50-100                | 0.5-5%  | 30                                             | 490                    | Concrete on<br>metal deck on<br>purlins and<br>girders |
| Mass Timber | 15-65                 | 1-6%    | 1.2-1.8                                        | 30-40                  | Beam <i>or</i> wall<br>supported                       |
| Wood Frame  | 10-40                 | 2-12%   | 1.2-2.0                                        | 30-40                  | Wall supported                                         |

### **Beam vs Wall Supported Floors**



Graphic from StructureCraft

Mass Timber Panels on Grid of Beams. Frequency of Floor < Frequency of Panel Vibration of Floor > Vibration of Panel Vibration Design Depends on Beams

### Low Frequency Floor?

Maybe



### **Mass Timber Panels on Bearing Walls**

<u>High Frequency Floor?</u> At all but longer floor spans

## **Vibration Design Methods**





## **Vibration Design Methods**





### **Vibration Design Methods**



### **One approach: US CLT Handbook, Chapter 7 (FPI Method)** Calculated natural frequency of simple span of bare CLT:

$$f = \frac{2.188}{2L^2} \sqrt{\frac{EI_{app}}{\rho A}}$$

Where:

 $EI_{app}$  = apparent stiffness for pinned supported, uniformly loaded, simple span (K<sub>s</sub> = 11.5) (lb-in<sup>2</sup>)

 $\rho$  = specific gravity of the CLT

A = the cross section area (thickness x 12 inches) (in<sup>2</sup>)

Reference: US CLT Handbook, Chapter 7

# **Floor Vibration-FPI Method**

### Limit CLT Floor Span such that

Span L' 
$$\leq \frac{1}{12.05} \frac{(EI_{app})^{0.293}}{(\rho A)^{0.122}}$$



- Un-topped CLT
- Single, Simple span
- Bearing wall supports.

Does not account for:

- Supporting beam flexibility
- Multi-span conditions
- Additional floor mass (topping slab, etc)

Reference: US CLT Handbook, Chapter 7



# **Floor Vibration-FPI Method**

CLT Handbook, Chapter 7 Recommendations



### **Experimental Verification – Results**





# **FPI Span Limit for Basic CLT Grades / Layups**

| Grade | Layup        | Thickness | <b>FPI Span Limit</b> |
|-------|--------------|-----------|-----------------------|
|       | 3ply         | 4 1/8"    | 12' 5"                |
| E1    | 5ply         | 6 7/8"    | 17' 4"                |
|       | 7ply         | 9 5/8"    | 21' 8"                |
|       | 3ply         | 4 1/8"    | 12' 0"                |
| E2    | 5ply         | 6 7/8"    | 16' 8"                |
|       | 7ply         | 9 5/8"    | 20' 10"               |
|       | 3ply         | 4 1/8"    | 11' 7"                |
| E3    | 5ply         | 6 7/8"    | 16' 1"                |
|       | 7ply         | 9 5/8"    | 20' 1"                |
|       | <b>3</b> ply | 4 1/8"    | 12' 2"                |
| E4    | 5ply         | 6 7/8"    | 17' 0"                |
|       | 7ply         | 9 5/8"    | 21' 3"                |

| <b>Approximate F</b> | PI Span Limits: |
|----------------------|-----------------|
|----------------------|-----------------|

| 3-ply: | 11 to 12 ft |
|--------|-------------|
| 5-ply: | 16 to 17 ft |
| 7-ply: | 20 to 21 ft |

| Grade | Layup | Thickness | <b>FPI Span Limit</b> |
|-------|-------|-----------|-----------------------|
|       | 3ply  | 4 1/8"    | 12' 2"                |
| V1    | 5ply  | 6 7/8"    | 17' 0"                |
|       | 7ply  | 9 5/8"    | 21' 3"                |
|       | 3ply  | 4 1/8"    | 11' 11"               |
| V2    | 5ply  | 6 7/8"    | 16' 8"                |
|       | 7ply  | 9 5/8"    | 20' 10"               |
|       | 3ply  | 4 1/8"    | 12' 0"                |
| V3    | 5ply  | 6 7/8"    | 16' 9"                |
|       | 7ply  | 9 5/8"    | 21' 0"                |

### Limitations:

- Does not account for strength or deflections
- Does not account for beam flexibility
- Does not account for project specifics

## **CLT Handbook In Practice**

- Experience shown it consistently produces well performing floors
- Does not consider
  - Multi-span panels
  - Flexibility of supports, e.g. beams
  - Impact of topping slabs

**Improves Performance** 

**Lowers Performance** 

Performance??

 Recommend 20% increase in acceptable span length OK for multispan panels with non-structural elements that are considered to provide an enhanced stiffening effect, including partition walls, finishes and ceilings, etc.

## **US Mass Timber Vibration Design Guide**

### USDA Wood Innovations Grant funded project in progress

### US MASS TIMBER FLOOR VIBRATION DESIGN GUIDE

APPROXIMATE OUTLINE

- 1 Introduction
  - 1.1 Preface
  - 1.2 Scope of this Guide
  - 1.3 Terminology
  - 1.4 Symbols
  - 1.5 Vibration Characteristics of Floor Structures
  - 1.6 Building Codes and Standards
- 2 Understanding Floor Vibration
  - 2.1 Structural Response to Footfall Forces
  - 2.2 Vibration Background
  - 2.3 Methods for Evaluating Vibration
  - 2.4 Human Perception of Vibration
- 3 Vibration Design Considerations
  - 3.1 Floor Loading / Mass
  - 3.2 Damping
  - 3.3 Component Stiffness
  - 3.4 Composite Behavior
  - 3.5 Structural and Floor Configurations
  - 3.6 Excitation Parameters
  - 3.7 Floor Vibration Performance Targets

Guide to be published by WoodWorks Later in 2020

Project Team: WoodWorks, KPFF, Aspect, StructureCraft, & Fast+Epp

# **Preliminary Recommendations**



Graphic from StructureCraft

Mass Timber Panels on Grid of Beams: Modal Analysis based methods valid - AISC Design Guide 11

- CCIP 0-16

### Mass Timber Modeling Guidelines: - Incidental composite action.



CLT Panels on Bearing Walls: FPI Method simple to implement Conservative for typical residential

Other Mass Timber Panels not covered



### **EDGEWISE** Panel Loading



Span in MAJOR Strength Direction



Span in **MINOR** Strength Direction

Reference & Source: ANSI/APA PRG 320-2017

### **Shear Force Terminology & Jargon**



Source: ANSI/APA PRG 320-2017

Through-the-Thickness Shear In-plane Shear Forces EDGEWISE Shear in PRG 320-2017 Through the Thickness Shear



Source: NDS 2015 Manual

NDS 2015:  $F_v(t_v)$ PRG 320-2017:  $F_{v,e,0} t_p \& F_{v,e,90} t_p$ 

### **CLT in Lateral Force Resisting Systems**

### CLT Panels have a significant in-plane shear strength.

#### TABLE 3-REFERENCE DESIGN VALUES FOR IN-PLANE SHEAR OF THE STRUCTURLAM CROSSLAM® CLT PANELS<sup>1</sup>

| GRADE                                     | CRADE           | LAYUP<br>DESIGNATION | FACE LAMINATION ORIENTATION<br>(psi) |                  |                 |                    |                    |                                                      |                    |
|-------------------------------------------|-----------------|----------------------|--------------------------------------|------------------|-----------------|--------------------|--------------------|------------------------------------------------------|--------------------|
|                                           | GRADE           |                      | =2                                   | ⊥ <sup>2</sup> - | Table 3. Allowa | able In-Plane      | Shear (psi) for    | Nordic X-Lam <sup>(a)</sup> (for use in              | the U.S.)          |
|                                           |                 | 105V                 | 130                                  | 195              |                 | Layup # T          | Thickness          | Allowable In-Plane Shear Stress (psi), Fv, in-plane, |                    |
|                                           |                 | 175V                 | 180                                  | <b>1</b> 95⁴     | CLT Grade       |                    |                    | with Face Lamination Orientation of                  |                    |
| V2M1.1                                    | V2M1.1          | 245V                 | 180 <sup>3</sup>                     | 195 <sup>₄</sup> |                 |                    | (11.)              | =                                                    | $\perp$            |
|                                           |                 | 315V                 | 180 <sup>3</sup>                     | 195⁴             |                 | 78-3s              | 3 1/8              | 105 <sup>(b)</sup>                                   | 130 <sup>(b)</sup> |
| L                                         |                 | I                    |                                      |                  |                 | 89-3s              | 3 1/2              | 75                                                   | 130 <sup>(b)</sup> |
| Sourc                                     | e: ICC-ES ESR 3 | 631                  |                                      |                  |                 | 105-3s             | 4 1/8              | 105                                                  | 130                |
|                                           |                 |                      |                                      |                  |                 | 131-5s             | 5 1/8              | 125 <sup>(c)</sup>                                   | 150 <sup>(c)</sup> |
|                                           |                 |                      |                                      |                  |                 | 140-4s             | 5 1/2              | 105 <sup>(b)</sup>                                   | 130 <sup>(b)</sup> |
| 75 to 195+ PSI Allowable Edgewise Shear   |                 |                      |                                      |                  | 143-5s          | 5 5/8              | 105 <sup>(b)</sup> | 150 <sup>(c)</sup>                                   |                    |
|                                           |                 |                      |                                      |                  | <b>F</b> 4      | 175-5s             | 6 7/8              | 125                                                  | 150                |
|                                           |                 |                      |                                      |                  |                 | 197-7s             | 7 3/4              | 105 <sup>(b)</sup>                                   | 150 <sup>(c)</sup> |
|                                           |                 |                      |                                      |                  |                 | 213-7I             | 8 3/8              | 125 <sup>(c)</sup>                                   | 150 <sup>(c)</sup> |
| 900 to 2300 PLF per Inch of Thickness.    |                 |                      |                                      |                  |                 | 220-7s             | 8 5/8              | 125 <sup>(c)</sup>                                   | 150 <sup>(c)</sup> |
|                                           |                 | •                    |                                      |                  |                 | 244-7s             | 9 5/8              | 125 <sup>(c)</sup>                                   | 150 <sup>(c)</sup> |
|                                           |                 |                      |                                      |                  |                 | 244-7I             | 9 5/8              | 125 <sup>(c)</sup>                                   | 150 <sup>(c)</sup> |
| onsult with the Manufacturers for Details |                 |                      |                                      | 267-91           | 10 1/2          | 105 <sup>(b)</sup> | 150 <sup>(c)</sup> |                                                      |                    |
|                                           |                 |                      |                                      |                  | 314-91          | 12 3/8             | 125 <sup>(c)</sup> | 150 <sup>(c)</sup>                                   |                    |

Source: APA Product Report PR-L306

Standard test method defined using ASTM D198



### **Connection Styles**

Panel to Panel at floors, roofs or walls



### Single Surface Spline











### **Connection Styles**



### Simple connections with:

- Metal angles
- Self taping Screws and Nails

# Mass Timber Design



Long self tapping screws used extensively throughout mass timber construction

Connections

### **Proprietary Products**



Variety of Self Tapping Screws

### **Proprietary Products**



Figure 1: ABR105 - CLT Panel Connection

Figure 2: AE116 - CLT to Concrete



### Source: Simpson Strong-Tie

Source: rothoblaas

### **CLT in NDS 2015 - Connectors**

### Connectors for CLT in NDS 2015: Dowel Type Fasteners, e.g. Lag Screws, Bolts and Nails





### **Mass Timber Lateral Systems**



### **Mass Timber Lateral Systems**



# Mass Timber Design

Lateral framing systems

### Light-frame wood shearwalls

Photo Credit: woodworks

# Mass Timber Design

Lateral framing systems

Central Core – concrete shearwalls

Photo Credit: structurecraft



Lateral framing systems

### Exterior steel moment frame

Photo Credit: woodworks

# Mass Timber Design

Lateral framing systems

### **Steel Braced Frame**

Photo Credit: john stamets

### **Tall Wood Structural Systems**



# Mass Timber Design

Lateral framing systems

Mass Timber Shearwalls

0

0

Photo Credit: alex schreyer

### **CLT Shear Wall Seismic Design Values**

### What R value can I use?



Photo: KLH

Photo: FPI
# **CLT Seismic Design**

#### CLT Seismic Force Resisting Systems Not addressed In



ASCE/SEI 7-10 or 7/16



### **Range of Possible Shear Wall Systems**





Rocking Wall Systems (R = -6?)

#### Ordinary Shear Walls (R = -1.5?)

# **State of Oregon Statewide Alternative**



0

and

US BE EDITION

Cross-laminated timber (CLT) is an emerging wood product with applications in both residential and non-residential buildings. Oregon BCD has prepared this alternate method which recognizes nationally adopted acceptance of CLT in Type IV Construction through the International Codes Council process. This classification will allow roughly 50 percent taller and larger buildings than

# **State of Oregon Statewide Alternative**

#### ASCE 7-10 Table 12.2-1 modified by Oregon Buildings Code Division

#### Table 12.2-1 Design Coefficients and Factors for Seismic Force-Resisting Systems

|                                                                                                                                      | ASCE 7<br>Section<br>Where | Response                    |                      |                                     | Structural System<br>Limitations Including<br>Structural Height, h <sub>n</sub> (ft)<br>Limits <sup>c</sup> |           |                |                  |                  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------|----------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------|----------------|------------------|------------------|--|
|                                                                                                                                      | Detailing<br>Requirements  | Modification<br>Coefficient | Overstrength         | Deflection<br>Amplification         |                                                                                                             | Seismi    | ic Desigr      | n Catego         | ry               |  |
| Seismic Force-Resisting System                                                                                                       | Are Specified              | R <sup>a</sup>              | Factor, $\Omega_0^g$ | Factor, C <sub>d</sub> <sup>b</sup> | В                                                                                                           | С         | $\mathbf{D}^d$ | $\mathbf{E}^{d}$ | $\mathbf{F}^{e}$ |  |
| <ul> <li>A. BEARING WALL SYSTEMS</li> <li>15. Light-frame (wood) walls sheathed<br/>with wood structural panels rated for</li> </ul> | 14.5                       | 6 1/2                       | 3                    | 4                                   | NL                                                                                                          | NL        | 65             | 65               | 65               |  |
| 19. <u>Cross-laminated timber shear walls</u>                                                                                        | <u>14.1 and 14.5</u>       | 2                           | <u>2 ½</u>           | 2                                   | <u>NL</u>                                                                                                   | <u>NL</u> | <u>NL</u>      | <u>NL</u>        | <u>NL</u>        |  |

# **Platform Framed CLT Shear Walls**

#### 2021 SDPWS Update In Process\*

- Platform Frame CLT Shear Walls
- Prescribed nailed metal plate connectors
- Panel aspect ratio,  $h:b_p$  from 2:1 to 4:1

#### 2022 ASCE 7 Update In Process\*

- Include Platform Frame CLT Shear Walls
- R = 3
- 65 ft height limit all Seismic Design Categories





\*Final contents subject to ongoing balloting

# **Platform Framed CLT Shear Walls**







Panel to Panel Connector .105" A653 Grade 33 Steel

### **Innovative Systems**



#### Cross-Laminated Timber Post-Tensioned Rocking Shear Walls

# Mass timber design

Lateral framing systems

# Timber braced frame

Photo Credit: alex schreyer



# **Mass Timber Lateral Systems**





# NLT Diaphragm Design

# Pre-fabricated panels often pre-sheathed

Once installed, add splice strips, tape joint if applicable

# NLT Diaphragm Design



Typical Diaphragm



High Load Diaphragm

Figure 4.7: Prefabricated Pre-sheathed Panels

Key

- 1. Field-intalled Plywood/OSB
- 2. Plywood/OSB splice location with typical diaphragm nailing
- 3. Plywood/OSB splice location for high load daiphragm nailing
- 4. Shop-installed plywood/OSB diaphragm sheathing
- 5. Prefabricated NLT panel A
- 6. Prefabricated NLT panel B
- 7. NLT expansion gap location fire stopped as required
- 8. Self-tapping screw pairs crossing plywood/ OSB splice location

Source: NLT Design & Construction Guide

# **CLT Diaphragms**



# **CLT in Lateral Force Resisting Systems**

#### CLT Panels have a significant in-plane shear strength.

TABLE 3-REFERENCE DESIGN VALUES FOR IN-PLANE SHEAR OF THE STRUCTURLAM CROSSLAM® CLT PANELS1

| CLT                     | CLT PANEL<br>THICKNESS                | FACE LAMINATIO                                          | N ORIENTATION <sup>2</sup><br>si)          | FACE LAMINATIO      | ON ORIENTATION <sup>3</sup><br>of width) |
|-------------------------|---------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------|------------------------------------------|
| LAYUP                   | DESIGNATION                           | п4                                                      | <b>⊥</b> ⁴                                 | п4                  | 1 <sup>4</sup>                           |
|                         | 99 V                                  | 175 <sup>8</sup>                                        | 235 <sup>8</sup>                           | 8,200 <sup>8</sup>  | 11,000 <sup>8</sup>                      |
| Volut                   | 169 V                                 | 175 <sup>8</sup>                                        | 235 <sup>8</sup>                           | 14,000 <sup>8</sup> | 18,800 <sup>8</sup>                      |
| VZIVII                  | 239 V                                 | 175 <sup>8</sup>                                        | 235 <sup>8</sup>                           | 19,800 <sup>8</sup> | 26,600 <sup>8</sup>                      |
|                         | 309 V                                 | 175 <sup>8</sup>                                        | 235 <sup>8</sup>                           | 25,600 <sup>8</sup> | 34,300 <sup>8</sup>                      |
|                         | 105V                                  | 195                                                     | 290                                        | 9,700               | 14,400                                   |
| V2M1.1                  | 175V                                  | 270                                                     | 290 <sup>6</sup>                           | 22,400              | 24,000 <sup>6</sup>                      |
| V 21VI I. I             | 245V                                  | 270 <sup>5</sup>                                        | 290 <sup>6</sup>                           | 31,300 <sup>5</sup> | 33,600 <sup>6</sup>                      |
|                         | 315V                                  | 270 <sup>5</sup>                                        | 290 <sup>6</sup>                           | 40,200 <sup>5</sup> | 43,200 <sup>6</sup>                      |
| Source: ICC<br>145 to 2 | -ES/APA Joint E<br>290 PSI A<br>= 1.7 | Evaluation Report <i>I</i><br>Ilowable E<br>to 3.5 kips | <sub>ESR 3631</sub><br>dgewise S<br>/ft/in | hear                | E1                                       |
| C                       | Cd = 1.6 fc                           | or short terr                                           | n loading                                  |                     |                                          |

#### = 2.8 to 5.6 kips/ft length (ASD) per Inch of Thickness.

ane Shear Stress for Nordic X-Lam<sup>(a)</sup> (For Use in the U.S.)

| 00°             |    |       | Thickness t (in )                | Allowable In-Pla         | ne Shear Stress           |
|-----------------|----|-------|----------------------------------|--------------------------|---------------------------|
| 00 <sup>8</sup> |    | U     | I nickness, t <sub>P</sub> (in.) | F <sub>v,e,0</sub> (psi) | F <sub>v,e,90</sub> (psi) |
| 00              |    | s     | 3 1/8                            | 155 <sup>(b)</sup>       | 190 <sup>(b)</sup>        |
| 006             |    | s     | 3 1/2                            | 155                      | 190 <sup>(b)</sup>        |
| 00°             |    | ls    | 4 1/8                            | 155                      | 190                       |
| ~ 1             |    | .is   | 5 1/8                            | 185 <sup>(c)</sup>       | 215 <sup>(c)</sup>        |
|                 | 14 | 40-4s | 5 1/2                            | 145                      | 190 <sup>(b)</sup>        |
|                 | 14 | 43-5s | 5 5/8                            | 185 <sup>(c)</sup>       | 215 <sup>(c)</sup>        |
|                 | 1  | 75-5s | 6 7/8                            | 185                      | 215                       |
|                 | 19 | 97-7s | 7 3/4                            | 155 <sup>(b)</sup>       | 215 <sup>(c)</sup>        |
|                 | 2  | 13-71 | 8 3/8                            | 185 <sup>(c)</sup>       | 215 <sup>(c)</sup>        |
|                 | 2  | 20-7s | 8 5/8                            | 185 <sup>(c)</sup>       | 215 <sup>(c)</sup>        |
|                 | 24 | 44-7s | 9 5/8                            | 185 <sup>(c)</sup>       | 215 <sup>(c)</sup>        |
|                 | 2  | 44-71 | 9 5/8                            | 185 <sup>(c)</sup>       | 215 <sup>(c)</sup>        |
|                 | 2  | 67-91 | 10 1/2                           | 155 <sup>(b)</sup>       | 215 <sup>(c)</sup>        |
|                 | 3  | 14-91 | 12 3/8                           | 185 <sup>(c)</sup>       | 215 <sup>(c)</sup>        |

Source: APA Product Report PR-L306

# **CLT in Lateral Force Resisting Systems**

#### CLT Panels have a significant in-plane shear strength.

#### TABLE 3—REFERENCE DESIGN VALUES FOR IN-PLANE SHEAR OF THE STRUCTURLAM CROSSLAM® CLT PANELS<sup>1</sup>

| GRADE |                                            | LAYUP          | FACE LAMINATIO   | FACE LAMINATION ORIENTATION<br>(psi) |               |                                                                                  |                    |                                                      |                    |  |  |  |
|-------|--------------------------------------------|----------------|------------------|--------------------------------------|---------------|----------------------------------------------------------------------------------|--------------------|------------------------------------------------------|--------------------|--|--|--|
|       |                                            | DESIGNATION    | =2               | ۲ <sup>2</sup> ۲                     | able 3. Allow | wable In-Plane Shear (psi) for Nordic X-Lam <sup>(a)</sup> (for use in the U.S.) |                    |                                                      |                    |  |  |  |
|       |                                            | 105V           | 130              | 195                                  |               | Layup #                                                                          | Thickness          | Allowable In-Plane Shear Stress (psi), Fv, in-plane, |                    |  |  |  |
|       | 1/20141-1                                  | 175V           | 180              | 195 <sup>4</sup>                     | CLT Grade     |                                                                                  | I NICKNESS         | with Face Lamination Orientation of                  |                    |  |  |  |
|       | V2I01.1                                    | 245V           | 180 <sup>3</sup> | 195 <sup>4</sup>                     |               |                                                                                  | (11.)              | =                                                    | $\perp$            |  |  |  |
|       |                                            | 315V           | 180 <sup>3</sup> | 195 <sup>₄</sup>                     |               | 78-3s                                                                            | 3 1/8              | 105 <sup>(b)</sup>                                   | 130 <sup>(b)</sup> |  |  |  |
| 1     |                                            | 1              | <u> </u>         |                                      |               | 89-3s                                                                            | 3 1/2              | 75                                                   | 130 <sup>(b)</sup> |  |  |  |
|       | Source: ICC-ES ESR 3                       | 631            |                  |                                      |               | 105-3s                                                                           | 4 1/8              | 105                                                  | 130                |  |  |  |
|       |                                            |                |                  |                                      |               | 131-5s                                                                           | 5 1/8              | 125 <sup>(c)</sup>                                   | 150 <sup>(c)</sup> |  |  |  |
|       |                                            |                |                  |                                      | 140-4s        | 5 1/2                                                                            | 105 <sup>(b)</sup> | 130 <sup>(b)</sup>                                   |                    |  |  |  |
| 7     | 5 to 105 DOL                               | Allowable Edg  | wice Shee        | r                                    | <b>F1</b>     | 143-5s                                                                           | 5 5/8              | 105 <sup>(b)</sup>                                   | 150 <sup>(c)</sup> |  |  |  |
| ~1    | 5 10 195 <del>7</del> F 51                 | Allowable Lug  | ewise Shea       | 1                                    |               | 175-5s                                                                           | 6 7/8              | 125                                                  | 150                |  |  |  |
|       |                                            |                |                  |                                      |               | 197-7s                                                                           | 7 3/4              | 105 <sup>(b)</sup>                                   | 150 <sup>(c)</sup> |  |  |  |
|       |                                            |                |                  |                                      |               | 213-7I                                                                           | 8 3/8              | 125 <sup>(c)</sup>                                   | 150 <sup>(c)</sup> |  |  |  |
| ~9    | 00 to 2300 PL                              | .F per Inch of | I hickness.      |                                      |               | 220-7s                                                                           | 8 5/8              | 125 <sup>(c)</sup>                                   | 150 <sup>(c)</sup> |  |  |  |
|       |                                            | -              |                  |                                      |               | 244-7s                                                                           | 9 5/8              | 125 <sup>(c)</sup>                                   | 150 <sup>(c)</sup> |  |  |  |
|       |                                            |                |                  |                                      |               | 244-71                                                                           | 9 5/8              | 125 <sup>(c)</sup>                                   | 150 <sup>(c)</sup> |  |  |  |
| Cc    | Consult with the Manufacturers for Details |                |                  |                                      | 267-91        | 10 1/2                                                                           | 105 <sup>(b)</sup> | 150 <sup>(c)</sup>                                   |                    |  |  |  |
|       |                                            |                |                  |                                      |               | 314-91                                                                           | 12 3/8             | 125 <sup>(c)</sup>                                   | 150 <sup>(c)</sup> |  |  |  |

Source: APA Product Report PR-L306

Standard test method defined using ASTM D198

# Suggestions for CLT Diaphragm Design

Until CLT diaphragms are formally defined through a consensus standardization, following are <u>suggestions</u> when considering diaphragms with CLT through an alternative means and methods process

Basic Design Provisions

 CLT diaphragms shall be designed in accordance with the principles of mechanics using fastener and member strength in accordance with the provisions of the NDS.

(or proprietary connectors using 3<sup>rd</sup> party verified equivalence)

Calculations per NDS, not capacity tables in SDPWS

# **CLT Diaphragm Design Suggestions**

Basic Design Provisions

 Diaphragm shear connections at CLT panel edges and diaphragm boundary connections shall be designed to ensure that the connection capacity is limited by fastener yielding in accordance with Mode IIIs or Mode IV per NDS 12.3.1.

Design capacity of connection (ductile mode governing)

$$Z'_C \geq E_h$$

Applied Seismic Forces

# **Connection Yield Modes Per the NDS**



"m" denotes main member, "s" denotes side member

# **Conceptual Fastener Behavior**



# **Conceptual Fastener Behavior**

Well behaved seismic systems have ductile failure modes.



# **Connection Styles**



# **An Efficient Panel to Panel Connection**



Graphics: ASPECT Structural Engineers

# **Connection Styles**



Graphics: US CLT Handbook

# **Panel to Beam Connection Styles**



# **Fastener Vendor Design Support**

correspond to load duration factor C = 1.0.



Figure 1: Typical end elevation -- Single-surface spline with 5-ply CLT panels, 1-1/8-in. spline (plywood

# **Additional Resources – WoodWorks.org**

| woodwor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ks.org/publications-media/solution-papers/                                                                                                                                                                  |         | ٩ | C |   | ~ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---|---|---|---|
| 🖗 V<br>w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>VoodWorks</b> <sup>TM</sup><br>© PROJECT ASSISTANCE UPCOMING EVENTS CONTACT US                                                                                                                           | Search  |   |   | ٩ |   |
| EDUCATIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DN - GALLERY & AWARDS - DESIGN & TOOLS - PUBLICATIONS & MEDIA - WHY WOOD? - A                                                                                                                               | ABOUT - |   |   |   |   |
| Home > Publ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ications & Media > Wood Solution Papers                                                                                                                                                                     |         |   |   |   |   |
| Wood S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | olution Papers                                                                                                                                                                                              |         |   |   |   |   |
| P South                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mass Timber Cost and Design Optimization Checklists                                                                                                                                                         |         |   |   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Guides coordination between designers and builders (GCs, construction managers, estimators, fabricators, installers, etc.) as they are estimating and making cost-related decisions on mass timber projects |         |   |   |   |   |
| munitive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fire Design of Mass Timber Members: Code Applications, Construction Types and Fire Ratings                                                                                                                  |         |   |   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Focuses on how to meet fire-resistance requirements in the IBC, including calculation and testing-<br>based methods                                                                                         |         |   |   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Companion piece to WoodWorks' Inventory of Fire Resistance-Tested Mass Timber Assemblies                                                                                                                    |         |   |   |   |   |
| Constant of the second | Tall Wood Buildings in the 2021 IBC – Up to 18 Stories of Mass Timber                                                                                                                                       |         |   |   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Summarizes the changes as well as the background and technical research that supported their adoption.                                                                                                      |         |   |   |   |   |
| Section     Accurations and inform Tention     Numerican Accurations     Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Acoustics and Mass Timber: Room-to-Room Noise Control                                                                                                                                                       |         |   |   |   |   |
| ALTERNA I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Emphasizing room-to-room noise control, this paper covers key aspects of mass timber acoustical design. Companion piece to WoodWorks' Inventory of Mass Timber Acoustic Assemblies                          |         |   |   |   |   |

0

# Additional Resources – WoodWorks.org

|                                                                                                |                                                                                                                                                                                                                                               |                       | VoodV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Vorks™<br>ts council                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                             |                                                                                          |                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                | Fire Design of Mass<br>Code Applications, Construction Ty                                                                                                                                                                                     | Timber Mem            | oers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                             |                                                                                          |                                                                                                                                                                                                                                                    |
|                                                                                                | Richard McLain, PE, SE • Senior Technical Director • WoodWorks<br>Scott Breneman, PhD, PE, SE • Senior Technical Director • WoodWorks                                                                                                         | Inventory of F        | ire-Resi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | istance Test                                                                                                                                                                                                                                                                                                                                                                                                                                    | ed Mas                                                                                                                                                     | ss Timber As                                                                                                                                                                                                                                                                                                                                                                                        | semblies                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                           |                                                                                          |                                                                                                                                                                                                                                                    |
|                                                                                                | For many years, exposed heavy timber framing elements                                                                                                                                                                                         |                       | Resistance Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ests of Mass Timber Flo                                                                                                                                                                                                                                                                                                                                                                                                                         | oor / Roof Asse                                                                                                                                            | mblies                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                     | Į.                                                                                                                                                                                                                                                          |                                                                                          |                                                                                                                                                                                                                                                    |
|                                                                                                | Sec.                                                                                                                                                                                                                                          | WoodWorks"            | LT Grade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ceiling Protection                                                                                                                                                                                                                                                                                                                                                                                                                              | Panel Connection                                                                                                                                           | Floor Tonning                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                     | Fire Resistance                                                                                                                                                                                                                                             | Source                                                                                   | Testing Lab                                                                                                                                                                                                                                        |
|                                                                                                |                                                                                                                                                                                                                                               | VVOOUVVOIRS           | or x Minor Grade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.2 0.0000 0.0000000                                                                                                                                                                                                                                                                                                                                                                                                                            | Tanti Connection                                                                                                                                           | rioor Topping                                                                                                                                                                                                                                                                                                                                                                                       | Load Rating                                                                                                                                                                                                                                                                                                                                         | (Hours)                                                                                                                                                                                                                                                     | Jource                                                                                   | resting Lab                                                                                                                                                                                                                                        |
|                                                                                                |                                                                                                                                                                                                                                               | WOOD PRODUCTS COUNCIL | 550 Fb 1.5E MSR<br>x SPF #3                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 layers 1/2" Type X gypsum                                                                                                                                                                                                                                                                                                                                                                                                                     | Half-Lap                                                                                                                                                   | None                                                                                                                                                                                                                                                                                                                                                                                                | Reduced<br>36% Moment Capacity                                                                                                                                                                                                                                                                                                                      | (Hours)                                                                                                                                                                                                                                                     | l (Test l)                                                                               | NRC Fire Laborator                                                                                                                                                                                                                                 |
|                                                                                                |                                                                                                                                                                                                                                               | WOOD PRODUCTS COUNCIL | 550 Fb 1.5E MSR<br>x SPF #3<br>1/#2 x SPF #1/#2                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 layers 1/2" Type X gypsum<br>1 layer 5/8" Type X gypsum                                                                                                                                                                                                                                                                                                                                                                                       | Half-Lap<br>Half-Lap                                                                                                                                       | None None                                                                                                                                                                                                                                                                                                                                                                                           | Load Rating<br>Reduced<br>36% Moment Capacity<br>Reduced<br>75% Moment Capacity                                                                                                                                                                                                                                                                     | (Hours)                                                                                                                                                                                                                                                     | 1 (Test 1)                                                                               | NRC Fire Laborator                                                                                                                                                                                                                                 |
| lass Ti                                                                                        | mber Cost and                                                                                                                                                                                                                                 | WOOD PRODUCTS COUNCIL | 550 Fb 1.5E MSR<br>x SPF #3<br>1/#2 x SPF #1/#2<br>E1                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 layers 1/2" Type X gypsum<br>1 layer 5/8" Type X gypsum<br>None                                                                                                                                                                                                                                                                                                                                                                               | Half-Lap<br>Half-Lap<br>Topside Spline                                                                                                                     | None 2 staggered layers of 1/2" cement boards                                                                                                                                                                                                                                                                                                                                                       | Load Rating<br>Reduced<br>36% Moment Capacity<br>Reduced<br>75% Moment Capacity<br>Loaded,<br>See Manufacturer                                                                                                                                                                                                                                      | 1<br>1<br>2                                                                                                                                                                                                                                                 | 1 (Test 1)<br>1 (Test 5)<br>2                                                            | NRC Fire Laborator<br>NRC Fire Laborator<br>NRC Fire Laborator<br>March 2016                                                                                                                                                                       |
| lass Ti                                                                                        | mber Cost and                                                                                                                                                                                                                                 | WOOD PRODUCTS COUNCIL | 550 Fb 1.5E MSR<br>x SPF #3<br>1/#2 x SPF #1/#2<br>E1<br>E1                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 layers 1/2" Type X gypsum<br>1 layer 5/8" Type X gypsum<br>None<br>1 layer of 5/8" Type X gypsum under Z-<br>channels and furing atrips with 3 5/8"<br>fiber/ass hatr                                                                                                                                                                                                                                                                         | Half-Lap<br>Half-Lap<br>Topside Spline<br>Topside Spline                                                                                                   | None None 2 staggered layers of 1/2* cement boards                                                                                                                                                                                                                                                                                                                                                  | Load Rating<br>Reduced<br>36% Moment Capacity<br>Reduced<br>75% Moment Capacity<br>Loaded,<br>See Manufacturer<br>Loaded,<br>See Manufacturer                                                                                                                                                                                                       | Actived<br>(Hours)           1           1           2           2           2                                                                                                                                                                              | 1 (Test 1)<br>1 (Test 5)<br>2<br>5                                                       | NRC Fire Laborato<br>NRC Fire Laborato<br>NRC Fire Laborator<br>March 2016<br>NRC Fire Laborator<br>NRC Fire Laborator<br>NRC Fire Laborator                                                                                                       |
| lass Til<br>esign (                                                                            | mber Cost and<br>Optimization Checklists                                                                                                                                                                                                      | WOOD PRODUCTS COUNCIL | 550 Fb 1.5E MSR<br>x SPF #3<br>1/#2 x SPF #1/#2<br>E1<br>E1<br>E1                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 layers 1/2" Type X gypsum<br>1 layer 5/8" Type X gypsum<br>None<br>1 layer of 5/8" Type X gypsum under Z-<br>channels and furting strips with 3 5/8"<br>fibergiass batts<br>None                                                                                                                                                                                                                                                              | Half-Lap<br>Half-Lap<br>Topside Spline<br>Topside Spline<br>Topside Spline                                                                                 | None<br>None<br>2 staggered layers of 1/2" cement boards<br>2 staggered layers of 1/2" cement boards<br>3/4 in. proprietary gyperete over Maxxon<br>acoustical mat                                                                                                                                                                                                                                  | Load Rating<br>Reduced<br>36% Moment Capacity<br>Reduced<br>75% Moment Capacity<br>Loaded,<br>See Manufacturer<br>Loaded,<br>See Manufacturer<br>Reduced<br>50% Moment Capacity                                                                                                                                                                     | Actived<br>(Hours)           1           1           2           2           1.5                                                                                                                                                                            | 1 (Test 1)<br>1 (Test 5)<br>2<br>5<br>3                                                  | NRC Fire Laborato<br>NRC Fire Laborato<br>NRC Fire Laborato<br>March 2016<br>NRC Fire Laborator<br>Nov 2014<br>UL                                                                                                                                  |
| lass Til<br>Iesign (                                                                           | mber Cost and<br>Optimization Checklists                                                                                                                                                                                                      | WOOD PRODUCTS COUNCIL | 550 Fb 1.5E MSR<br>x SPF #3<br>1/#2 x SPF #1/#2<br>E1<br>E1<br>E1<br>E1<br>E1                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 layers 1/2" Type X gypsum<br>1 layer 5/8" Type X gypsum<br>None<br>1 layer of 5/8" Type X gypsum ander Z-<br>channels and farring strips with 3 5/8"<br>fiberglass batts<br>None<br>1 layer 5/8" normal gypsum                                                                                                                                                                                                                                | Half-Lap<br>Half-Lap<br>Topside Spline<br>Topside Spline<br>Topside Spline                                                                                 | None     None     None     Staggered layers of 1/2" cement boards     ataggered layers of 1/2" cement boards     3/4 in. proprietary gyperete over Maxxon     acoustical mat     acoustical mat                                                                                                                                                                                                     | Load Rating<br>Reduced<br>36% Moment Capacity<br>Reduced<br>75% Moment Capacity<br>Loaded,<br>See Manufacturer<br>Loaded,<br>See Manufacturer<br>Reduced<br>50% Moment Capacity<br>Reduced<br>50% Moment Capacity                                                                                                                                   | Actived<br>(Hours)           1           1           2           2           1.5           2                                                                                                                                                                | 1 (Test 1)<br>1 (Test 5)<br>2<br>5<br>3<br>4                                             | NRC Fire Laborator<br>NRC Fire Laborator<br>MRC Fire Laborator<br>March 2016<br>NRC Fire Laborator<br>NRC Fire Laborator<br>NRC Fire Laborator<br>UL<br>UL                                                                                         |
| lass Ti<br>esign (                                                                             | mber Cost and<br>Optimization Checklists                                                                                                                                                                                                      | WOOD PRODUCTS COUNCIL | 550 Fb 1.5E MSR<br>x SPF #3<br>1/#2 x SPF #1/#2<br>E1<br>E1<br>E1<br>E1<br>E1<br>E1                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 layers 1/2" Type X gypsum<br>1 layer 5/8" Type X gypsum<br>None<br>1 layer of 5/8" Type X gypsum under Z-<br>channels and furring strips with 3 5/8"<br>fiberglass batts<br>None<br>1 layer 5/8" normal gypsum<br>1 layer 5/8" normal gypsum<br>1 layer 5/8" Losiss with 3 1/2"<br>Mineral Wool bevece Joints                                                                                                                                 | Half-Lap<br>Half-Lap<br>Topside Spline<br>Topside Spline<br>Topside Spline<br>Topside Spline<br>Half-Lap                                                   | None None 2 staggered layers of 1/2* cement boards 3/4 in. proprietary gyperete over Maxxon acoustical mat 3/4 in. proprietary gyperete over Maxxon acoustical mat None None                                                                                                                                                                                                                        | Load Rating<br>Reduced<br>36% Moment Capacity<br>Reduced<br>75% Moment Capacity<br>Loaded,<br>See Manufacturer<br>Reduced<br>50% Moment Capacity<br>Reduced<br>50% Moment Capacity<br>Loaded,<br>See Manufacturer                                                                                                                                   | Address           1           1           2           2           1.5           2           2                                                                                                                                                               | 1 (Test 1)<br>1 (Test 5)<br>2<br>5<br>3<br>4<br>21                                       | NRC Fire Laborato<br>NRC Fire Laborato<br>NRC Fire Laborato<br>March 2016<br>NRC Fire Laborato<br>NRC Fire Laborato<br>NRC Fire Laborato<br>UL<br>UL<br>UL<br>Intertek<br>8/24/2012                                                                |
| lass Ti<br>esign (                                                                             | mber Cost and<br>Optimization Checklists                                                                                                                                                                                                      | WOOD PRODUCTS COUNCIL | Fr X Minor Grade           550 Fb 1.5E MSR           x SPF #3           1/#2 x SPF #1/#2           E1                                                                                                                                                       | 2 layers 1/2" Type X gypsum<br>1 layer 5/8" Type X gypsum<br>None<br>1 layer of 5/8" Type X gypsum under Z-<br>channels and furring strips with 3 5/8"<br>fiberglass batts<br>None<br>1 layer 5/8" normal gypsum<br>1 layer 5/8" Type X gyp under Resilient<br>Channel under 7 7/8" 1-Joins with 3 1/2"<br>Mineral Wool beween Joints<br>None                                                                                                   | Half-Lap<br>Half-Lap<br>Topside Spline<br>Topside Spline<br>Topside Spline<br>Half-Lap<br>Half-Lap                                                         | None           None           2 staggered layers of 1/2" cement boards           2 staggered layers of 1/2" cement boards           3/4 in. proprietary gyperete over Maxxon acoustical mat           3/4 in. proprietary gyperete over Maxxon acoustical mat           3/4 in. proprietary gyperete over Maxxon acoustical mat           1-1/2" Maxxon Cyp-Grete 2000 over Maxxon Reinforcing Mesh | Load Rating<br>Reduced<br>36% Moment Capacity<br>Reduced<br>75% Moment Capacity<br>Loaded,<br>See Manufacturer<br>Reduced<br>50% Moment Capacity<br>Loaded,<br>See Manufacturer<br>Loaded,<br>See Manufacturer                                                                                                                                      | Address           1           1           2           2           1.5           2           2           2.5                                                                                                                                                 | 1 (Test 1)<br>1 (Test 5)<br>2<br>5<br>3<br>4<br>21<br>6                                  | NRC Fire Laborato<br>NRC Fire Laborato<br>NRC Fire Laborato<br>March 2016<br>NRC Fire Laborato<br>Nov 2014<br>UL<br>UL<br>UL<br>Intertek<br>8/24/2012<br>Intertek, 2/22/2014                                                                       |
| Aass Ti<br>Design (<br>DoodWorks has<br>the design and                                         | mber Cost and<br>Optimization Checklists<br>a developed the following checklists to assist<br>d cost optimization of mass timber projects.                                                                                                    | WOOD PRODUCTS COUNCIL | 550 Fb 1.5E MSR<br>x SPF #3<br>1/#2 x SPF #1/#2<br>E1<br>E1<br>E1<br>E1<br>E1<br>E1<br>E1<br>E1<br>E1<br>E1<br>V1                                                                                                                                                                                                                                                                                                                                                                                     | 2 layers 1/2" Type X gypsum<br>1 layer 5/8" Type X gypsum<br>None<br>1 layer of 5/8" Type X gypsum under Z-<br>channels and farring strips with 3 5/8"<br>fiberglass batts<br>None<br>1 layer 5/8" normal gypsum<br>1 layer 5/8" normal gypsum<br>1 layer 5/8" normal gypsum<br>1 layer 5/8" None<br>None                                                                                                                                       | Half-Lap<br>Half-Lap<br>Topside Spline<br>Topside Spline<br>Topside Spline<br>Topside Spline<br>Half-Lap<br>Topside Spline<br>Half-Lap &<br>Topside Spline | None<br>None<br>2 staggered layers of 1/2" cement boards<br>2 staggered layers of 1/2" cement boards<br>3/4 in. proprietary gyperete over Maxxon<br>acoustical mat<br>3/4 in. proprietary gyperete over Maxxon<br>acoustical mat or proprietary sound board<br>None<br>1-1/2" Maxxon Cyp-Grete 2000 over<br>Maxxon Reinforcing Mesh<br>2" gypsum topping                                            | Load Rating<br>Reduced<br>36% Moment Capacity<br>Reduced<br>75% Moment Capacity<br>Loaded,<br>See Manufacturer<br>Loaded,<br>See Manufacturer<br>50% Moment Capacity<br>Reduced<br>50% Moment Capacity<br>Loaded,<br>See Manufacturer<br>Loaded,<br>See Manufacturer                                                                                | Address           1           1           2           2           1.5           2           2.5           2                                                                                                                                                 | 1 (Test 1)<br>1 (Test 5)<br>2<br>5<br>3<br>4<br>21<br>6<br>7                             | NRC Fire Laborator<br>NRC Fire Laborator<br>MRC Fire Laborator<br>March 2016<br>NRC Fire Laborator<br>Nov 2014<br>UL<br>UL<br>UL<br>Intertek<br>8/24/2012<br>Intertek, 2/22/2016<br>SwRI (May 2016)                                                |
| Aass Til<br>Oesign (<br>DodWorks has<br>the design and<br>e design optimi                      | mber Cost and<br>Optimization Checklists<br>a developed the following checklists to assist<br>d cost optimization of mass timber projects.<br><i>ization</i> checklists are intended for building                                             | WOOD PRODUCTS COUNCIL | 550 Fb 1.5E MSR<br>x SPF #3<br>1/#2 x SPF #1/#2<br>E1<br>E1<br>E1<br>E1<br>E1<br>E1<br>E1<br>E1<br>E1<br>E1<br>E1<br>S 2100 x SPF #2<br>V1<br>1950 Fb MSR<br>x SPF #3                                                                                                                                                                                                                                                                                                                                 | 2 layers 1/2" Type X gypsum<br>1 layer 5/8" Type X gypsum<br>None<br>1 layer of 5/8" Type X gypsum under Z-<br>channels and furring strips with 3 5/8"<br>fiberglass batts<br>None<br>1 layer 5/8" normal gypsum<br>1 layer 5/8" normal gypsum<br>1 layer 5/8" hormal gypsum<br>1 layer 5/8" hormal gypsum<br>None<br>None<br>None<br>None                                                                                                      | Half-Lap<br>Half-Lap<br>Topside Spline<br>Topside Spline<br>Topside Spline<br>Topside Spline<br>Half-Lap<br>Half-Lap &<br>Topside Spline<br>Half-Lap &     | None None 2 staggered layers of 1/2" cement boards 2 staggered layers of 1/2" cement boards 3/4 in. proprietary gyperete over Maxxon acoustical mat 3/4 in. proprietary gyperete over Maxxon acoustical mat or proprietary sound board None 1-1/2" Maxxon Cyp-Grete 2000 over Maxxon Reinforcing Mesh 2" gypsum topping None                                                                        | Load Rating<br>Reduced<br>36% Moment Capacity<br>Reduced<br>75% Moment Capacity<br>Loaded,<br>See Manufacturer<br>Reduced<br>50% Moment Capacity<br>Reduced<br>50% Moment Capacity<br>Loaded,<br>See Manufacturer<br>Loaded,<br>See Manufacturer<br>Loaded,<br>See Manufacturer<br>Reduced<br>50% Moment Capacity                                   | Address           1           1           2           2           1.5           2           2.5           2           1.5                                                                                                                                   | 1 (Test 1)<br>1 (Test 5)<br>2<br>5<br>3<br>4<br>21<br>6<br>7<br>1 (Test 3)               | NRC Fire Laborato<br>NRC Fire Laborato<br>NRC Fire Laborato<br>March 2016<br>NRC Fire Laborato<br>Nov 2014<br>UL<br>UL<br>UL<br>Intertek<br>8/24/2012<br>Intertek, 2/22/2016<br>SwRI (May 2016)<br>NRC Fire Laborato                               |
| Aass Ti<br>Design (<br>oodWorks has<br>the design and<br>e design optimit<br>signers (archited | mber Cost and<br>Optimization Checklists<br>developed the following checklists to assist<br>d cost optimization of mass timber projects.<br><i>ization</i> checklists are intended for building<br>cts and engineers), but many of the topics | WOOD PRODUCTS COUNCIL | br x Minor Grade         550 Fb 1.5E MSR         x SPF #3         1/#2 x SPF #1/#2         E1         E3         E100 x SPF #2         V1         1950 Fb MSR         x SPF #3         1/#2 x SPF #1/#2 | 2 layers 1/2" Type X gypsum<br>1 layer 5/8" Type X gypsum<br>None<br>1 layer of 5/8" Type X gypsum under Z-<br>channels and furing strips wih 3 5/8"<br>fiberglass batts<br>None<br>1 layer 5/8" normal gypsum<br>1 layer 5/8" normal gypsum<br>1 layer 5/8" hormal gypsum<br>1 layer 5/8" Agy under Resilient<br>Channel under 7 7/8" 1-Joists with 3 1/2"<br>Mineral Wool beween Joists<br>None<br>None<br>None<br>1 layer 5/8" Type X gypsum | Half-Lap<br>Half-Lap<br>Topside Spline<br>Topside Spline<br>Topside Spline<br>Topside Spline<br>Half-Lap<br>Half-Lap &<br>Topside Spline<br>Half-Lap       | None None Staggered layers of 1/2" cement boards Staggered layers of 1/2" cement boards 3/4 in: proprietary gyperete over Maxxon acoustical mat 3/4 in. proprietary gyperete over Maxxon acoustical mat or proprietary sound board None 1-1/2" Maxxon Cyp-Grete 2000 over Maxxon Cyp-Grete 2000 over Maxxon Reinforcing Mesh 2" gypsum topping None None None                                       | Load Rating<br>Reduced<br>36% Moment Capacity<br>Reduced<br>75% Moment Capacity<br>Loaded,<br>See Manufacturer<br>Reduced<br>50% Moment Capacity<br>Loaded,<br>See Manufacturer<br>Loaded,<br>See Manufacturer<br>Loaded,<br>See Manufacturer<br>Loaded,<br>See Manufacturer<br>Reduced<br>S9% Moment Capacity<br>Unreduced<br>101% Moment Capacity | Address           1           1           2           2           1.5           2           2.5           2           1.5           2           1.5           2           1.5           2           1.5           2           2.5           2           1.5 | 1 (Test 1)<br>1 (Test 5)<br>2<br>5<br>3<br>4<br>21<br>6<br>7<br>1 (Test 3)<br>1 (Test 3) | NRC Fire Laborato<br>NRC Fire Laborato<br>MRC Fire Laborato<br>March 2016<br>NRC Fire Laborato<br>NRC Fire Laborato<br>UL<br>UL<br>UL<br>Intertek<br>8/24/2012<br>Intertek, 2/22/2016<br>SwRI (May 2016)<br>NRC Fire Laborato<br>NRC Fire Laborato |

# **Additional Resources – WoodWorks.org**



# **Copyright Materials**

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

© The Wood Products Council 2019





# **Questions?**

### Scott Breneman, PhD, PE, SE Scott.Breneman@woodworks.org

Links to online resources at <u>www.woodworks.org</u>: