Wood Construction in New England: A Firsthand Look

Presented by Marc Rivard, PE, SE Regional Director MA, CT, ME, NH, RI, VT

WoodWorks September 22, 2022 WOODWORKS

COUNCI

Resources

New WOOD SOLUTION PAPER

CLT Diaphragm Design for Wind and Seismic Resistance Using SDPWS 2021 and ASCE 7-22

New CASE STUDIES

Adidas East Village Expansion

Innovative mass timber designs meet ambitious construction timeline

Thomas Logan

Wood-frame urban podium project fills need for affordable downtown housing

Visit woodworks.org/publications-media

Upcoming Events

Mass Timber and the Future of Urban Multi-Family Development | October 12 1.0 AIA/CES HSW LUs, 1.0 PDH credit, 0.10 ICC credit

Fire and Structural Analysis for Mass Timber Buildings | November 9 1.5 AIA/CES HSW LUs, 1.5 PDH credits, 0.15 ICC credits

Mass Timber Business Case Studies

Real financial information on real deals

- Prepared by WoodWorks and Conrad Investment Management
- Include qualitative influences + quantitative data to examine investment success

PROPERTY SUB-TYPES:

For-Rent Institutional Housing • Institutional Offices • Industrial Buildings • Redevelopment/Additions • Purpose-Built Owner/Occupied (Student Housing)

« Scan the code to download the current package.

New for GCs and installers: U.S. Mass Timber Construction Manual

Download free at woodworks.org

Nominations Open

Visit woodworks.org/nominate

2023 Wood Design Awards

DEADLINE: OCT. 14, 2022

Design Professionals: **One-on-One Support & Assistance**

PROJECT SUPPORT FIELD DIVISION

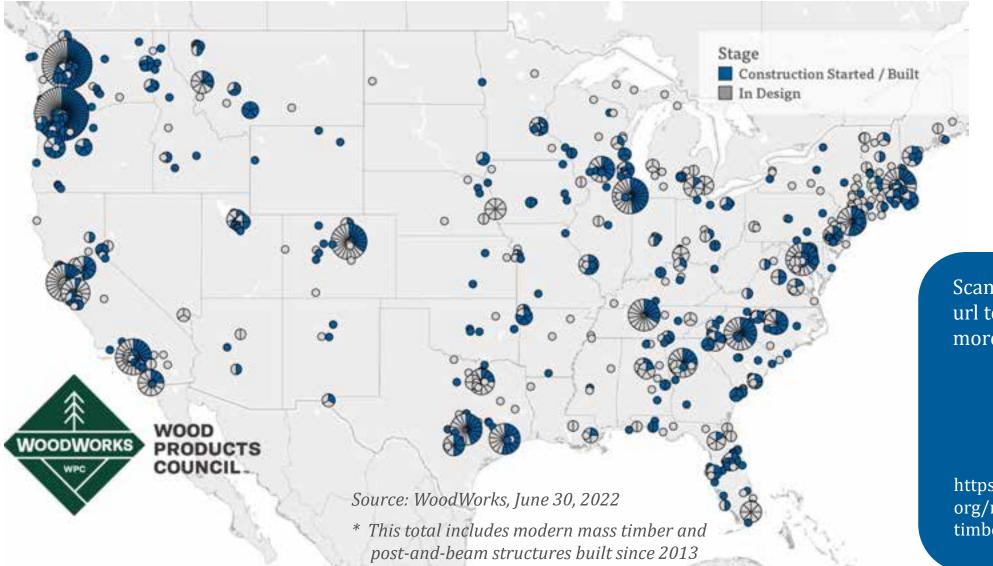
Meet the Help Desk

Need technical assistance on a project? Email: help@woodworks.org

NOW HIRING

REGIONAL DIRECTOR - CHICAGO, IL OR MINNEAPOLIS, MN METRO AREA

TECHNICAL DIRECTOR - REMOTE, US


REGIONAL DIRECTOR – SEATTLE, WA METRO AREA

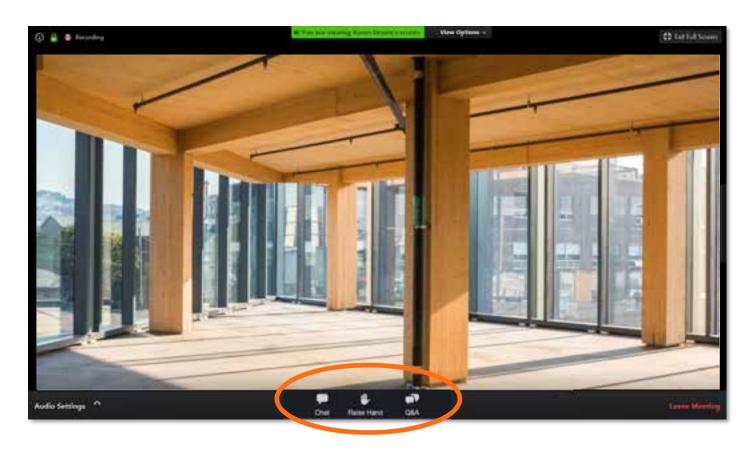
Current State of Mass Timber Projects

As of June 2022, in the US, **1,502** multi-family, commercial, or institutional projects have been constructed with, or are in design with, mass timber.

Scan this code or use the url to find the map and more details online.

https://www.woodworks. org/resources/u-s-masstimber-projects/

Continuing Education Credits


- Participants will receive a certificate of completion via email
- AIA credits will be processed by WoodWorks

• To receive credit and a certificate, attendees must stay on for the duration of the seminar.

Ask Questions through the Q&A Box

Submit questions in the Q&A box at the bottom of your screen as they come up in the presentations. We will get to as many questions as possible.

"The Wood Products Council" is a Registered Provider with The American Institute of Architects Continuing Education Systems (AIA/CES), Provider #G516.

Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request.

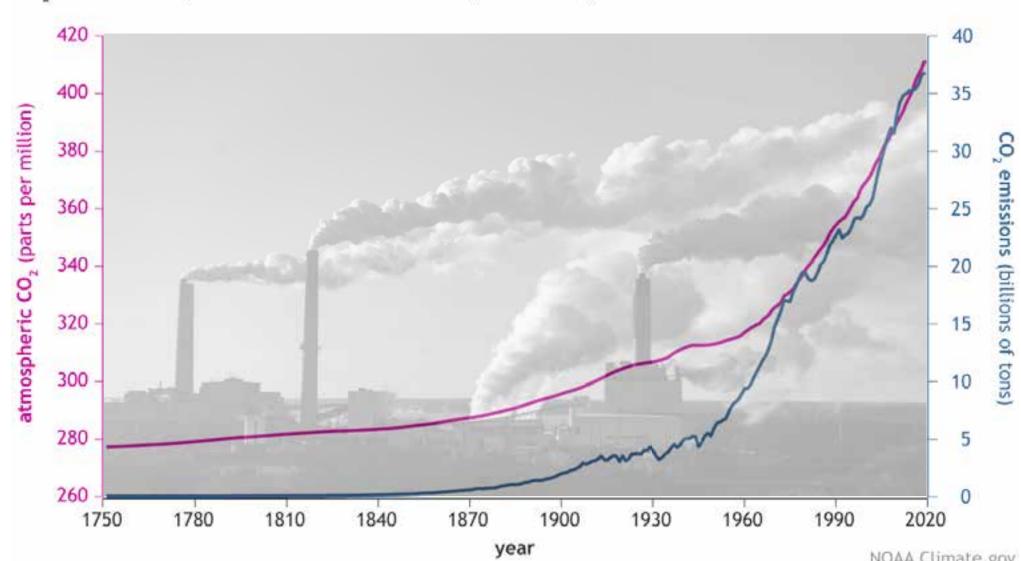
This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Learning Objectives

- 1. Review carbon basics and how material choice is related to sustainability.
- 2. Learn how wood products can be beneficial for the environment.
- 3. Identify mass timber products available in North America and consider how they can be used under current building codes and standards.
- 4. Discuss benefits of using mass timber products, including structural versatility, prefabrication, lighter carbon footprint, and reduced labor costs.

Climate Change Background


Rising Temperatures and Melting Glaciers

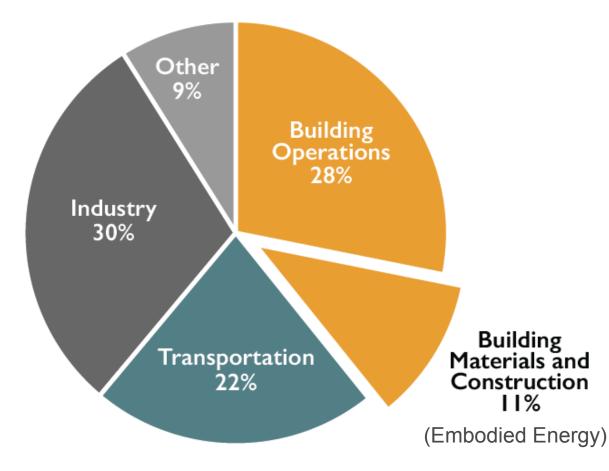
From Rising Waters to Catastrophic Wildfires

Carbon & Greenhouse Gas Emissions

CO₂ in the atmosphere and annual emissions (1750-2019)

NOAA Climate.gov Data: NOAA, ETHZ, Our World in Data

Global Population Increase


2050 = 9.9 billion people

2020 = 7.8 billion people

Source: www.prb.org

New Buildings & Greenhouse Gases

Global CO₂ Emissions by Sector

Buildings generate nearly 40% of annual global greenhouse gas emissions (*building operations* + *embodied energy*)

Embodied energy: **11%** Concrete, iron, steel **~9%**

Source: © 2018 2030, Inc. / Architecture 2030. All Rights Reserved. Data Sources: UN Environment Global Status Report 2017; EIA International Energy Outlook 2017

Image: Architecture 2030

US Climate Policy

In the absence of strong Federal Policy, states and municipalities have adopted their own regulations

- CA: Buy Clean California first US law to address embodied carbon in construction materials
 - GWP must not exceed set limits
 - Currently targets structural steel, steel rebar, glass, and mineral wool

Federal Policy is advancing under the Biden Administration:

- Rejoining the Paris Agreement
- Several first-week executive actions aimed at advancing zero-carbon technologies, increasing reforestation and carbon sequestration

Measuring Greenhouse Gases

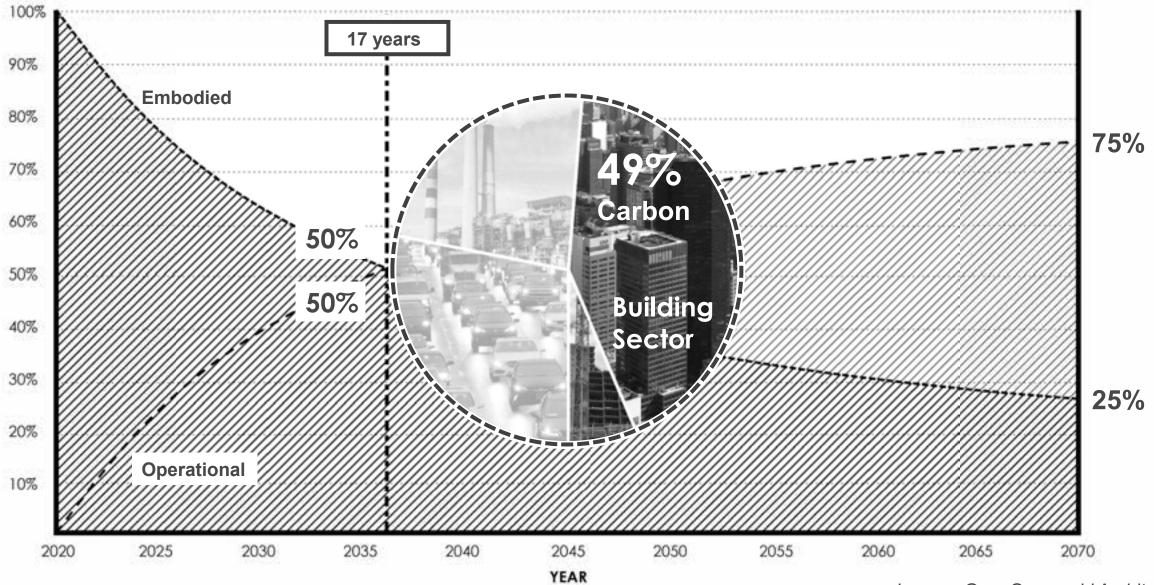
Global Warming Potential (GWP) was developed to allow comparisons of the global warming impacts of different gases. Specifically, it is a measure of how much energy the emissions of 1 ton of a gas will absorb over a given period of time, relative to the emissions of 1 ton of carbon dioxide (CO_2). The time period usually used for GWP's is 100 years. (EPA)

	GWP
Carbon Dioxide (CO ₂)	1
Methane (CH ₄)	28-36
Nitrous Oxide (N ₂ O)	265-298
Fluorinated Gases	Thousands to Tens of Thousands

Carbon Dioxide Equivalents (CO_{2eq}) = International standard practice is to express greenhouse gases in terms of CO_2 equivalents

Carbon vs CO₂

1 ton Carbon \neq 1 ton CO₂

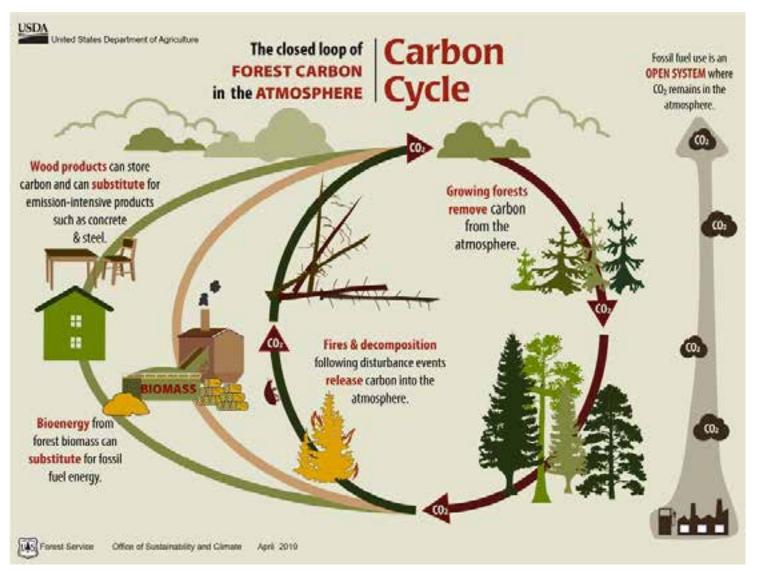

1 ton Carbon = (44/12=) **<u>3.67</u> tons CO₂**

Carbon Terms

- **Embodied Carbon**: Carbon emissions associated with the entire life cycle of the building including harvesting, mining, manufacturing, transporting, installing, maintaining, decommissioning, and disposing/reuse of a material or product
- **Operational Carbon**: Carbon emissions associated with operating a building including power, heat, and cooling

Embodied vs. Operational Energy Traditional Non-Wood Building

% Energy


Image: Gray Organschi Architecture

How Does Wood Fit in?

Carbon Benefits of Wood

- Less energy intensive to manufacture than steel or concrete
- Less fossil fuel consumed
 during manufacture
- Avoid process emissions
- Carbon storage in forests
 and promote forest health
- Extended carbon storage in products

More Carbon Terms

Carbon Sequestration: The process by which CO_2 is **removed** from the atmosphere and deposited in solid or liquid form in oceans, living organisms, or land.

Carbon Storage: Carbon is **stored as a solid** in the form of plant material: roots, trunks, branches, stems, and leaves. It can continue to be stored in **wood building materials**.

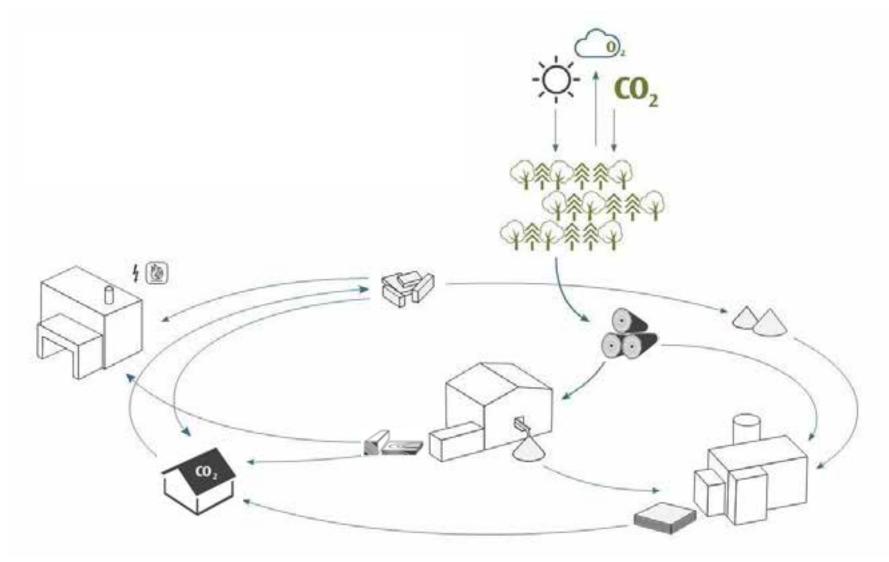
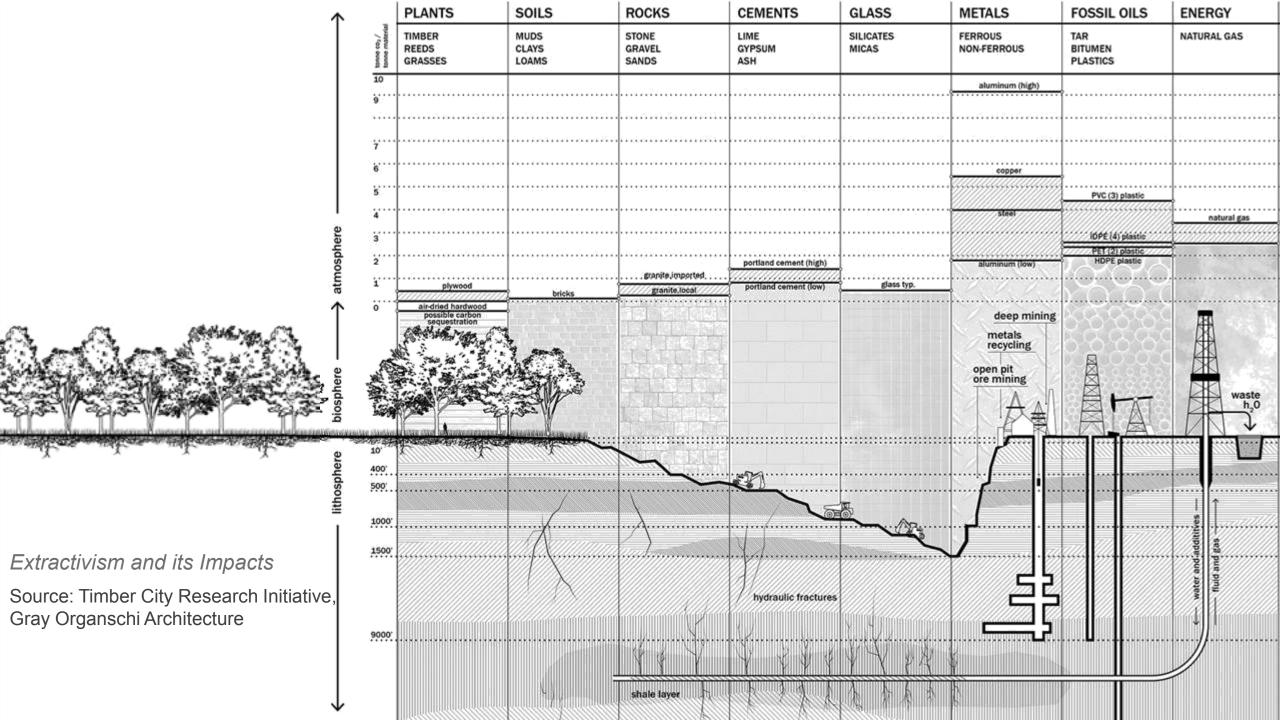


Image: Dovetail Partners, Inc.


Carbon Storage Wood ≈ 50% Carbon (dry weight)

Carbon Cycle Renewable Resource | Carbon Sequestration

Source: Building with Wood – Proactive Climate Protection, Dovetail Partners, Inc.

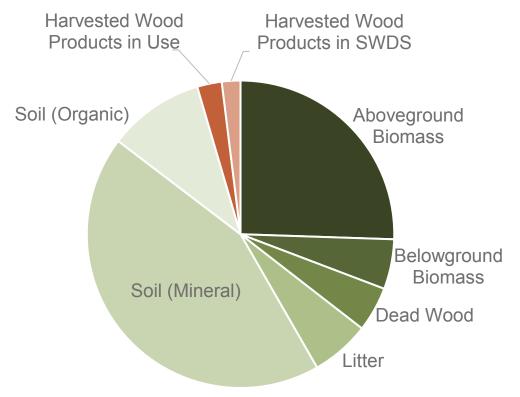
Specifics of Carbon Storage

Where is Carbon Stored?

Harvested Wood Pools

- Harvested Wood Products
- Solid Waste Disposal Sites

Forest Pools


- Aboveground Biomass
- Belowground Biomass
- Dead Wood
- Litter or Forest Floor
- Soil Organic Carbon

Source: https://usaforests.org/

Carbon Storage in Harvested Wood Products

As of 2019, the carbon stock for Harvested **Wood Products in Use** in the conterminous 48 states is estimated at **1,521 Million Metric Tons**.

Carbon Stocks in Forest Land and Harvested Wood Pools, 2019

https://www.epa.gov/sites/production/files/2020-04/documents/us-ghg-inventory-2020-main-text.pdf

PA 430.R.20.00 Inventory of **U.S. Greenhouse Gas Emissions and Sinks** 1990-2018

Table 6-12: Forest Area (1,000 ha) and C Stocks in *Forest Land Remaining Forest Land* and Harvested Wood Pools (MMT C)

	1990	2005	2015	2016	2017	2018	2019
Forest Area (1,000 ha)	279,748	279,749	280,041	280,041	279,893	279,787	279,682
Carbon Pools (MMT C)							
Forest Ecosystem	51,527	53,886	55,431	55,592	55,746	55,897	56,051
Aboveground Biomass	11,833	13,484	14,561	14,672	14,780	14,884	14,989
Belowground Biomass	2,350	2,734	2,982	3,008	3,033	3,056	3,081
Dead Wood	2,120	2,454	2,683	2,707	2,731	2,753	2,777
Litter	3,662	3,647	3,638	3,639	3,639	3,640	3,641
Soil (Mineral)	25,636	25,639	25,640	25,640	25,637	25,637	25,638
Soil (Organic)	5,927	5,929	5,927	5,927	5,926	5,926	5,926
Harvested Wood	1,895	2,353	2,567	2,591	2,616	2,642	2,669
Products in Use	1,249	1,447	1,490	1,497	1,505	1,513	1,521
SWDS	646	906	1,076	1,094	1,112	1,129	1,148
Total C Stock	53,423	56,239	57,998	58,183	58,362	58,539	58,720

Notes: Forest area and C stock estimates include all Forest Land Remaining Forest Land in the conterminous 48 states

https://www.epa.gov/sites/production/files/2020-04/documents/us-ghg-inventory-2020-main-text.pdf

Harvested Wood Products

- Solid sawn wood products have the lowest level of embodied energy.
- Wood products requiring more processing steps (for example, plywood, engineered wood products, flake-based products) require more energy to produce but still require significantly less energy than their non-wood counterparts.

Image: Weyerhaeuser

Image: LP Building Solutions

Source: USFPL Wood Handbook; Wood as a Sustainable Building Material

Image: Structurecraft

Image: Georgia-Pacific

Tools to Evaluate Carbon Impact

Whole Building Life Cycle Analysis (WBLCA)

"Evaluation of the inputs, outputs, and potential environmental impacts... throughout its life cycle"

- WBLCA covers all stages in the life cycle of a building and its components
- Several tools available; various methodologies
- <u>https://www.thinkwood.com/education/calculate-</u> wood-carbon-footprint
- <u>https://www.thinkwood.com/blog/understanding-</u> <u>the-role-of-embodied-carbon-in-climate-smart-</u> <u>buildings</u>

WoodWorks Carbon Calculator

- Available at woodworks.org
- Estimates total wood mass in a building
- Relays **estimated** carbon impacts:
 - Amount of **carbon stored** in wood
 - Amount of greenhouse gas emissions avoided by choosing wood over a non-wood material

Volume of wood used: 208,320 cubic feet

Carbon stored in the wood: 4,466 metric tons of CO₂

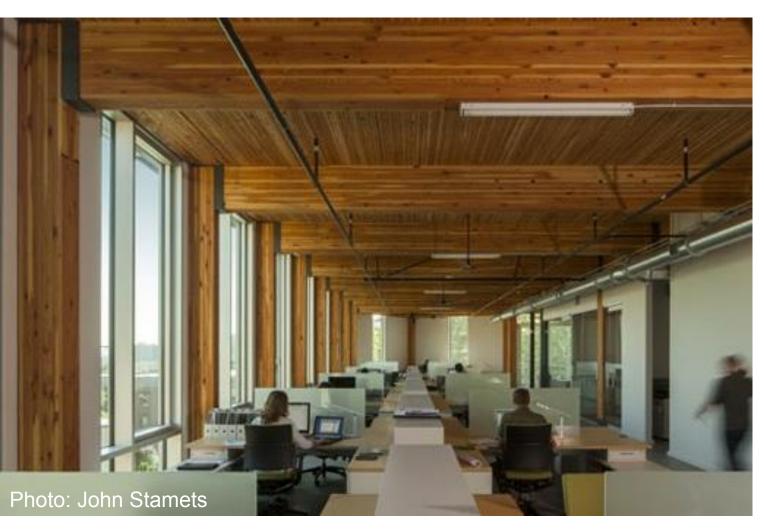
Avoided greenhouse gas emissions: 9,492 metric tons of CO₂

TOTAL POTENTIAL CARBON BENEFIT: 13,958 metric tons of CO₂

EQUIVALENT TO:

2,666 cars off the road for a year

Energy to operate a home for 1,186 years



http://www.woodworks.org/carbon-calculator-download-form/

Case Studies

Bullitt Center Seattle, WA

Architect: The Miller Hull Partnership Structural Engineer: DCI Engineers

IV (HT)

- Designed for a 250-year life span
- Met criteria for Living
 Building Challenge 2.0
- Rooftop photovoltaic cells generate electricity for the building; building recycles its own water
- 6 over 2 design; 52,000 sf
- Heavy timber frame: glulam and NLT panels

Bullitt Center Seattle, WA

Volume of wood used: 24,526 cubic feet

U.S. and Canadian forests grow this much wood in: 2 minutes

Carbon stored in the wood: 545 metric tons of CO₂

Avoided greenhouse gas emissions: 1,158 metric tons of CO₂

TOTAL POTENTIAL CARBON BENEFIT: 1,703 metric tons of CO₂

EQUIVALENT TO:

325 cars off the road for a year

Energy to operate a home for 145 years

CASE STUD

BULLITT CENTER

Wood Shines in Sustainable 'Show & Tell'

WoodWorks

Bullitt Center's heavy timber frame teaches environmental and structural lessons

Bullitt Center Seattle, WA

Volume of wood used: 24,526 cubic feet

U.S. and Canadian forests grow this much wood in: 2 minutes

Carbon stored in the wood: 545 metric tons of CO₂

Avoided greenhouse gas emissions: 1.158 metric tons of CO₂

TOTAL POTENTIAL CARBON BENEFIT: 1,703 metric tons of CO2

EQUIVALENT TO:

325 cars off the road for a year

Energy to operate a home for 145 years

Volume of wood: Based on user inputs

Volume of Wood \rightarrow Volume of Logs \rightarrow Volume of Trees \rightarrow Tree Growth Rate

Volume of Wood \rightarrow Mass of Wood \rightarrow Mass of Carbon (50% of wood) \rightarrow Mass of CO_2 (3.67 x mass of Carbon)

Candlewood Suites Redstone Arsenal, AL

IIIB

- 4 stories; 62,688 sf
- First CLT hotel in USA
- 37% faster overall construction
- 40% fewer construction workers
- Trained unemployed veterans

Architect: Lendlease Project Engineer: Schaefer Structural Engineers

Candlewood Suites Redstone Arsenal, AL

Carbon Benefits

Wood lowers a building's carbon footprint in two ways. It continues to store carbon absorbed by the tree while growing, keeping it out of the atmosphere for the lifetime of the building—longer if the wood is reclaimed and reused or manufactured into other products. When used in place of fossil fuel-intensive materials such as steel and concrete, it also results in 'avoided' greenhouse gas emissions.

Volume of wood products used: 935,696 board feet (equivalent)

U.S. and Canadian forests grow this much wood in: 5 minutes

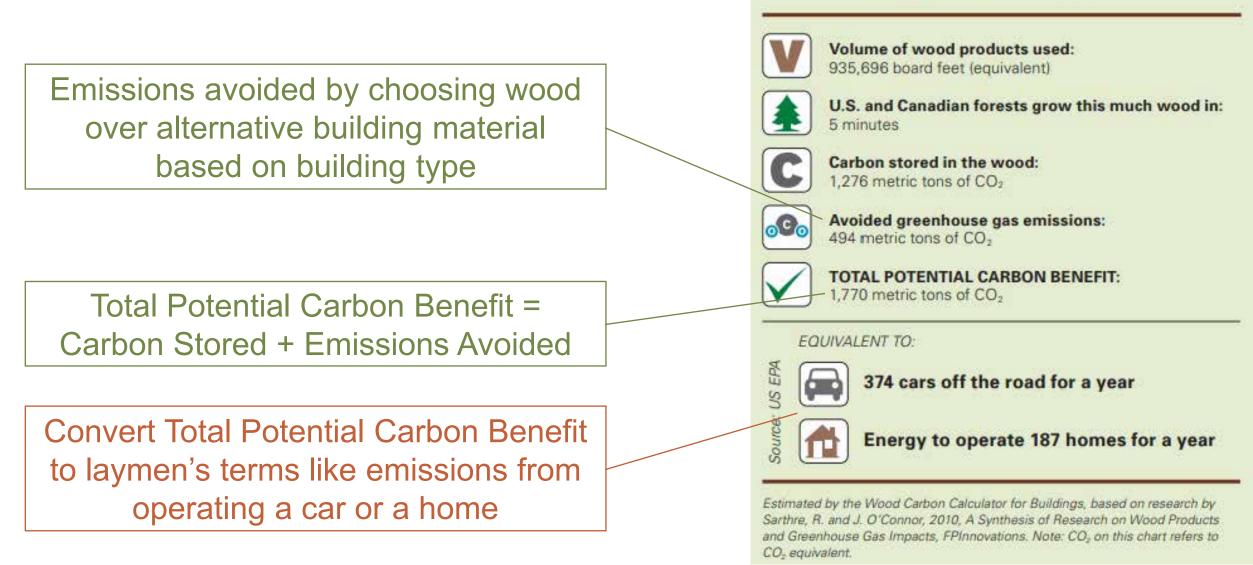
Carbon stored in the wood: 1,276 metric tons of CO₂

Avoided greenhouse gas emissions: 494 metric tons of CO₂

TOTAL POTENTIAL CARBON BENEFIT: 1,770 metric tons of CO₂

EQUIVALENT TO:

374 cars off the road for a year


Energy to operate 187 homes for a year

Estimated by the Wood Carbon Calculator for Buildings, based on research by Sarthre, R. and J. O'Connor, 2010, A Synthesis of Research on Wood Products and Greenhouse Gas Impacts, FPInnovations. Note: CO₂ on this chart refers to CO₂ equivalent.

Candlewood Suites Redstone Arsenal, AL

Carbon Benefits

Wood lowers a building's carbon footprint in two ways. It continues to store carbon absorbed by the tree while growing, keeping it out of the atmosphere for the lifetime of the building—longer if the wood is reclaimed and reused or manufactured into other products. When used in place of fossil fuel-intensive materials such as steel and concrete, it also results in 'avoided' greenhouse gas emissions.

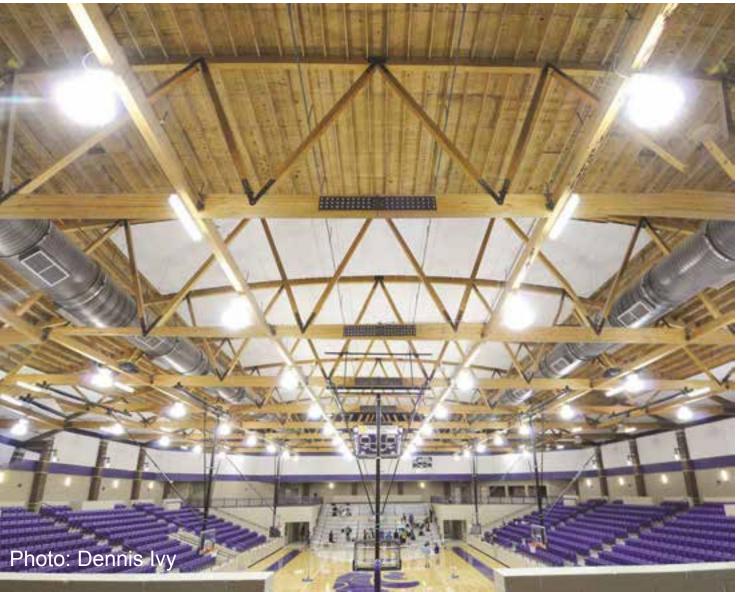
Crescent Terminus Atlanta, GA

IIIA

- 5 stories wood over 3 stories of concrete parking (Type IA podium)
- Savings by using wood could be spent on luxury amenities
- Dedication to sustainable investments
- Flexibility in design
- Rooftop gardens supported by wood trusses

Project Architect: Lord Aeck Sargent Structural Engineer: SCA Consulting Engineers

Crescent Terminus Atlanta, GA



Project Architect: Lord Aeck Sargent Structural Engineer: SCA Consulting Engineers

Estimated by the Wood Carbon Calculator for Buildings, based on research by Sarthre, R. and J. O'Connor, 2010, A Synthesis of Research on Wood Products and Greenhouse Gas Impacts, FPInnovations. Note: CO₂ on this chart refers to CO₂ equivalent.

El Dorado High School El Dorado, AR

IIIA

- 322,500 square feet
- \$2.7 million savings by switching from steel and masonry to wood
- Exposed wood to acknowledge Arkansas landscape and provide enriching educational space
- Barrel-vaulted roof with exposed glulam bowstring trusses in the arena

Architect: CADM Architecture, Inc. Structural Engineer: Engineering Consultants, Inc.

El Dorado High School El Dorado, AR

Architect: CADM Architecture, Inc. Structural Engineer: Engineering Consultants, Inc.

Carbon Benefits

For more information on the calculations below, visit woodworks.org.

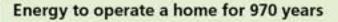
Wood lowers a building's carbon footprint in two ways. It continues to store carbon absorbed during the tree's growing cycle, keeping it out of the atmosphere for the lifetime of the building—longer if the wood is reclaimed and used elsewhere. When used in place of fossil fuel-intensive materials such as steel and concrete, it also results in 'avoided' greenhouse gas emissions.

Volume of wood used:

4,340 cubic meters / 153,140 cubic feet of lumber, panels and engineered wood

U.S. and Canadian forests grow this much wood in: 13 minutes

Carbon stored in the wood: 3,660 metric tons of CO₂


Avoided greenhouse gas emissions: 7,780 metric tons of CO₂

TOTAL POTENTIAL CARBON BENEFIT: 11,440 metric tons of CO₂

EQUIVALENT TO:

2,100 cars off the road for a year

Estimated by the Wood Carbon Calculator for Buildings, based on research by Sarthre, R. and J. O'Connor, 2010, A Synthesis of Research on Wood Products and Greenhouse Gas Impacts, FPInnovations. Note: CO₂ on this chart refers to CO₂ equivalent

1430 Q Sacramento, CA

IIIA

- 6 stories of wood + mezzanine over 2-story concrete podium (IIIA over IA)
- 63,000 square feet
- First of its kind in USA
- Needed 6 floors of residential units to make the project viable
- Concrete and steel were too
 expensive

Architect: HRGA, The HR Group Architects Structural Engineer: Buehler

1430 Q Sacramento, CA

1430 Q

Volume of wood products used: 1,708 cubic meters (60,334 cubic feet)

U.S. and Canadian forests grow this much wood in: 5 minutes

Carbon stored in the wood: 1,426 metric tons of CO₂

Avoided greenhouse gas emissions: 3,031 metric tons of CO2

US EPA

TOTAL POTENTIAL CARBON BENEFIT: 4,457 metric tons of CO2

EQUIVALENT TO:

942 cars off the road for a year

Energy to operate 471 homes for a year

Estimated by the Wood Carbon Calculator for Buildings, based on research by Sarthre, R. and J. O'Connor, 2010, A Synthesis of Research on Wood Products and Greenhouse Gas Impacts, FPInnovations. Note: CO2 on this chart refers to CO, equivalent.

Tallhouse, Boston

Source: Generate Architecture

Tallhouse Boston

Office

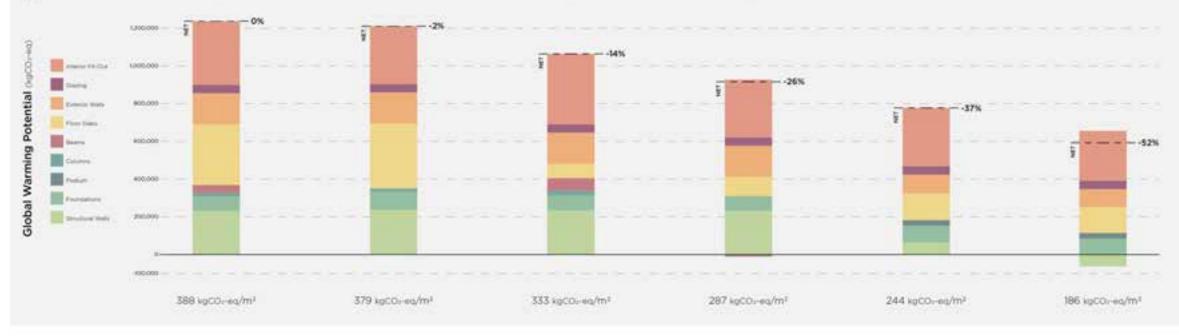
Building Mass

Reference 1 Concrete Slabs on Steel Deck; Steel Frame; Concrete Cores

Reference 2 Concrete Flat Slats Concrete Cores

Timber Use 1 Timber Floors: Steel Frame. Concrete Cores

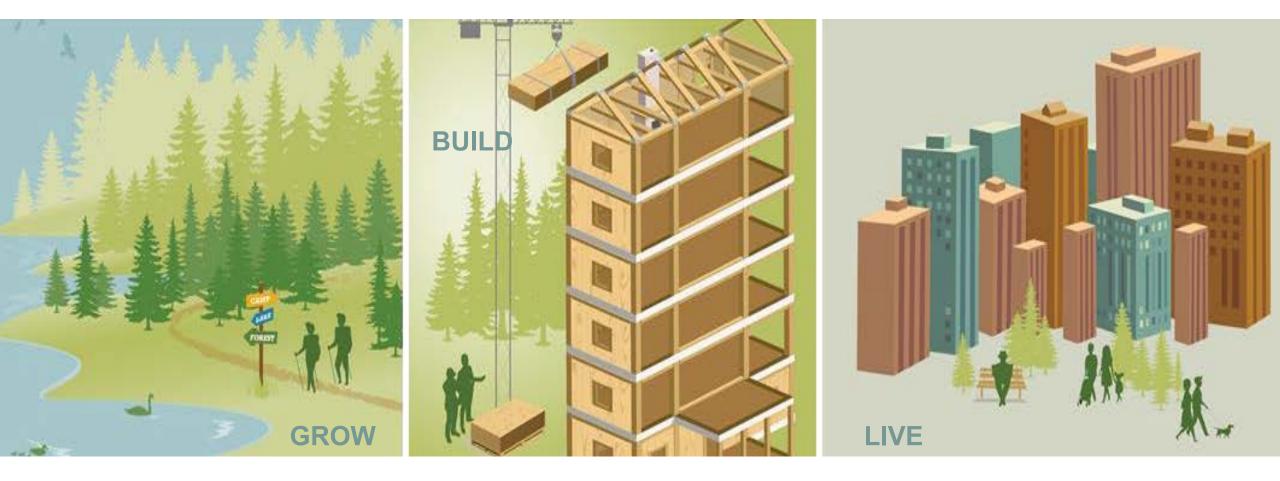
Timber Use 2 Timber Post, Beam, & Plater Concrete Cores


Timber Use 3

Timber Floors, LGM Framing.

Steel Frame Podium

Timber Use 4 Timber Floors & Shear Walls: Steel Frame Podium


GLOBAL WARMING POTENTIAL & MATERIAL MASS

(PER BUILDING ASSEMBLY)

Source: Generate Architecture

The total global warming potential (GWP) of each option is shown with a breakdown by building assembly. The Concrete With Steel Frame and Concrete Flat. Slab options have the highest GWP, with the bulk of the impact embedded in the floor statis. The Timber Like I (Floor Statis, Steel Frame) option offers a slight reduction in GWP, with the most of the savings also embedded in the floor slabs. The Timber Use 2 (Post, Beam, and Plate) option offers a relatively typical approach to building with timber showing savings in floor slabe beams and columns. Since Timber Use 3 and 4 are cellular approaches with load-bearing walls, these options included shell podiums to accommodate the ground floor program. Timber the 3 shows now a hybrid approach with joht gauge metal yields GWP savings in structural walls and extensor walls, despite the addition of the podium Lastly. Timber Use 4 emphasizes how a completely cellular CLT

Forest to Cities A Systemic Solution in Action

www.ForesttoCities.org

WoodWorks Online Event

WOODWORKS

المحمود مربعا العروب والمتحول محكن والعاد المحيون

Kendeda Building for Innovataive Sustainable Design, The Miller Hull Partnership with Lord Aeck Sargent, photo Jonathan Hillyer

1430 Q, The HR Group Architects, Buehler Engineering, Greg Folkins Photography

T3 Minneapolis, MGA, DLR Group, Magnusson Klemencic Associates, StructureCraft, photo Ema Peter

What is the Single Most Important Early Design Decision on a Mass Timber Project? Is it:

Construction Type Fire-Resistance Ratings Member Sizes Grids & Spans Exposed Timber (where & how much)

MEP Layout Acoustics Concealed Spaces Connections Penetrations

The Answer is...They All Need to Be Weighed (Plus Others)

Early = Efficient

Realize Efficiency in:

- Cost reduction
- Material use (optimize fiber use, minimize waste)
- Construction speed
- Trade coordination
- Minimize RFIs

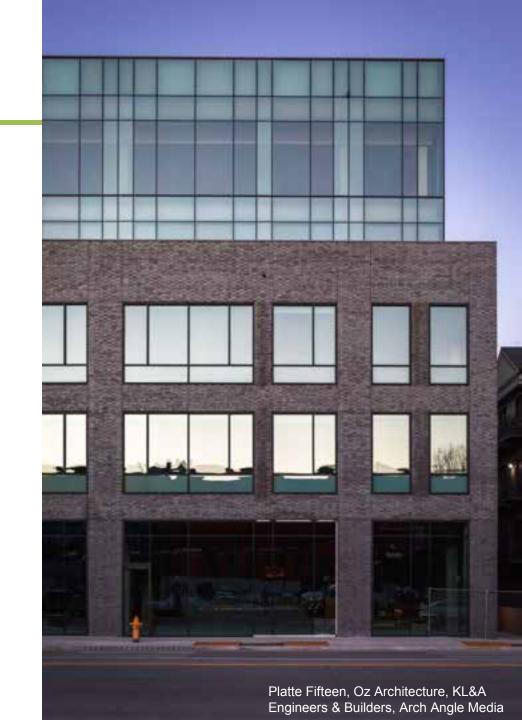
Commit to a mass timber design from the start

One *potential* design route:

- 1. Building size & occupancy informs construction type & grid
- 2. Construction type informs fire resistance ratings
- 3. Grid & fire resistance ratings inform timber member sizes & MEP layout

But that's not all...

Other impactful decisions:


- Acoustics informs member sizes (and vice versa)
- Fire-resistance ratings inform connections & penetrations
- MEP layout informs use of concealed spaces

Other impactful decisions:

- Grid informs efficient spans, MEP layout
- Manufacturer capabilities inform member sizes, grids & connections
- Lateral system informs connections, construction sequencing

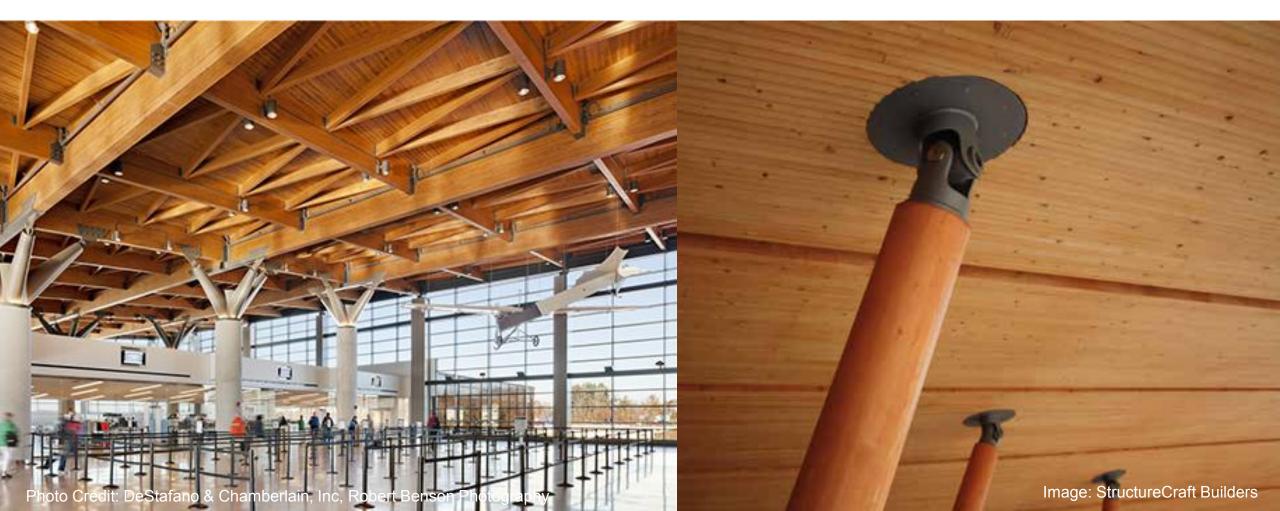
And more...

1 De Haro, Perkins & Will, photo Alex Nye

AIN

P.

D


MASTER

IBC defines 5 construction types: I, II, III, IV, V A building must be classified as one of these

Construction Types I & II: All elements required to be non-combustible materials

However, there are exceptions including several for mass timber

Where does the code allow MT to be used? Type IB & II: Roof Decking

All wood framed building options:

Type III

Exterior walls non-combustible (may be FRTW) Interior elements any allowed by code, including mass timber

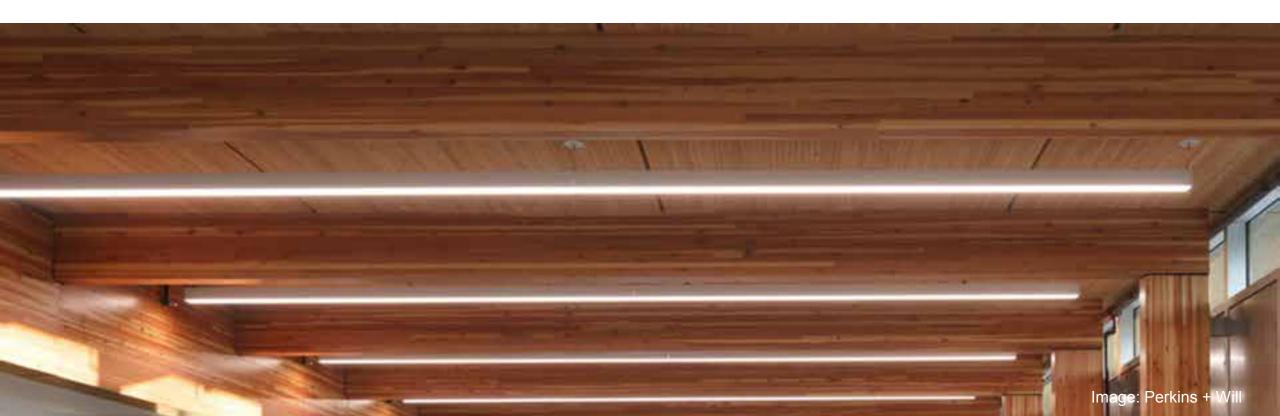
Type V

All building elements are any allowed by code, including mass timber

Types III and V are subdivided to A (protected) and B (unprotected)

Type IV (Heavy Timber)

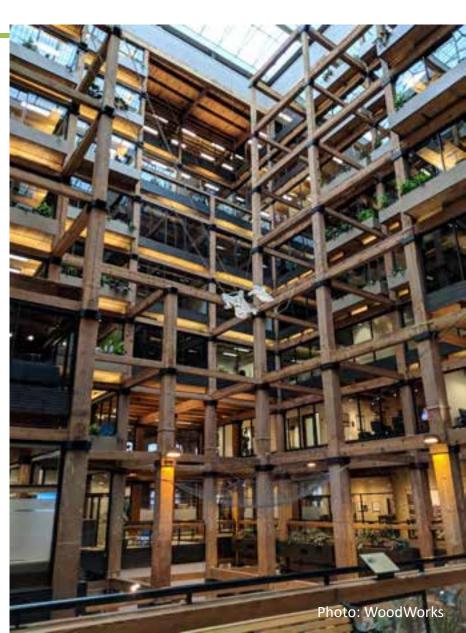
Exterior walls non-combustible (may be FRTW OR CLT) Interior elements qualify as Heavy Timber (min. sizes, no concealed spaces except in 2021 IBC)


Where does the code allow MT to be used?

• <u>Type III</u>: Interior elements (floors, roofs, partitions/shafts) and exterior walls if FRT

Where does the code allow MT to be used?

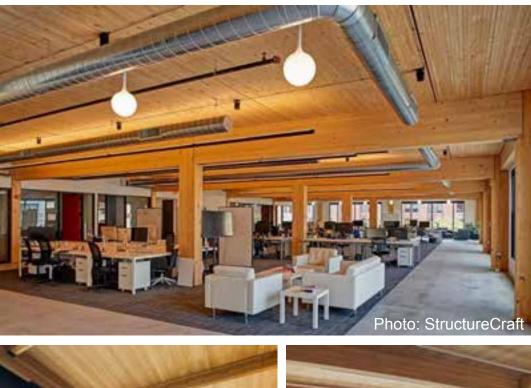
 <u>Type IV</u>: Any exposed interior elements & roofs, must meet min. sizes; exterior walls if CLT or FRT. Concealed space limitations (varies by code version)



Type IV construction permits exposed heavy/mass timber elements of min. sizes.

Framing		Solid Sawn (nominal)	Glulam (actual)	SCL (actual)
Floor	Columns	8 x 8	6 ³ / ₄ x 8¼	7 x 7½
	Beams	6 x 10	5 x 10½	5¼ x 9½
Roof	Columns	6 x 8	5 x 8¼	5¼ x 7½
	Beams*	4 x 6	3 X 6 ⁷ / ₈	3½ X 5½

Minimum Width by Depth in Inches See IBC 2018 2304.11 or IBC 2015 602.4 for Details


*3" nominal width allowed where sprinklered

Type IV min. sizes:

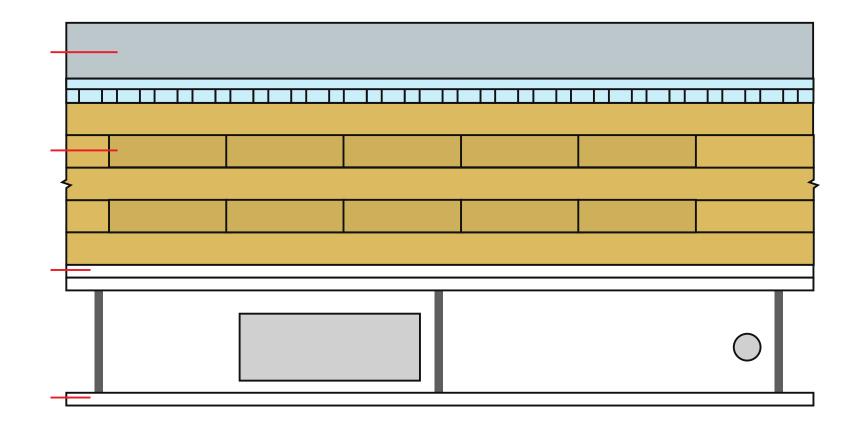
Floor Panels/Decking:

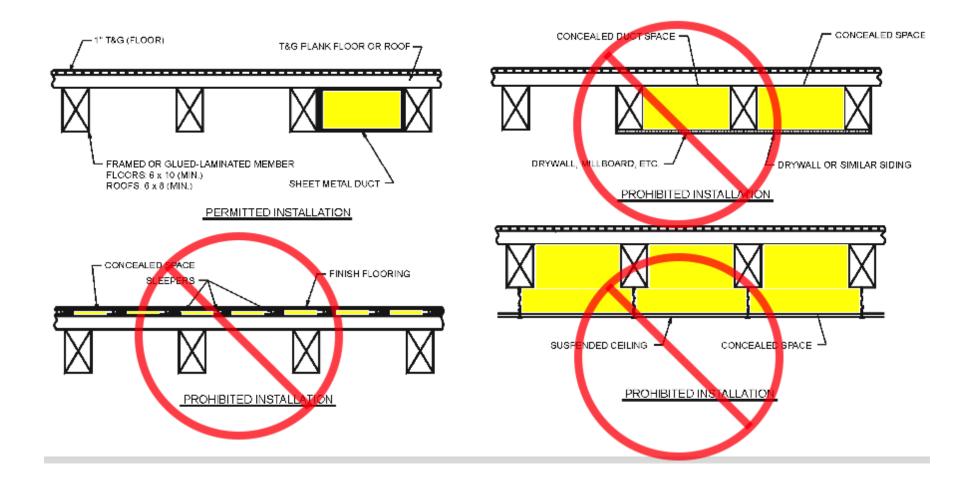
- 4" thick CLT (actual thickness)
- 4" NLT/DLT/GLT (nominal thickness)
- 3" thick (nominal) decking covered with: 1" decking <u>or</u> 15/32" WSP <u>or</u> ¹/₂" particleboard

Type IV min. sizes:

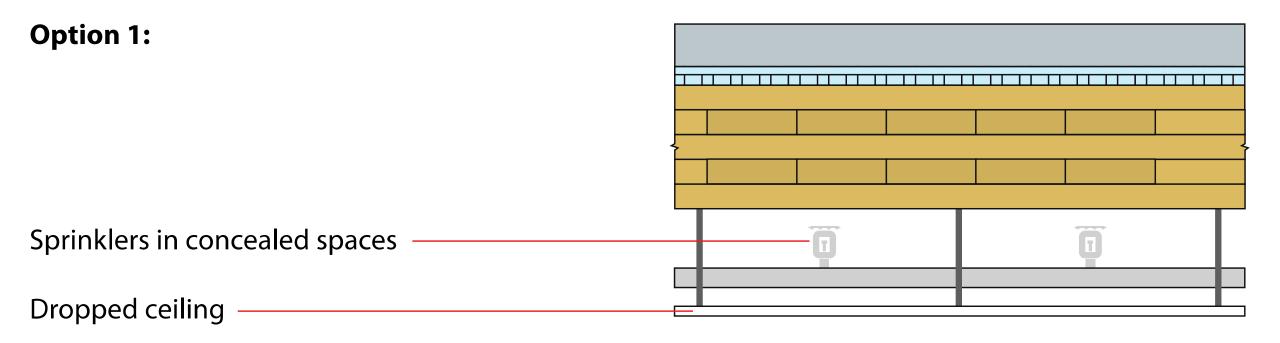
Interior Walls:

- Laminated construction 4" thick
- Solid wood construction min. 2 layers of 1" matched boards
- Wood stud wall (1 hr min)
- Non-combustible (1 hr min)

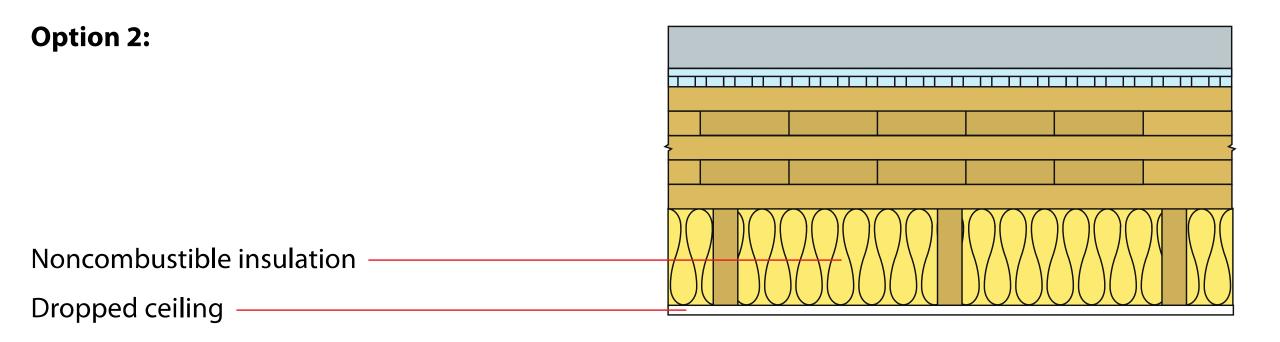

Verify other code requirements for FRR (eg. interior bearing wall; occupancy separation)

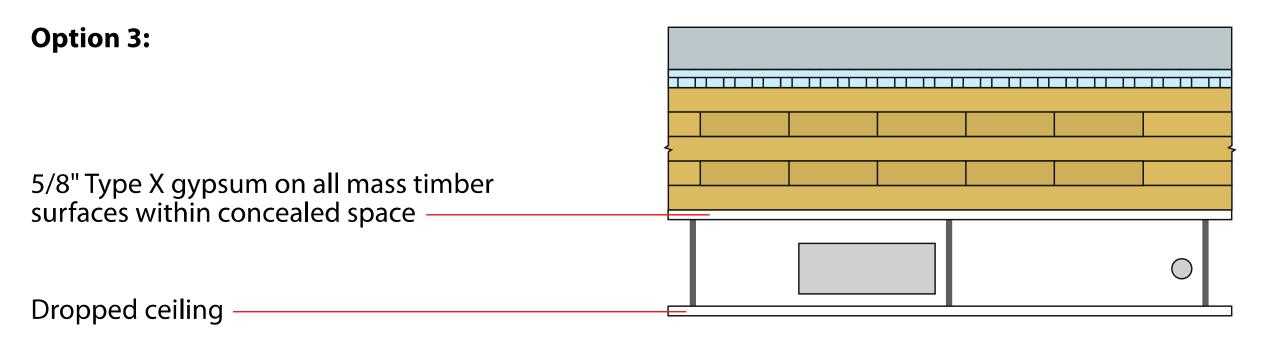

Type IV concealed spaces

Can I have a dropped ceiling? Raised access floor?



Type IV concealed spaces


Until 2021 IBC, Type IV-HT provisions prohibited concealed spaces


Type IV concealed space options within 2021 IBC

Type IV concealed space options within 2021 IBC

Type IV concealed space options within 2021 IBC

Concealed spaces solutions paper

Richard McLain, PE. SE Senior Technicol Director – Tall Wood WoodWorks – Wood Products Council

Concealed Spaces in Mass Timber and Heavy Timber Structures

Conceased spaces, such as those created by a dropped ceiling is a floor/ceiling assembly or by a stud wall assembly, here unique requirements in the International Building Code (IBC) to address the potential of fire spread in nonvisible areas of a building. Section 718 of the 2018 (IBC includes prescriptive requirements for protection and/or compartmentalization of concealed spaces through the use of draft stopping. Inte blocking, sprinklers and other means. For information on these requirements, see the WoodWorks G&A, Are sprinklers required in concealed spaces such os foor and noof concles in multi-foreity wood frame buildings!"

For mass timber building elements, the choice of construction type can have a significant impact on concealed space requirements. Because mass timber products such as cross-laminated timber (CLT) are prescriptively recognized for Type IV construction, there is a comman misperception that exposed mass timber building elements cannot be used, or exposed in other construction types. This is not the case. In addition to Type IV buildings, structural mass timber elements — including CLT, glue-taminated timber (glutam), nall-taminated timber (NLT), structural composite lumber (SCL), and tongue-and-groove (T&G) docking —can be utilized and exposed in the following construction types, whether or not a free-resistance rating is required.

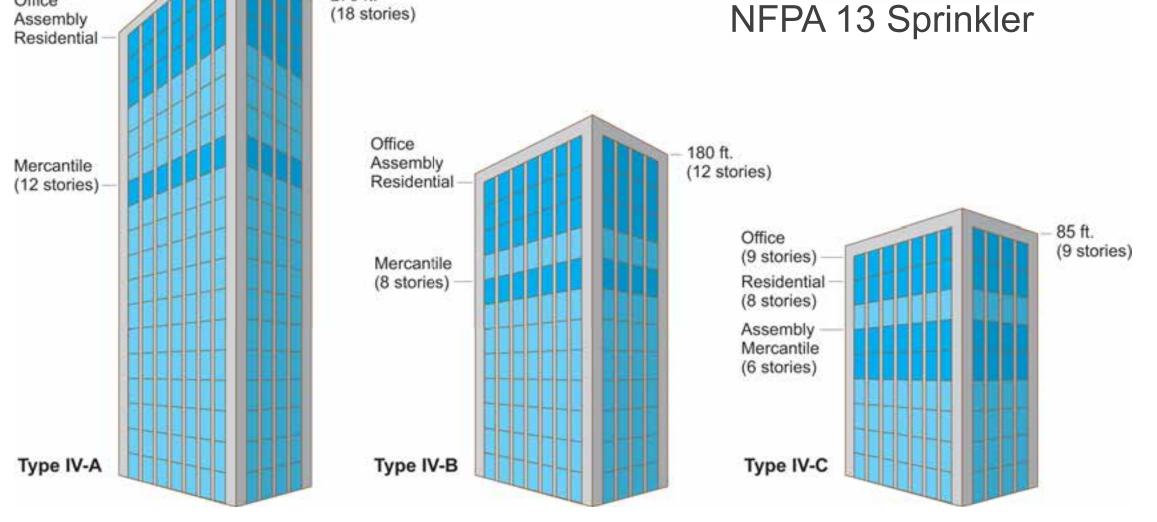
- Type III Ploors, roots and interior wals may be any material permitted by code, including mass timber; extentor walls are required to be noncombustible or fire retardant-treated wood.
- Type V Floors, roofs, wherlor wells and exterior walls (i.e., the entire structure) may be constructed of mass Simber.
- Types I and II Mass timber may be used in select circumstances such as need construction – including the primary thane in the 2021 IBC – in Types I-B, II-A or II-B, exterior columns and arches when 20 feet or more of horizontal separation is provided, and balconies, canopies and similar projections.

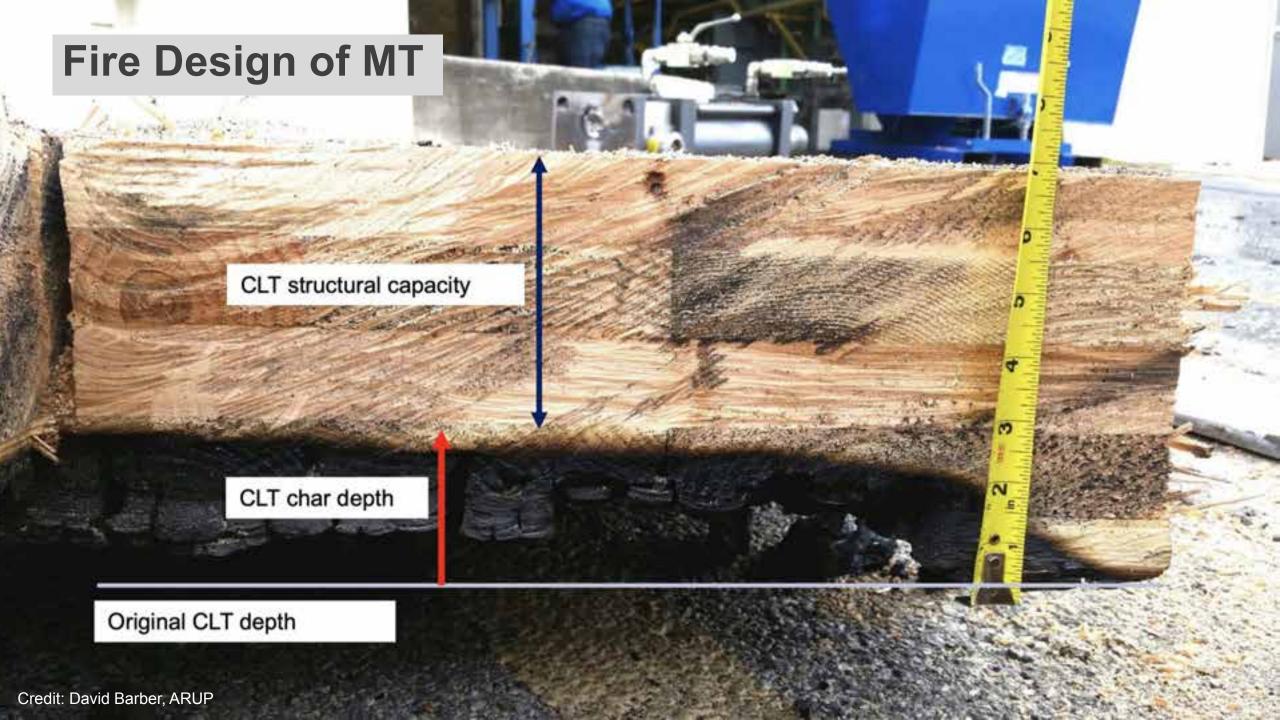
https://www.woodworks.org/wp-content/uploads/wood_solution_paper-Concealed_Spaces_Timber_Structures.pdf

Where does the code allow MT to be used?

• <u>Type V</u>: All interior elements, roofs & exterior walls

Allowable mass timber building size for group B occupancy with NFPA 13 Sprinkler


Type V: 4 stories


Type III: 6 stories

Type IV: 6 stories

Construction Types New Options in 2021 IBC Allowable mass timber building size for group B occupancy with

Construction type influences FRR

BUIL BING ELENENT	TYPEI		TYPE II		TYPE III		TYPE IV TY		PE V
BUILDING ELEMENT	Α	В	Α	В	Α	В	HT	Α	В
Primary structural frame ^f (see Section 202)	3ª	2ª	1	0	1	0	HT	1	0
Bearing walls Exterior ^{e, f} Interior	3 3ª	2 2ª	1	0	2 1	20	2 1/HT	1	0
Nonbearing walls and partitions Exterior	See Table 602								
Nonbearing walls and partitions Interior ^d	0	0	0	0	0	0	See Section 602.4.6	0	0
Floor construction and associated secondary members (see Section 202)	2	2	1	0	1	0	HT	1	0
Roof construction and associated secondary members (see Section 202)	1 ¹ / ₂ ^b	1 ^{b,c}	1 ^{b,c}	0 ^e	1 ^{b,c}	0	HT	1 ^{b,c}	0

TABLE 601 FIRE-RESISTANCE RATING REQUIREMENTS FOR BUILDING ELEMENTS (HOURS)

Source: 2018 IBC

Construction type influences FRR

- Type IV-HT Construction (minimum sizes)
- Other than type IV-HT: Demonstrated fire resistance

Method of demonstrating FRR (calculations or testing) can impact member sizing

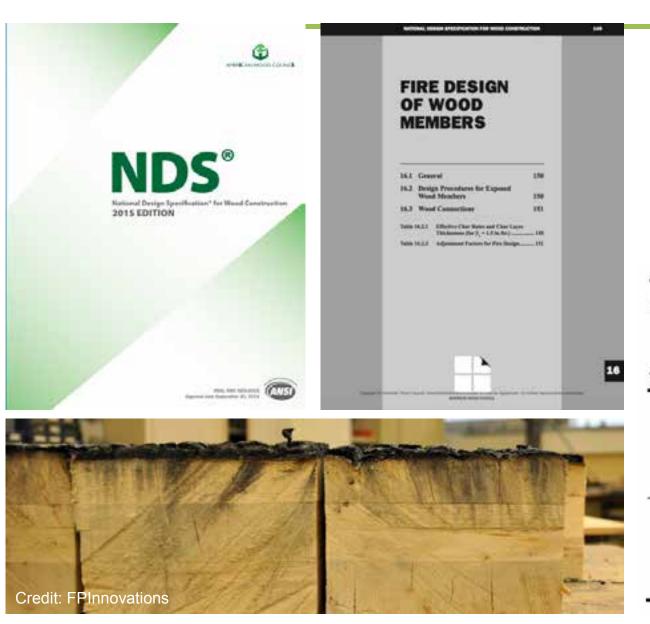
Calculated FRR of Exposed MT: IBC to NDS code compliance path

Code Path for Exposed Wood Fire-Resistance Calculations

IBC 703.3

Methods for determining fire resistance

- Prescriptive designs per IBC 721.1
- Calculations in accordance with IBC 722
- · Fire-resistance designs documented in sources
- Engineering analysis based on a comparison
- Alternate protection methods as allowed by 104.11



IBC 722 Calculated Fire Resistance

"The calculated *fire resistance* of exposed wood members and wood decking shall be permitted in accordance with Chapter 16 of ANSI/AWC National Design Specification for Wood Construction (NDS)

- · Limited to calculating fire resistance up to 2 hours
- Char depth varies based on exposure time (i.e., fire-resistance rating), product type and lamination thickness. Equations and tables are provided.
- TR 10 and NDS commentary are helpful in implementing permitted calculations.

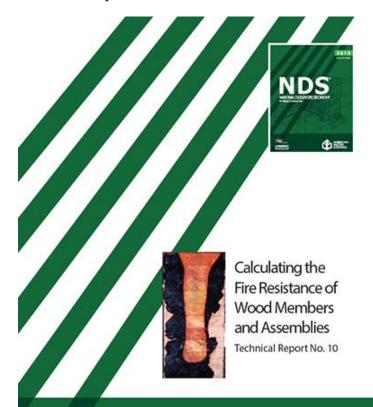
NDS Chapter 16 includes calculation of fire resistance of NLT, CLT, Glulam, Solid Sawn and SCL wood products

Table 16.2.1B Effective Char Depths (for CLT

with β_n =1.5in./hr.)

Required Fire Endurance	Effective Char Depths, a _{char} (in.) lamination thicknesses, h _{lam} (in.)										
(hr.)	5/8	3/4	7/8	1	1-1/4	1-3/8	1-1/2	r	2		
1-Hour	2.2	2.2	2.1	2.0	2.0	1.9	1.8	1.8	1.8		
1 ¹ / ₂ -Hour	3.4	3.2	3.1	3.0	2.9	2.8	2.8	2.8	2.6		
2-Hour	4.4	4.3	4.1	4.0	3.9	3.8	3.6	3.6	3.6		

NDS Table 16.2.2 Design stress adjustment factors applied to adjust to average ultimate strength under fire design conditions


			ASD							
			Design Stress to Member Strength Factor	Size Factor ²	Volume Factor ²	Flat Use Factor ²	Beam Stability Factor ³	Column Stability Factor ³		
Bending Strength	F _b	x	2.85	C _F	Cv	\mathbf{C}_{fu}	C _L	-		
Beam Buckling Strength	F_{bE}	x	2.03	-	-	. 	-	-		
Tensile Strength	Ft	x	2.85	C _F	3	-	-	-		
Compressive Strength	Fc	x	2.58	\mathbf{C}_{F}	-	-	-	$\mathbf{C}_{\mathbf{P}}$		
Column Buckling Strength	F _{cE}	x	2.03		=	-		-		

1. See 4.3, 5.3, 8.3, and 10.3 for applicability of adjustment fact rs for specific products.

2. Factor shall be based on initial cross-section dimensions.

3. Factor shall be based on reduced cross-section dimensions.

AWC's TR10 is a technical design guide, aids in the use of NDS Chapter 16 calculations

Example 5: Exposed CLT Floor - Allowable Stress Design

Simply-supported cross-laminated timber (CLT) floor spanning L=18 ft in the strong-axis direction. The design loads are q_{live}=80 psf and q_{dead}=30 psf including estimated self-weight of the CLT panel. Floor decking, nailed to the unexposed face of CLT panel, is spaced to restrict hot gases from venting through half-lap joints at edges of CLT panel sections. Calculate the required section dimensions for a 1-hour structural fire resistance time when subjected to an ASTM E119 fire exposure.

For the structural design of the CLT panel, calculate the maximum induced moment.

Calculate panel load (per foot of width): W_{load} = (q_{dead} + q_{lve}) = (30 psf +80 psf)(1ft width) =110 plf/ft of width

Calculate maximum induced moment (per foot of width): M_{max} = w_{load} L² / 8 = (110)(18²)/8 = 4,455 ft-lb/ft of width

From PRG 320, select a 5-ply CLT floor panel made from 1-3/8 in x 3-1/2 in. lumber boards (CLT thickness of 6-7/8 inches). For CLT grade V2, tabulated properties are:

Bending moment, FbSett0 = 4,675 ft-lb/ft of width (PRG 320 Annex A, Table A2)

Structural Check: Ms' ≥ Mmax 4,675 ft-lb/ft > 4,455 ft-lb/ft

(note: serviceability check is not performed to simplify the design example, but should be done in typical structural design).

WoodWorks Inventory of Fire Tested MT Assemblies

Table 1: North American Fire Resistance Tests of Mass Timber Floor / Roof Assemblies

CLT Pand	Manu lacturer	CLT Grade or Major x Minor Grade	Colling Protostion	Panel Connection in Test	Floor Topping	Load Rating	Fire Resistance Achieved (Hours)	Source	Testing Lab
3.ply CLT (114.mm 4.488.mt)	Nontic	67F 1656 /b 1.5EMSR x 57F #3	2 Japan 1/2" Type X gyptum	Half-Lap	Nume	Referred 34% Memori Capacity		1 (Test 1)	NRC Fire Laboratory
3-ply CUI (101-mm 4.133 in)	Structurilam	SPF #1/#2 x SPF #1/#2	1 keyer 5.9° Type Xgypram	Half-Lag	Notes	Refaced 73% Moment Capacity	[] Care	1 (Test 3)	NRC Fire Laboratory
5-ply CLT (175mm+6.875*)	Nonlie	- 84	New	Topside Splins	2 maggared layers of 1/2 ⁴ cement bounds Loaded. Size Memoral source		2	2	NRC Fire Laboratory March 2016
5-ply CLT (175mmii: 875*)	Nesdic	11	1 by a of 5.%" Type X gypcom und a Z- channels and farring strips with 3.8.%" (them less bats)	Topside Splina	2 stagg and layers of 1/2° censes to saide	2 stagg oved layers of 1/2* conset b-sinder Sar Manufacturer		3	NRC Fire Laboratory Nov 2014
5-ply CLT (175mm-6.875*)	Nordie	81	None	Topside Spline	3/4 in proprietary gyperits over Mexim acoustical mar			3	UL
5-ply CLT (175mm-6.875*)	Nordie	н.	1 layar 3/4° normal gypram	Topside Spline	3/4 in proprietary gyperits over Manson accustical and or proprietary social board			- 4	UL
3-ply CLT (175mm#-875*)	Nordie	11	1 Japan 58° Type X Gyp states Real-bail Channel under 2 29° 5 Soint with 3 12° Mascal Ward how can Joint	Staff-Lap	Name	Leaded, See Monufacturer	2	21	Intertek 8/24/2012
3-q2y CLT (175mm/LA75*)	Structure	E1 M5 MSR 2199 x 5PF #2	Near	Topside Spline	1-1/2" Marcon Cyp-Gaste 2000 over Marcon Reinforcing Mash	Londod, See Menufacturer	2.5		Intertek, 2/22/2016
5-ply CU (175mm-6-875*)	DR Johnson	vi	Neter	Half-Lap & Topside Spline	2° gyptamiopping Loaded, Kao Manufacturet		2	7	SwRI (May 2016)
3-ply (LT (173mm#.873*)	Number	SPF 1850 Fb MSR x SPF #3	Notes	Half-Lap	None	Roduced 5 9% Moment Capacity		1 (Tot 3)	NRC Fire Laboratory
5-93y (LT (175mm4.875*)	Structure	389 91.92 x 889 91.92	1 layur 3/8° Type Xgypsam	Half-Lep	Nume University Operation		2	1 (Tel 1)	NRC Fire Laboratory
7-ply CLT (245mm9.65*)	Structuriam	SPF #1.42 x SPF #1.42	Now	Half-Lap	Xing	Unroduced 101% Monisori Capacity	2.6	F (Tent T)	NRC Fire Laboratory
5-ply-CLT (173mm-8-875*)	SmartLam	8L-144	New	Half-Cap	nominal 1/2° plywood with Filmain,	Louded. Sie Menufacturer	2	12 (Tet 4)	Western Fire Center 10/26/2016
3-ply CLT (175mmh 375*)	SeartLas	vi	New	Half-Lap	nominal 1/2+plymod with Educate.	Leaded. Sor Monafacturer	2	12(Tet 3)	Western Fire Center 10/28/2016
5-ply CLT (175mm+375*)	DR. Jok news	NI .	Noter	Half-Lap	nominal 1/2" plywood with \$4 nails.	Loaded. Swe Manufacturer	2	12(Tot 6)	Western Fire Center 11/01/2016
5-pty-CLT	6131	CV3MI	Ninpe	theti-Lap de	Nute	London,	1	18	SwRJ

Wood WoodWorks

Fire-Resistive Design of Mass Timber Members

Code Applications, Construction Types and Fire Ratings

Hichard McLam, PK, SE + Santor Technical Director + Moodelows Soci18mmertan, PRC, PE, SE + Santor Technical Director + Woodelows

For many years, exposed heavy timber framing elements have been permitted in U.S. buildings due to their inherent fre-resistance properties. The predictability of wood's char rate has been well-established for decades and has long been recognized in building codes and trandards.

Today, one of the exciting trands in building design is the growing use of mate timber—i.e., large sold wood panel products such as cross-terminated timber (CLT) and nailterminated timber (NLT)—for floor, wall and not construction. Like heavy timber, mass timber products have inherent fire resistance that allows them to be left exposed and still schleve a fine-resistance rating. Because of their strength and dimensional stability, these products also offer a lowcatton ellernative to steel, concrete, and memory for many applications. It is the combination of exposed structure and sheright hast developers and despress across the coentry.

the rest of the second second

are leveraging to create innovative designs with a warm yet modern aesthetic, often for projects that go beyond traditional norms of wood design.

This paper has been written to support architects and engineers exploring the use of mass timber for commercial and multi-family construction. It focuses on how to meet fire-resistance requirements in the informational Building Code (IBC), including calculation and testing-based methods. Unless otherwise noted, references refer to the 2018 IBC

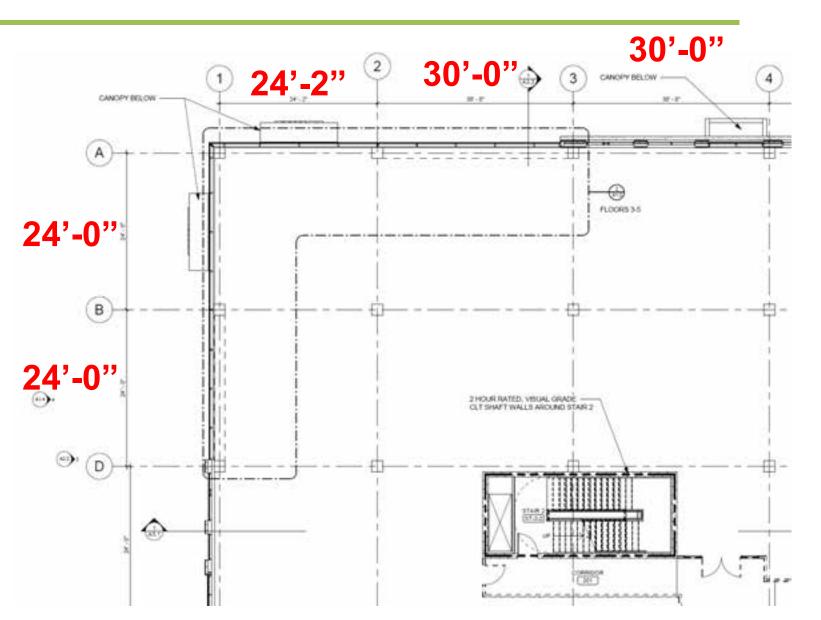
Mass Timber & Construction Type

Before demonstrating fire-resistance ratings of exposed mass timber elements, it's important to understand under what circumstances the code currently allows the use of mass timber in commercial and multi-family construction.

> A building's assigned construction type is the main indicator of where and when all wood systems can be used. IBC Section 602 defines the main options (Type I through V) with all but Type IV having subcategories A and B. Types III and V permit the use of wood framing throughout much of the structure and both are used extensively for modern mass timber buildings.

Type IV ISC 602.2 - Timber elements can be used in floom, roots and interior walls. Fre-relardent-twelved wood IFITWI framing is permitted in extentor walls with a fremelistance rating of 2 hours or less.

Type V (80C 602 5) - Timber elements can be used throughout the structure, including foom, roots and both interior and exterior


Type /V IBC 602.0 - Commonly referred to as "Heavy Timber" construction, this option

Mass Timber Fire Design Resource

- Code compliance options for demonstrating FRR
- Free download at woodworks.org

Grids & Spans

- Consider Efficient
 Layouts
- Repetition & Scale
- Manufacturer Panel Sizing
- Transportation

Member Sizes

- Impact of FRR on Sizing
- Impact of Sizing on Efficient Spans
- Consider connections can drive member sizing

0 HR FRR: Consider 3-ply Panel

- Efficient Spans of 10-12 ft
- Grids of 20x20 (1 purlin) to 30x30 (2 purlins) may be efficient

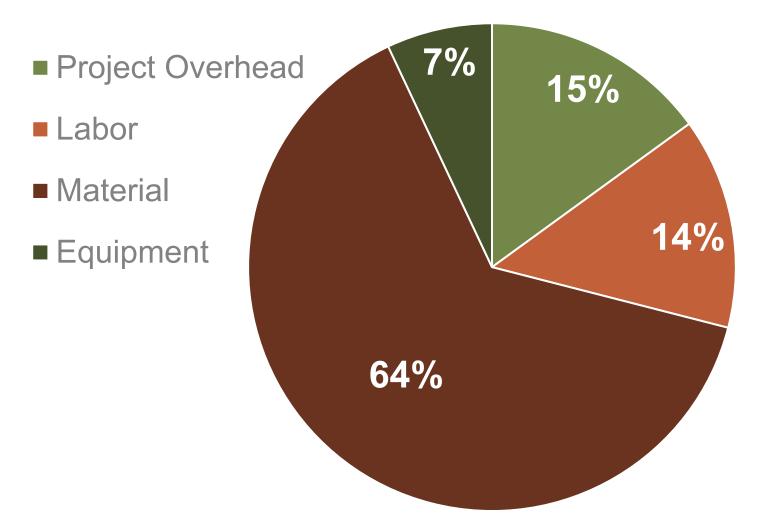
Albina Yard, Portland, OR 20x20 Grid, 1 purlin per bay 3-ply CLT Image: Lever Architecture

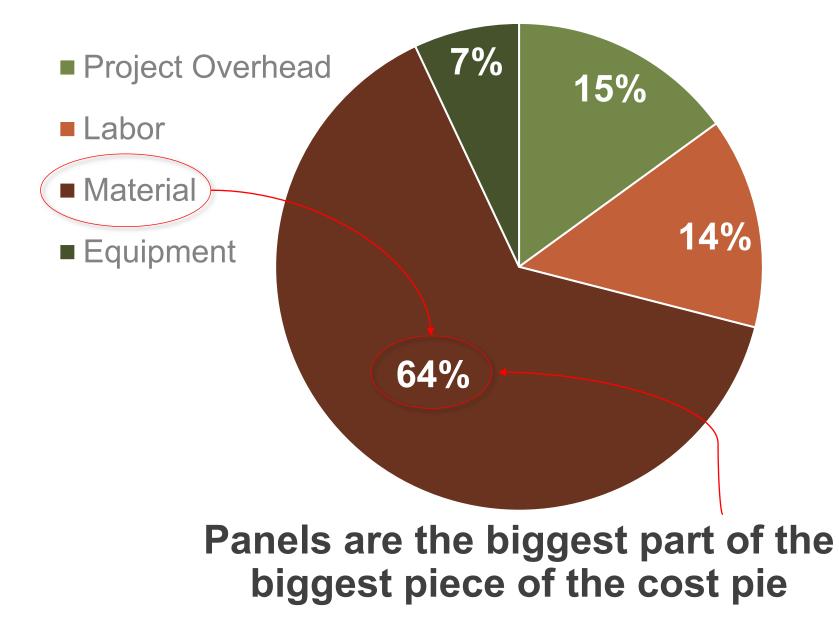
Member Sizes

- Impact of FRR on Sizing
- Impact of Sizing on Efficient Spans
- Consider connections can drive member sizing

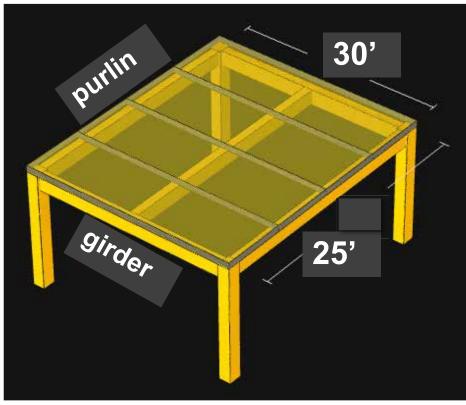
1 or 2 HR FRR: Likely 5-ply Panel

- Efficient spans of 14-17 ft
- Grids of 15x30 (no purlins) to 30x30 (1 purlin) may be efficient


First Tech Credit Union, Hillsboro, OR 12x32 Grid, One-Way Beams 5-ply (5.5") CLT Image: Swinerton

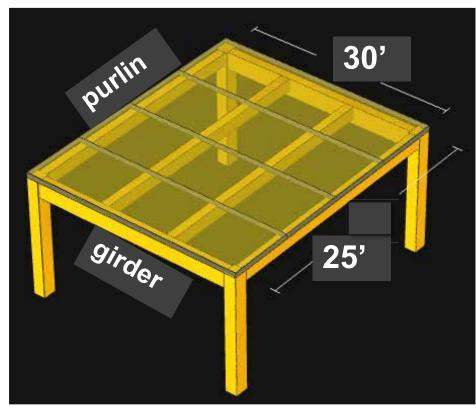


Why so much focus on panel thickness?



Typical MT Package Costs

Panel volume usually 65-80% of MT package volume

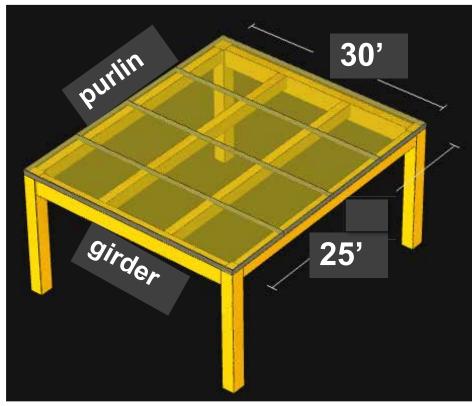


Source: Fast + Epp, Timber Bay Design Tool

Type IIIA option 1 1-hr FRR Purlin: 5.5"x28.5" Girder: 8.75"x33" Column: 10.5"x10.75" Floor panel: 5-ply

Glulam volume = 118 CF (22% of MT) CLT volume = 430 CF (78% of MT) Total volume = 0.73 CF / SF

Panel volume usually 65-80% of MT package volume

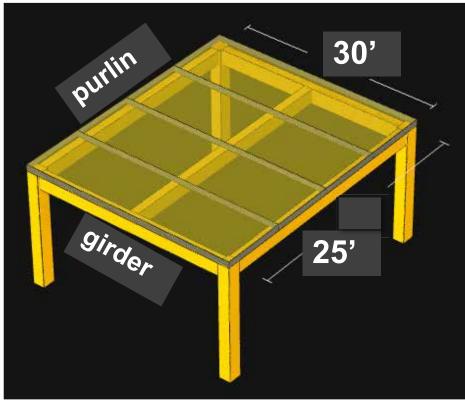

Source: Fast + Epp, Timber Bay Design Tool

Type IllA option 2 1-hr FRR Purlin: 5.5"x24" Girder: 8.75"x33" Column: 10.5"x10.75" Floor panel: 5-ply

Glulam volume = 123 CF (22% of MT) CLT volume = 430 CF (78% of MT) Total volume = 0.74 CF / SF

Cost considerations: One additional beam (one additional erection pick), 2 more connections

Panel volume usually 65-80% of MT package volume

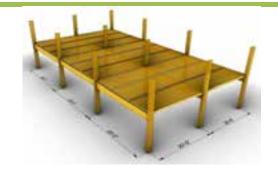


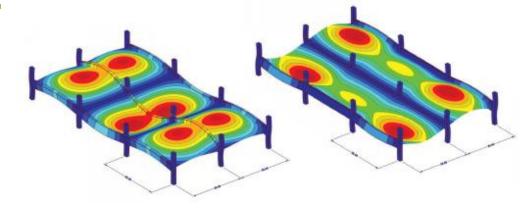
Source: Fast + Epp, Timber Bay Design Tool

Type IV-HT 0-hr FRR (min sizes per IBC) Purlin: 5.5"x24" (IBC min = 5"x10.5") Girder: 8.75"x33" (IBC min = 5"x10.5") Column: 10.5"x10.75" (IBC min = 6.75"x8.25") Floor panel: 3-ply (IBC min = 4" CLT)

Glulam volume = 120 CF (32% of MT) CLT volume = 258 CF (68% of MT) Total volume = 0.51 CF / SF

Panel volume usually 65-80% of MT package volume




Source: Fast + Epp, Timber Bay Design Tool

Type IV-C 2-hr FRR Purlin: 8.75"x28.5" Girder: 10.75"x33" Column: 13.5"x21.5" Floor panel: 5-ply

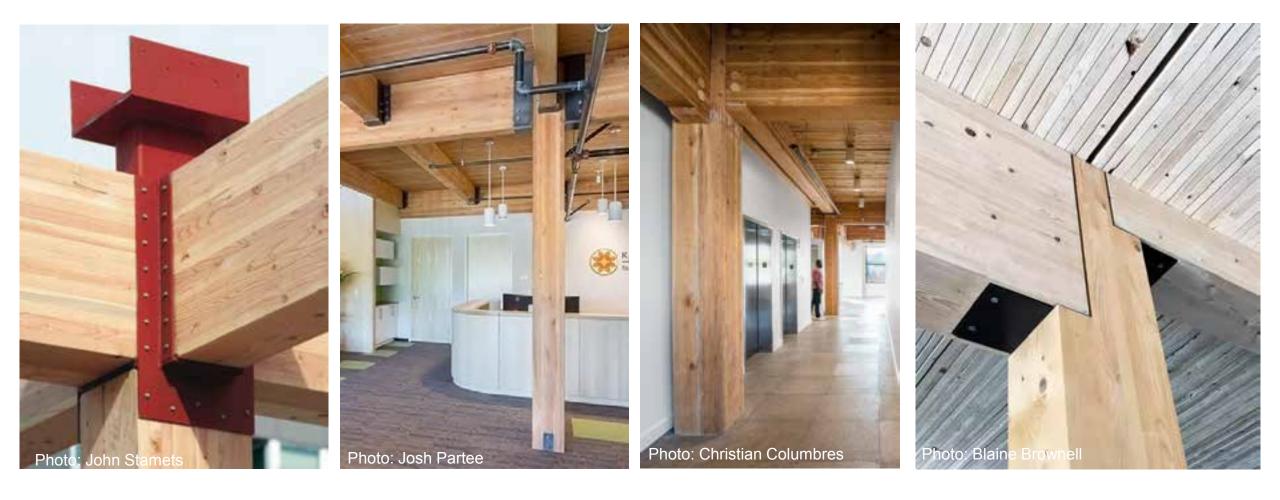
Glulam volume = 183 CF (30% of MT) CLT volume = 430 CF (70% of MT) Total volume = 0.82 CF / SF

NEW MASS TIMBER FLOOR VIBRATION DESIGN GUIDE

U.S. Mass Timber Floor Vibration

Design Guide

Worked office, lab and residential Examples


Covers simple and complex methods for bearing wall and frame supported floor systems

Connections

Credit: Structurlam

Many ways to demonstrate connection fire protection: calculations, prescriptive NC, test results, others as approved by AHJ

Steel hangers/hardware fully concealed within a timber-to-timber connection is a common method of fire protection

STORE CONCERNING

27.000

CONNECTOR

Photo: LEVER Architecture

4.300

Connection FRR and beam reactions could impact required beam/column sizes

Photos: Simpson Strong-Tie

2017 Glulam Beam to Column Connection Fire Tests under standard ASTM E119 timetemperature exposure

Member to member bearing also commonly used, can avoid some/all steel hardware at connection

Member to member bearing also commonly used, can avoid some/all steel hardware at connection

Style of connection also impacts and is impacted by grid layout and MEP integration

ARCHITECTURE URBAN DESIGN INTERIOR DESIGN

WoodWorks Index of Mass Timber Connections

SWINERTON

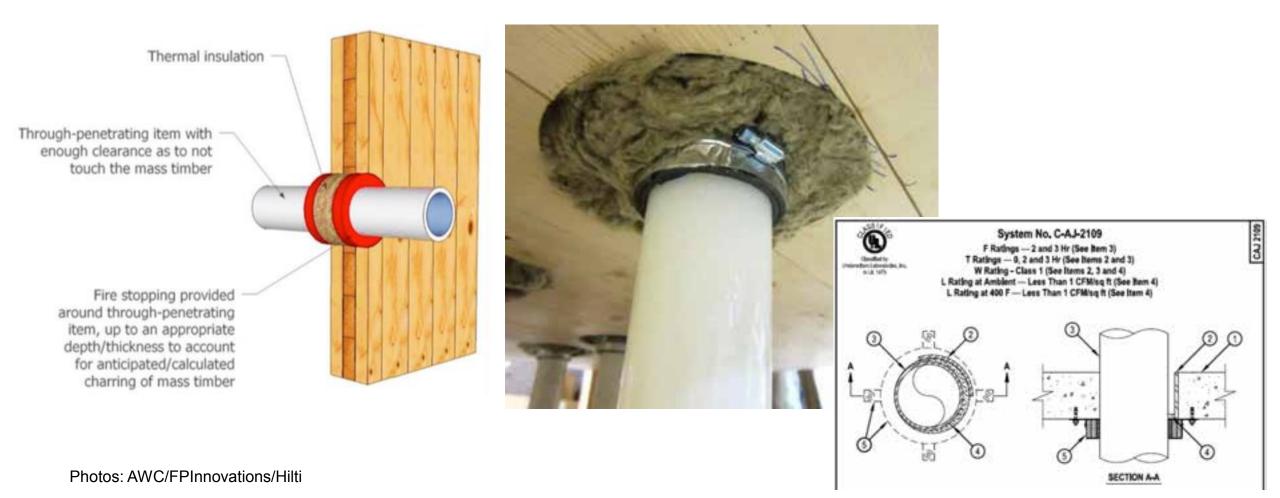
MASS TIMBER CONNECTIONS INDEX

A library of commonly used mass timber connections with designer notes and information on fire resistance, relative cost and load-

acity.

Connections

Other connection design considerations:


- Structural capacity
- Shrinkage
- Constructability
- Aesthetics
- Cost

Option 1: MT penetration firestopping via tested products

Most firestopping systems include combination of fire safing (eg. noncombustible materials such as mineral wool insulation) plus fire caulk

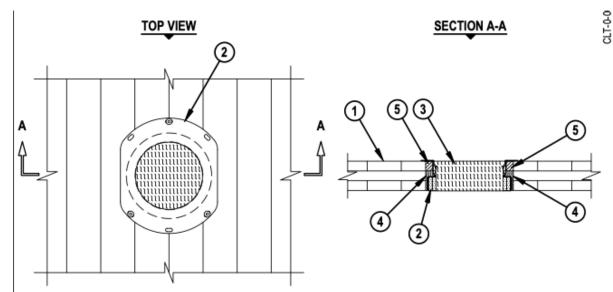
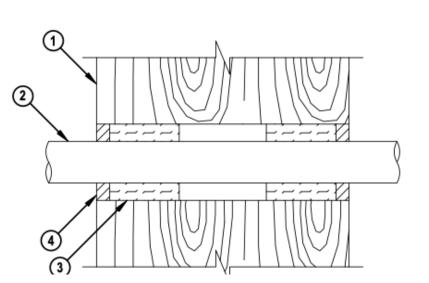

Inventory of Fire Tested Penetrations in MT Assemblies

Table 3: North American Fire Tests of Penetrations and Fire Stops in CLT Assemblies

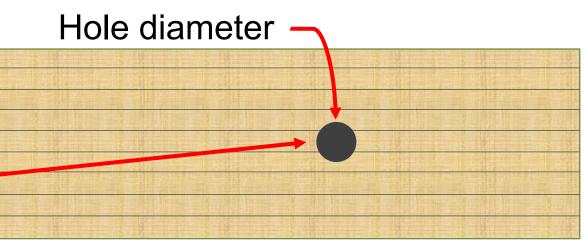
CLT Panel	Exposed Side Protection	Pen etrating Item	Penetrant Centered or Offset in Hole	Firestopping System Description	F Rating	T Rating	Stated Test Protocal	Source	Testing Lab
3-ply (78mm3.07*)	None	1.5° diameter data cable bunch	Centered	3.5 in diameter hole. Mineral wool was installed in the 1in. annular space around the data cables to a total depth of approximately 2 - 5/64 in. The remaining 1in. annular space from the top of the mineral wool to the top of the floor assembly was filled with Hilti FS-One Max caulking.		0.5 hour	CANULC S115	26	In tert ek March 30, 2016
3-ply (78mm 3.07*)	None	2 ° copper pipe	Cen tere d	4.375 in diameter hole. Pipe wrap was installed around the copper pipe to a total depth of approximately 2 - 5/64in. The remaining 1in. annular space starting at the top of the mineral wool to the top of the floor as sembly was filled with Hilti FS-One Max caulking.		NA.	CANULC S115	26	Intertek March 30, 2016
3-ply (78mm3.07*)	None	2.5" sch ed. 40 pipe	Centered	4.92 in diameter hole. Pipe wrap was installed around the schedule 40 pipe to a total depth of approximately 2 - 5/64in. The remaining 1in. annular space starting at the top of the pipe wrap to the top of the floor assembly was filled with Hilti FS-One Max caulking.			CANULC \$115	26	Intertek March 30, 2016
3-ply (78mm3.07*)	None	6* cast iron pipe	Centered	8.35 in diameter hole. Mineral wool was installed in the lin. annular space around the cast iron pipe to a total depth of approximately 2 - 5/64 in. The remaining lin. annular space starting at the top of the pipe wrap to the top of the floor assembly was filled with Hilt i FS-One Max caulking.	1 hour	NA.	CANULC S115	26	Intertek March 30, 2016
3-ply (78mm3.07*)	None	Hilti 6 in drop in device. System No.: F-B-2049	Centered	9.01" diameter hole. Mineral wool was installed in the 1 – 1/4in. annular space around the drop-in device to a total depth of approximately 1 – 7/64in and the remaining 1 in. annular space from the top of the mineral wool to the top edge of the 9 – 1/64in. hole in the CLT was filled with Hilti FS-One Max caulking.	1 hour	0.75 hour	CANULC S115	26	In iert ek March 30, 2016
5-ply CLT (131 mm 5.16*)	None	1.5° diameter data cable bunch	Centered	3.5° diameter hole. Mineral wool was installed in the 1 in, annular space around the data cables to a total depth of approximately 4 - 5/32 in. The remaining 1 in, annular space from the top of the mineral wool to the top of the floor assembly was filled with Hilti FS-One Max caulking.	2 hours	1.5 hours	CANULC S115	26	Intertek March 30, 2016
5-ply CLT (131 mm 5.16*)	None	2" copper pipe	Centered	.375 in diameter hole. Pipe wrap was installed around the copper pipe to a total depth of approximately 4 - 5/32 in. The remaining 1 in. annular space tarting at the top of the mineral wool to the top of the floor assembly was filled with Hilti FS-One Max caulking.		N.A.	CANULC \$115	26	Intertek March 30, 2016
5-ply CLT (131 mm 5.16*)	None	2.5" sch ed. 40 pip e	Centered	4.92 in diameter hole. Pipe wrap was installed around the schedule 40 pipe to a total depth of approximately 4 – 5/32 in. The remaining lin. annular space starting at the top of the pipe wrap to the top of the floor assembly was filled with HiltiFS-One Max caulking.	2 hours	0.5 hour	CANULC S115	26	Intertek March 30, 2016
5-ply CLT (131mm 5.16*)	None	6° cast iron p ipe	Centered	8.35 in diameter hole. Mineral wool was installed in the lin. annular space around the cast iron pipe to a total depth of approximately 4 – 5/32 in. The temaining lin. annular space starting at the top of the pipe wrap to the top of the floor assembly was filled with Hilt i FS-One Max caulking.	2 hours	NA.	CANULC S115	26	Intertek March 30, 2016
5-ply CLT (131 mm 5.16*)	None	Hilti 6 in drop in device. System No.: F-B-2049	Centered	9.01" diameter hole. Mineral wool was installed in the 1 – 1/4in. annular space around the drop-in device to a total depth of approximately 1 – 7/64in and the remaining 1 in. annular space from the top of the mineral wool to the top edge of the 9 – 1/64in. hole in the CLT was filled with Hilti FS-One Max caulking.	2 hours	1.5 hours	CANULC S115	26	In tert ek March 30, 2016
5-ply 175mm6.875*)	None	l* nominal PVC pipe	Centered	4.21 in diameter with a 3/4 in plywood reducer flush with the top of the slab reducing the opening to 2.28 in. Two wraps of Hilti CP 648-E W45/1-3/4" Firestop wrap strip at two locations with a 30 gauge steel sleeve which extended from the top of the slab to 1 in below the slab. The first location was with the bottom of the wrap strip flush with the bottom of the steel sleeve and the second was with the bottom of the wrap strip 3 in. from the bottom of the slab. The void between the steel sleeve and the CLT and between the steel sleeve and pipe at the top was filled with Roxul Safe mineral wool leaving a 3/4 in deep void at the top of the assembly. Hilti FS-One Max Intumescent Firestop Sealant was applied to a depth of 3/4 in on the top of the assembly between the plywood and steel sleeve as well as the steel sleeve and pipe.	2 hours	2 hours	ASTM E814	24	QAI Laboratories March 3, 2017


Option 2: MT penetration firestopping of penetrations via engineering judgement details (contact firestop manufacturer)

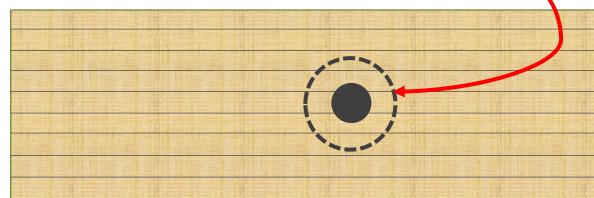
- 3-PLY CROSS LAMINATED TIMBER FLOOR ASSEMBLY (MINIMUM 3" THICK) (1-HR. FIRE-RATING).
 HILTI CFS-DID FIRESTOP DROP-IN DEVICE INSERTED INTO OPENING (SEE TABLE BELOW) AND SECURED TO TOP SURFACE OF CROSS LAMINATED TIMBER FLOOR ASSEMBLY WITH THREE 1/4" x 1" LONG STEEL
- WOOD SCREWS WITH WASHERS. 3. MINIMUM 3" THICKNESS MINERAL WOOL (MIN. 4 PCF DENSITY) TIGHTLY PACKED, AND FLUSH WITH TOP AND BOTTOM SURFACE OF CFS-DID FIRESTOP DROP-IN DEVICE.
- 4. MINERAL WOOL (MIN. 4 PCF DENSITY) TIGHTLY PACKED, RECESSED TO ACCOMMODATE SEALANT, AND COMPLETELY FILLING SPACE BETWEEN CFS-DID FIRESTOP DROP-IN DEVICE AND PERIPHERY OF OPENING.
- 5. MINIMUM 1" DEPTH HILTI FS-ONE MAX INTUMESCENT FIRESTOP SEALANT BETWEEN CFS-DID FIRESTOP DROP IN DEVICE AND PERIPHERY OF OPENING.

F-RATING = 1-HR. OR 2-HR. (SEE NOTE NO. 3 BELOW)

CROSS-SECTIONAL VIEW



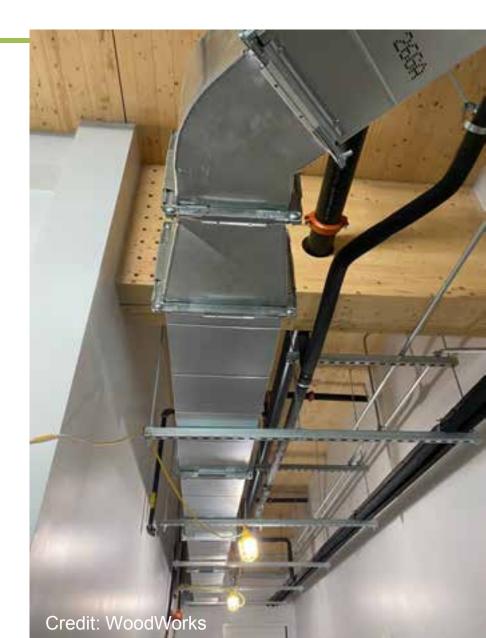
- 1. MASS TIMBER WALL ASSEMBLY (MINIMUM 12" THICK) (1-HR. OR 2-HR. FIRE-RATING).
- 2. MAXIMUM 2" NOMINAL DIAMETER PVC PLASTIC PIPE (SCH 40).
- 3. MINIMUM 4" THICKNESS MINERAL WOOL (MIN. 4 PCF DENSITY) TIGHTLY PACKED AND RECESSED TO ACCOMMODATE SEALANT.
- 4. MINIMUM 3/4" DEPTH HILTI FS-ONE MAX INTUMESCENT FIRESTOP SEALANT.


Beam penetrations:

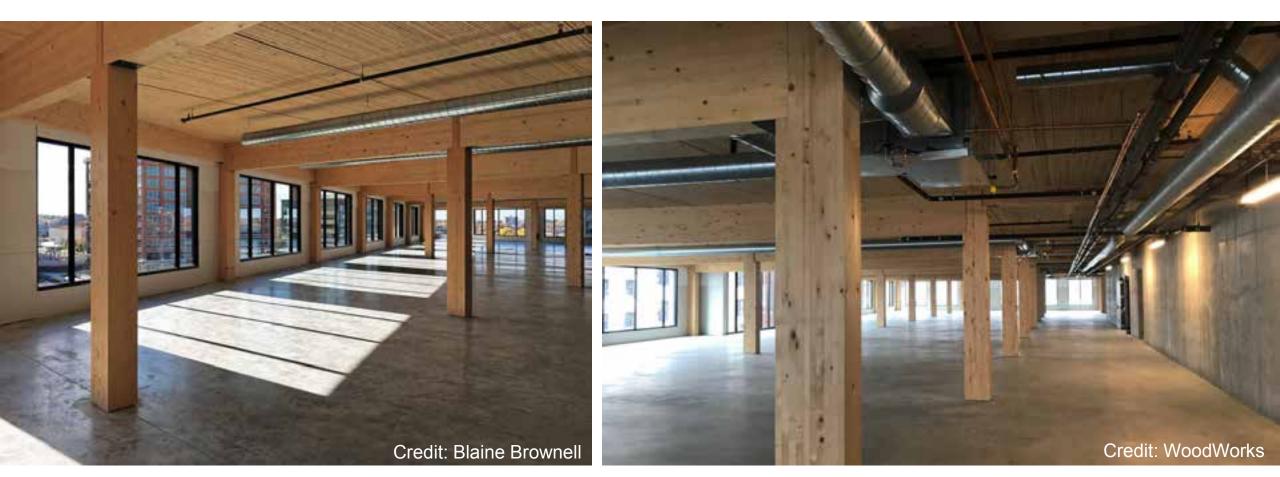
- If FRR = 0-hr, analyze structural impact of hole diameter only
- If FRR > 0-hr, account for charred hole diameter or firestop penetration

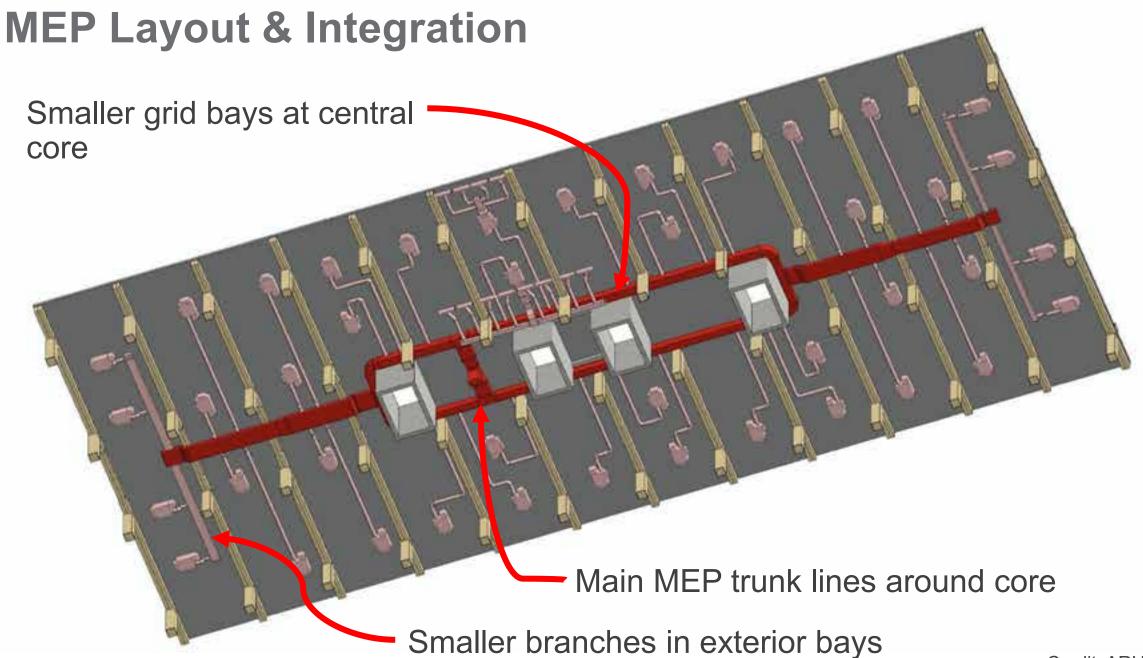
Hole diameter after 1-hr char-

1-12-

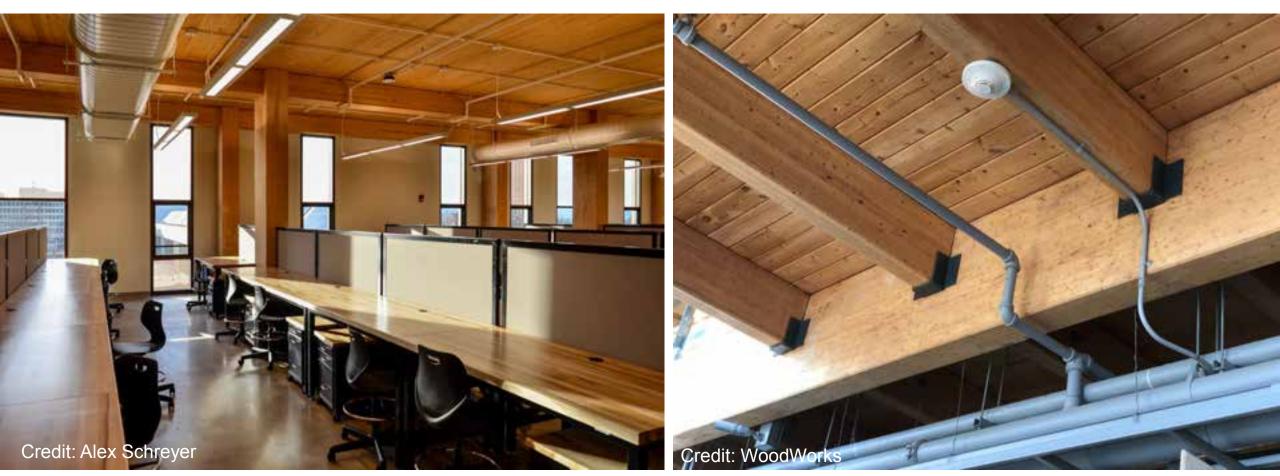

I HAR ST

Set Realistic Owner Expectations About AestheticsMEP fully exposed with MT structure, or limited exposure?




Key considerations:

- Level of exposure desired
- Floor to floor, structure depth & desired head height
- Building occupancy and configuration (i.e. central core vs. double loaded corridor)
- Grid layout and beam orientations
- Need for future tenant reconfiguration
- Impact on fire & structural design: concealed spaces, penetrations


Smaller grid bays at central core (more head height)
Main MEP trunk lines around core, smaller branches in exterior bays

Dropped below MT framing

- Can simplify coordination (fewer penetrations)
- Bigger impact on head height

In penetrations through MT framing

- Requires more coordination (penetrations)
- Bigger impact on structural capacity of penetrated members
- Minimal impact on head height

In chases above beams and below panels at Catalyst

• 30x30 grid, 5-ply CLT ribbed beam system

- In gaps between MT panels
- Fewer penetrations, can allow for easier modifications later

In gaps between MT panels

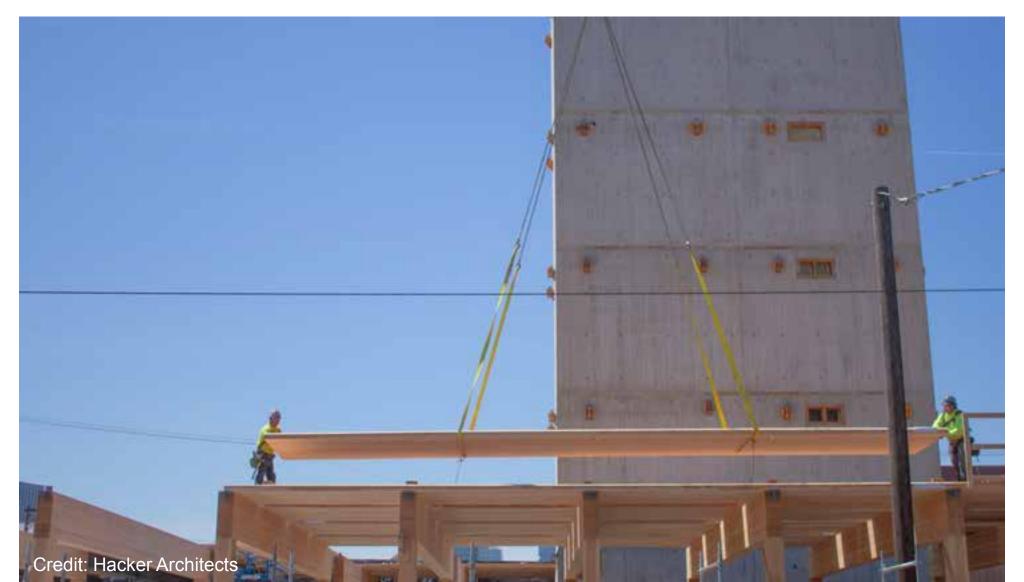
• Aesthetics: often uses ceiling panels to cover gaps

In raised access floor (RAF) above MT

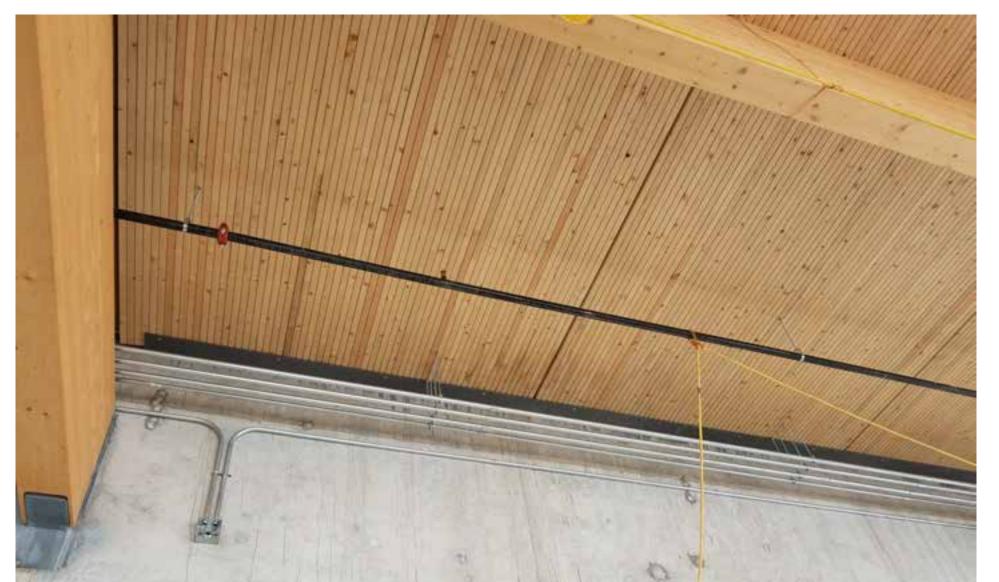
• Aesthetics (minimal exposed MEP)

In topping slab above MT

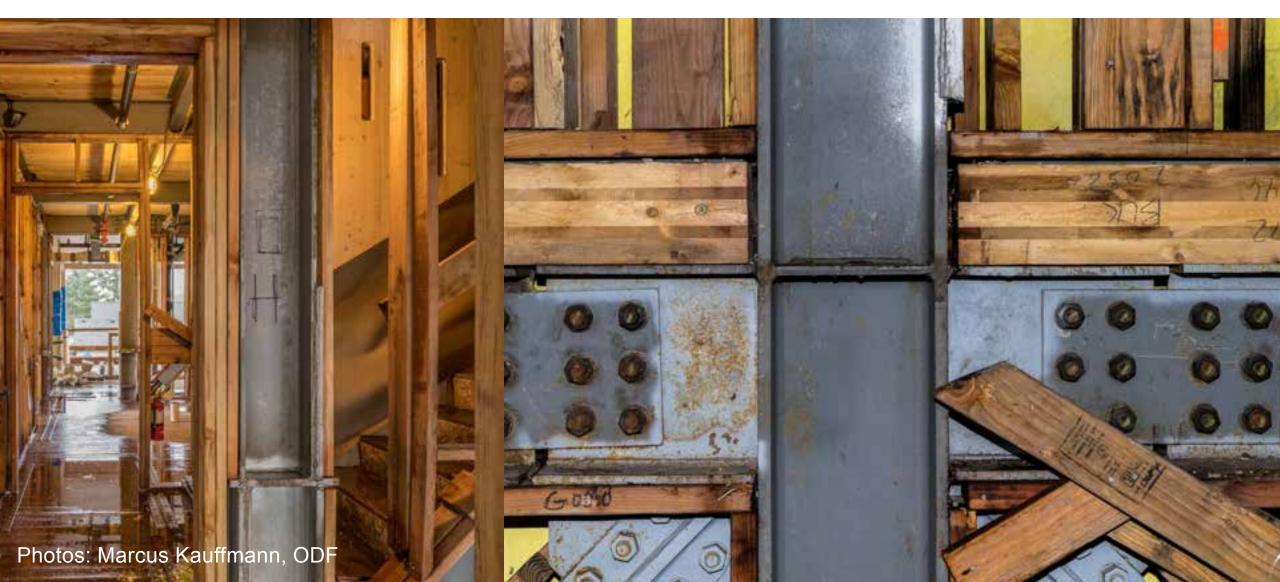
- Greater need for coordination prior to slab pour
- Limitations on what can be placed (thickness of topping slab)
- No opportunity for renovations later



Lateral System Choices & Impacts


hhh

-


Concrete Shearwalls

Connection to concrete core

Steel Braced Frame

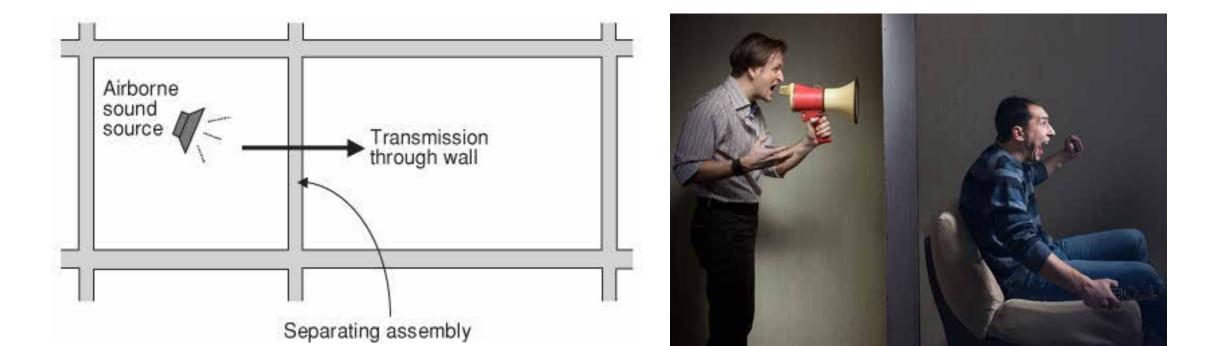
Wood-Frame Shearwalls

Wood-frame Shearwalls:

- Code compliance
- Standard of construction practice well known
- Limited to 65 ft shearwall height, 85 ft overall building height (Type IIIA construction)

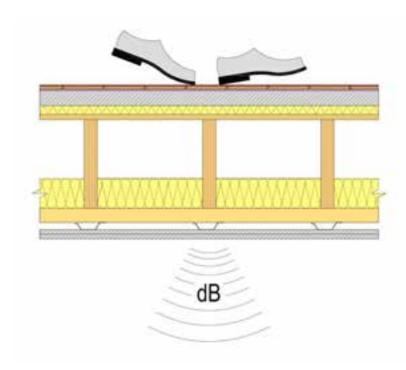
Lateral System Choices MT Shearwalls

Lateral System Choices Timber Braced Frame



Finish Floor if Applicable	_
Concrete/Gypsum Topping	
Acoustical Mat Product —	L
CLT Panel	
No direct applied or hung ceiling —	

Air-Borne Sound:


Sound Transmission Class (STC)

- Measures how effectively an assembly isolates air-borne sound and reduces the level that passes from one side to the other
- Applies to walls and floor/ceiling assemblies

Structure-borne sound: Impact Insulation Class (IIC)

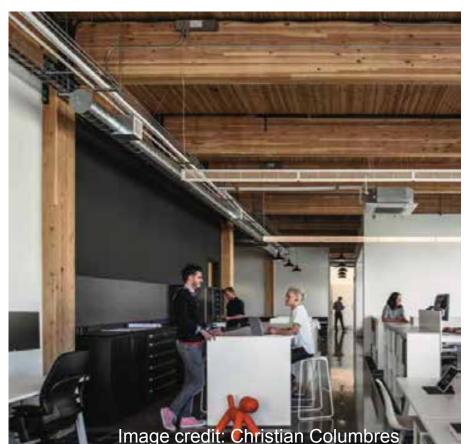
- Evaluates how effectively an assembly blocks impact sound from passing through it
- Only applies to floor/ceiling assemblies

MT: Structure Often is Finish

Photos: Baumberger Studio/PATH Architecture/Marcus Kauffman | Architect: Kaiser + PATH

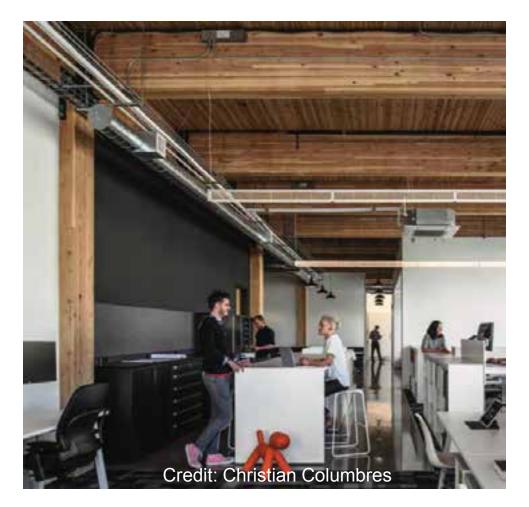
But by Itself, Not Adequate for Acoustics

TABLE 1:


Examples of Acoustically-Tested Mass Timber Panels

Mass Timber Panel	Thickness	STC Rating	IIC Rating	
3-ply CLT wall ⁴	3.07"	33	N/A	
5-ply CLT wall⁴	6.875"	38	N/A	
5-ply CLT floor ⁵	5.1875*	39	22	
5-ply CLT floor ⁴	6.875*	41	25	
7-ply CLT floor⁴	9.65"	44	30	
2x4 NLT wall ⁶	3-1/2" bare NLT 4-1/4" with 3/4" plywood	24 bare NLT 29 with 3/4* plywood	N/A	
2x6 NLT wall ⁶	5-1/2" bare NLT 6-1/4" with 3/4" plywood	22 bare NLT 31 with 3/4" plywood	N/A	
6 NLT floor + 1/2* plywood ²	6" with 1/2" plywood	34	33	

Source: Inventory of Acoustically-Tested Mass Timber Assemblies, WoodWorks7


Regardless of the structural materials used in a wall or floor ceiling assembly, there are 3 effective methods of improving acoustical performance:

- 1. Add mass
- 2. Add noise barriers
- 3. Add decouplers

Mass timber has relatively low "mass" Recall the three ways to increase acoustical performance:

- 1. Add mass
- 2. Add noise barriers
- 3. Add decouplers

There are three main ways to improve an assembly's acoustical performance:

- 2. Add noise barriers
- 3. Add decouplers

Finish Floor if Applicable	-						
Concrete/Gypsum Topping —							
Acoustical Mat Product							
				1	1. 	Di di	
CLT Panel		10					
No direct applied or hung ceiling —							

There are three main ways to improve an assembly's acoustical performance:

1. Add mass

- 2. Add noise barriers
- 3. Add decouplers

Acoustical Mat:

- Typically roll out or board products
- Thicknesses vary: Usually ¹/₄" to 1"+

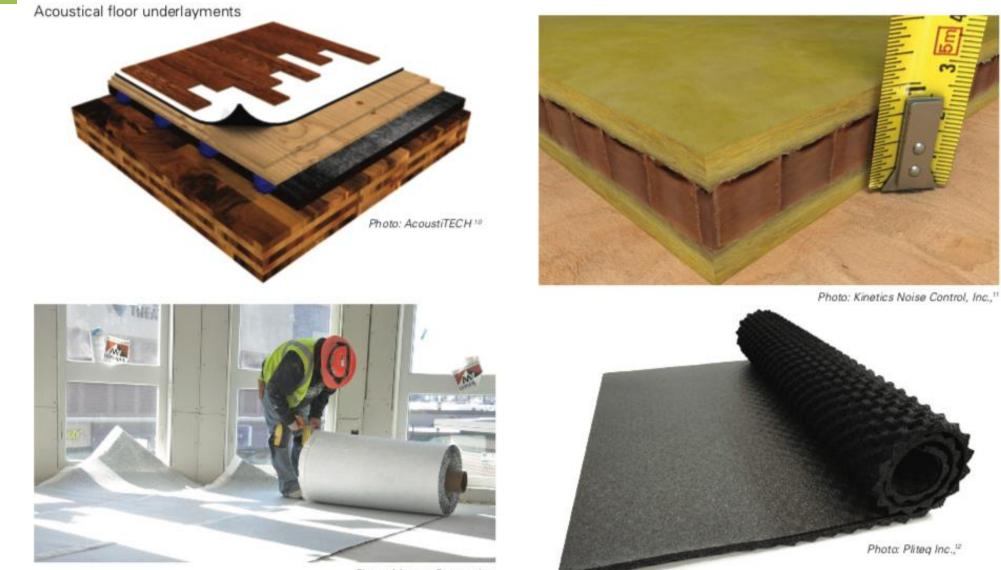
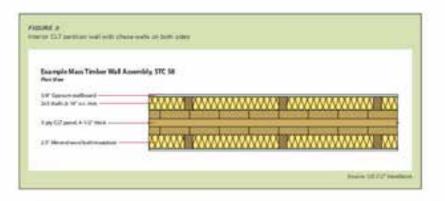


Photo: Maxxon Corporation

Common mass timber floor assembly:

- Finish floor (if applicable)
- Underlayment (if finish floor)
- 1.5" to 4" thick concrete/gypcrete topping
- Acoustical mat
- WSP (if applicable)
- Mass timber floor panels

Solutions Paper


Acoustics and Mass Timber: Room-to-Room Noise Control

History Millars, PE. 30. • Januar Technical Disease • Humathiaki

The growing solution wild code acceptance of mean tentamine a large satisf wood panel products such as creatlammated tender (CLD) and null-lammated tender (MC) for four, well and loof construction has given designers a low-cation alternative to steel, concrete, and meanory for many applications, However, the use of mean tender in multi-family and command buildings presents unique accounts challingers. While laboratory measurements of this impact and acodomic accurat isolation of treatment training assemblies such as (get) woods frames, sheat and concerns are wolder available, hower resources exist their puericly the acoustic performance of meas forces aspectides. Additionally, one of the meat dested aspects of meas timber construction is the ability to hower a funding's structure reported as finally, should inside the reset for asymmetric assemblies. While performance and teaching, mean timber building can meet the acoustic performance organization of most funding types.

Mass Timber Assembly Options: Walls

Mask timber parels tax and by used for interior and exterior. walla-stoch bearing and rock-bearing. For intense walls, that react to concast services such as alectrical and plumbing is an added consideration. Common approaches include. building a chase well in front of the mass timber wall or installing gypsum wallboard on realiant channels that are attached to the mass finder well. As with bare mess tinder Riccr panels, bare mass timber wals don't typically provide adequate noise control, and chase wells also function as acoustical improvements. For exemple, a 3-ply CLT well parel with a thickness of 3.07" has an STC racing of 33." In contrast. Figure 3 shows at interior CLT partition wall with chase wells. on both sides. This assembly achieves an STC rating of S8. accending the IBC's accordical reclarements for multi-family construction. Other exemples are included in the inventory. of taxial assembles whet above.

Acoustical Differences between Mass Timber Panel Options

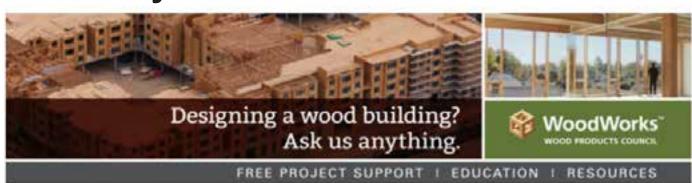
The majority of accustically-fested mass timber assemblies include CLT. However, such such as fait been done on other mass timber panel cations such as NLT and dowel-terminated timber (DLT) as well as toational heavy timber gotoes such as longue and poove ducking. Must tasts have concluded that CLT adoptical performance is slightly better than that of other mass tontian options, length termine the crossinemation of terminations in CLT panel invite of another than that certainty of terminations in CLT panel invite conditioned flexing.

For those interested in comparing period assemblies and mass brides panel types and thicknesses, the inventory moted above conterns tested assemblies using CLT, NLT, guest-beninged tensor panels (SLT), entrongue and groove decking

.

Improving Performance by Minimizing Flanking

Even when the assembles in a looking are samply designed and installed for high solution performance, consideration of features paths—In answ such as assembly memory and the solution of the solution of the solution performance in traditionary for a building to meet overall accounted performance objectives.


One way to minimum favore parties at these connections and manifaces is to use mailwest connection isolation and session trips. These products are capable of miniming structure loads is compression between structure mainting that, connections write providing mailation and breaking fixed, direct connections between members, in the contact of the threat methods for improving.

acoustical performance noted alone, these straps act as decouplies. With antight oprovidions, interfaces and parteriations, there is a much gradem chance that the acoustic partormatics of a meas temper building will meat aspectations.

Annotice interest page.

Autor Avenue

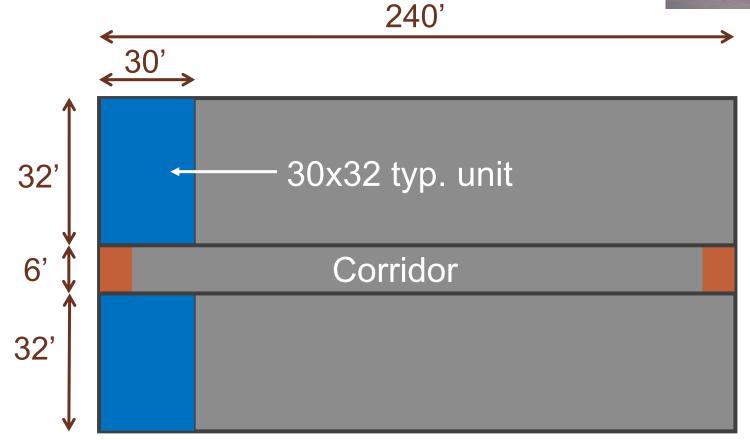
Inventory of Tested Assemblies

Acoustically-Tested Mass Timber Assemblies

Following is a list of mass timber assemblies that have been acoustically tested as of January 23, 2019. Sources are noted at the end of this document. For free technical assistance on any questions related to the acoustical design of mass timber assemblies, or free technical assistance related to any aspect of the design, engineering or construction of a commercial or multi-family wood building in the U.S., email help@woodworks.org or contact the WoodWorks Regional Director nearest you: http://www.woodworks.org/project-assistance

Contents:

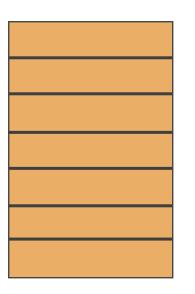
Table 1: CLT Floor Assemblies with Concrete/Gypsum Topping, Ceiling Side Exposed	
Table 2: CLT Floor Assemblies without Concrete/Gypsum Topping, Ceiling Side Exposed	
Table 3: CLT Floor Assemblies without Concrete/Gypsum Topping, with Wood Sleepers, Ceiling Side Exposed	
Table 4: NLT, GLT & T&G Decking Floor Assemblies, Ceiling Side Exposed	
Table 5: Mass Timber Floor Assemblies with Ceiling Side Concealed	
Table 6: Single CLT Wall	
Table 7: Single NLT Wall	
Table 8: Double CLT Wall	
Sources	
Disclaimer	

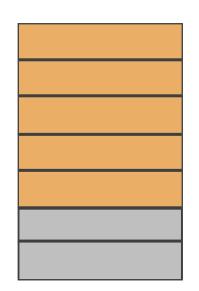

http://bit.ly/mass-timber-assemblies

Key Early Design Decisions

Early Design Decision Example

7-story, multi-family building, typ. floor plan:




Key Early Design Decisions

Early Design Decision Example

MT Construction Type Options:

- 7 stories of IV-C
- 5 stories of IIIA over 2 stories of IA podium
- 5 stories of IV-HT over 2 stories of IA podium

Reduce Risk Optimize Costs

Wood PRODUCTS COUNCIL

For the entire project team, not just builders

Lots of reference documents

Download Checklists at

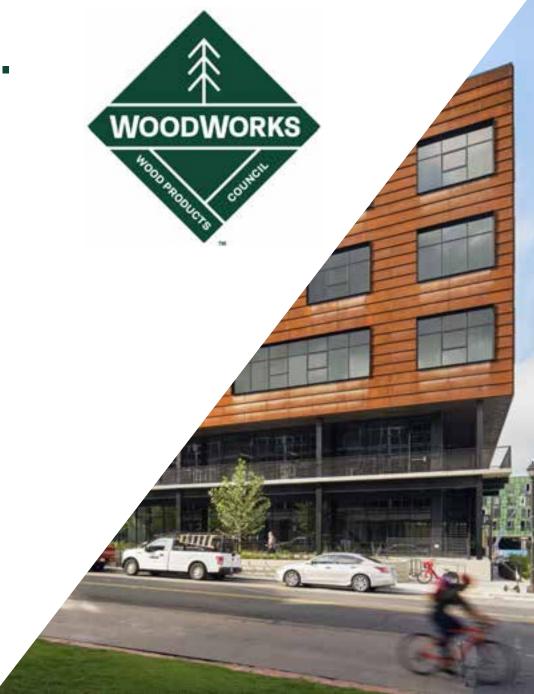
www.woodworks.org

www.woodworks.org/wp-content/uploads/wood_solution_paper-Mass-Timber-Design-Cost-Optimization-Checklists.pdf

Mass Timber Cost and Design Optimization Checklists

WoodWorks has developed the following checklists to assist in the design and cost optimization of mass timber projects. The design optimization checklists are intended for building designers (architects and engineers), but many of the topics should also be discussed with the fabricators and builders. The cost optimization checklists will help guide coordination between designers and builders (general contractors, construction managers, estimators, fabricators, installers, etc.) as they are estimating and making cost-related decisions on a mass timber project.

Most resources listed in this paper can be found on the WoodWorks website. Please see the end notes for URLs. Flight Tech Federal Craft Unites -Minister, Util Macket Hacket Hacket Experies Germin A Associations Experies Germin A Associations Experies Consulting Control Germin Consulting


Keys to Mass Timber Success: Know Your WHY Design it as Mass Timber From the Start Leverage Manufacturer Capabilities **Understand Supply Chain Optimize Grid** Take Advantage of Prefabrication & Coordination **Expose the Timber Discuss Early with AHJ** Work with Experienced People Let WoodWorks Help for Free **Create Your Market Distinction**

Questions? Ask me anything.

Marc Rivard, PE, SE Regional Director | MA, CT, ME, NH, RI, VT

(617) 997-3890 marc.rivard@woodworks.org

901 East Sixth, Thoughtbarn-Delineate Studio, Leap!Structures, photo Casey Dunn