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Resources . Upcoming Events

New WOOD SOLUTION PAPER —

Mass Timber and the Future of Urban
CLT Diaphragm Design for = : Multi-Family Development | Octob.er 12
: ;. : : 1.0 AIA/CES HSW LUs, 1.0 PDH credit, 0.10
Wind and Seismic Resistance .o~ :

Using SDPWS 2021 and ASCE 7-22 ICC credit

Fire and Structural Analysis for Mass
Timber Buildings | November 9

1.5 AIA/CES HSW LUs, 1.5 PDH credits, 0.15
ICC credits

New CASE STUDIES
Adidas East Village Expansion

Innovative mass timber designs meet
ambitious construction timeline

Thomas Logan
Wood-frame urban podium project fills
need for affordable downtown housing

A

Visit woodworks.org/publications-media Visit woodworks.org/events




Mass Timber

Business Case Studies

Real financial information on real deals

» Prepared by WoodWorks and
Conrad Investment Management

« Include qualitative influences + quantitative
data to examine investment success

I De Haro
PROPERTY SUB-TYPES: ,
For-Rent Institutional Housing « Institutional Offices «
Industrial Buildings « Redevelopment/Additions «

Purpose-Built Owner/Occupied (Student Housing)




New for GCs and installers:
U.S. Mass Timber Construction Manual { WOODWORKS




Nominations Open

WOODWORKS

2023 Wood
Design Awards

DEADLINE: OCT. 14, 2022

S G e The Lighthouse | Gensler
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Design Professionals:
One-on-One Support & Assistance PROJECT SUPPORT FIELD DIVISION

Senior Director

1‘ Senior Director
Field Division West

Field Division East

OPEN POSITION
David Hanley OPEN POSITION Anthony Harvey, PE Marc Rivard, PE, SE 5

COMING SO0ON

0

elsea Drenick, SE Mike Romanowski, SE

Janelle Leafblad, PE son Reynolds, MBA, DBIA

Find the Regional
Director for your
location:

oin
Gt

Jessica Scarlett

leff Peters, PE, CGC



Meet the Help Desk A

WOODWORKS

Scott Breneman, PhD, PE, SE Ashley Cagle, PE, SE

Melissa Kroskey, AlA, SE Terry Malone, PE, SE Ricky McLain, PE, SE

Need technical assistance on a project?

Email: help@woodworks.org




NOW HIRING

REGIONAL DIRECTOR - CHICAGO, IL OR
MINNEAPOLIS, MN METRO AREA

TECHNICAL DIRECTOR - REMOTE, U5

REGIONAL DIRECTOR - SEATTLE, WA
METRO AREA

WOODWORKS




Current State of Mass Timber Projects

As of June 2022, in the US, 1,502 multi-family, commercial, or institutional projects have
been constructed with, or are in design with, mass timber.

WOOD
PRODUCTS

\V/ COUNCIL.

Stage
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Source: WoodWorks, June 30, 2022

* This total includes modern mass timber and
post-and-beam structures built since 2013

Scan this code or use the
url to find the map and
more details online.
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https://www.woodworks.
org/resources/u-s-mass-
timber-projects/
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Continuing Education Credits

* Participants will receive a certificate of completion via email

* AIA credits will be processed by WoodWorks

 To receive credit and a certificate, attendees must stay on
for the duration of the seminar.



Ask Questions through the Q&A Box

»  Submit questions in the Q&A box
at the bottom of your screen as
they come up in the
presentations. We will get to as
many questions as possible.
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AlA CES Course

WUy,

“The Wood Products Council” is a Registered Provider with The American
Institute of Architects Continuing Education Systems (AIA/CES), Provider #G516.

Credit(s) earned on completion of this course will be reported to AIA CES for AlA
members. Certificates of Completion for both AIA members and non-AlA
members are available upon request.

This course is registered with AIA CES for continuing professional education. As
such, it does not include content that may be deemed or construed to be an
approval or endorsement by the AlA of any material of construction or any
method or manner of handling, using, distributing, or dealing in any material or
product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.



Learning Objectives

1. Review carbon basics and how material choice is related to sustainability.
2. Learn how wood products can be beneficial for the environment.

3. ldentify mass timber products available in North America and consider how
they can be used under current building codes and standards.

4. Discuss benefits of using mass timber products, including structural versatility,
prefabrication, lighter carbon footprint, and reduced labor costs.



_..Climate Change Background
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Rising Temperatures and Melting Glaciers




From Rising Waters to Catastrophic Wildfires




Carbon & Greenhouse Gas Emissions

CO, in the atmosphere and annual emissions (1750-2019)

atmospheric CO, (parts per million)
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Data; NOAA, ETHZ, Our World in Data



Global Population Increase

2050 =9.9
billion people

2020=7.8
billion people -=

Source: www.prb.org



New Buildings & Greenhouse Gases

Global CO, Emissions by Sector Buﬂdmgs generate nearly
40% of annual global

greenhouse gas emissions
(building operations + embodied

Building
Operations energy)
28%
Indust .
"30% Embodied energy: 11%
Concrete, iron, steel ~9%
: Building
Transportation Materials and
22% Conslti*;ction

(Embodied Energy)

Source: © 2018 2030, Inc. / Architecture 2030. All Rights Reserved. Data Sources:
UM Environment Global Status Report 2017; EIA International Energy Outlook 2017

Image: Architecture 2030



US Climate Policy

In the absence of strong Federal Policy, states and municipalities have adopted
their own regulations

« CA: Buy Clean California — first US law to address embodied carbon in
construction materials

GWP must not exceed set limits

« Currently targets structural steel, steel rebar, glass, and mineral wool
Federal Policy is advancing under the Biden Administration:
* Rejoining the Paris Agreement

« Several first-week executive actions aimed at advancing zero-carbon
technologies, increasing reforestation and carbon sequestration



Measuring Greenhouse Gases

Global Warming Potential (GWP) was developed to allow comparisons of the
global warming impacts of different gases. Specifically, it is a measure of how
much energy the emissions of 1 ton of a gas will absorb over a given period of
time, relative to the emissions of 1 ton of carbon dioxide (CO,). The time period
usually used for GWP’s is 100 years. (EPA)

Carbon Dioxide (CO,) 1

Methane (CH,) 28-36

Nitrous Oxide (N,O) 265-298

Fluorinated Gases Thousands to Tens of Thousands

Carbon Dioxide Equivalents (CO,,,) = International standard practice is to
express greenhouse gases in terms of CO, equivalents



Carbon vs CO,

1 ton Carbon # 1 ton CO,

1 ton Carbon = (44/12=) 3.67 tons CO,



Carbon Terms

« Embodied Carbon: Carbon emissions associated with the entire life cycle of the
building including harvesting, mining, manufacturing, transporting, installing,
maintaining, decommissioning, and disposing/reuse of a material or product

« Operational Carbon: Carbon emissions associated with operating a building
iIncluding power, heat, and cooling

Embodied Carbon Operational Carbon

Manufacture, transport and installation of construction materials Building Energy Consumption

Image: Boston Society for Architecture
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_...How Does Wood Fit in?
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Carbon Benefits of Wood

S v e Dottt Ao

 Less energy intensive to The closed loop of

FOREST CARBON

manufacture than steel or in the ATMOSPHERE
concrete AN

Carbon
Cycle

Wood products ¢an store
e Less fossil fuel consumed  crtonandeansubstitute for

£mission-intensive products

during manufacture T

 Avoid process emissions i

Fires & decomposition
following disturbance events
release carbon into the

atmosphere,

« Carbon storage in forests
and promote forest health

« Extended carbon storage in et
products '

@mm Offon of Sustairatéey aed Clmasn  Agrk 2010

Image: USDA US Forest Service



More Carbon Terms

Carbon Sequestration: The process by which CO, is removed from the
atmosphere and deposited in solid or liquid form in oceans, living organisms, or

land.

Carbon Storage: Carbon is stored as a solid in the form of plant material:
roots, trunks, branches, stems, and leaves. It can continue to be stored in

wood building materials. .

S 7’
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Building with wood =
Proactive climate protection

(i

Image: Dovetail Partners, Inc.



Carbon Storage
Wood = 50% Carbon (dry weight)
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Carbon Cycle

Renewable Resource | Carbon Sequestration

Source: Building with Wood — Proactive Climate Protection, Dovetail Partners, Inc.
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_..Specifics of Carbon Storage
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Where is Carbon Stored?

Harvested Wood Pools
« Harvested Wood Products

« Solid Waste Disposal Sites
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* Aboveground Biomass
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Soil Organic Carbon
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Source: https://usaforests.org/



Carbon Storage in Harvested Wood Products

As of 2019, the carbon stock for Harvested
Wood Products in Use in the conterminous 48
states is estimated at 1,521 Million Metric Tons.

Harvested Wood Harvested Wood
Products in Use Products in SWDS

Aboveground
Biomass

Soil (Organic)

‘Belowground
) Biomass

Dead Wood

Soil (Mineral

Litter

Carbon Stocks in Forest Land and Harvested Wood Pools, 2019

https://www.epa.qov/sites/production/files/2020-04/documents/us-ghg-inventory-2020-main-text.pdf

EPA 430-R-20-002

Inventory of
U.S. Greenhouse Gas
Emissions and Sinks

1990-2018



https://www.epa.gov/sites/production/files/2020-04/documents/us-ghg-inventory-2020-main-text.pdf

Table 6-12: Forest Area (1,000 ha) and C Stocks in Forest Land Remaining Forest Land and
Harvested Wood Pools (MMT C)

1990 2005 2015 2016 2017 2018 2019

Forest Area (1,000 ha) 279,748 279,749 280,041 280,041 279,893 279,787 279,682

Carbon Pools (MMT C)

Forest Ecosystem 51,527 53,886 55,431 55,592 55,746 55,897 56,051
Aboveground Biomass 11,833 13,484 14,561 14,672 14,780 14,884 14,989
Belowground Biomass 2,350 2,734 2,982 3,008 3,033 3,056 3,081
Dead Wood 2,120 2,454 2,683 2,707 2,731 2,753 2,777
Litter 3,662 3,647 3,638 3,639 3,639 3,640 3,641
Soil (Mineral) 25,636 25,639 25,640 25,640 25,637 25,637 25,638
Soil (Organic) 5,927 5,929 5,927 5,927 5,926 5,926 5,926

Harvested Wood 1,895 2,353 2,567 2,591 2,616 2,642 2,669
Products in Use 1,249 1,447 1,490 1,497 1,505 1,513
SWDS 646 906 1,076 1,094 1,112 1,129 1,148

Total C Stock 53,423 56,239 57,998 58,183 58,362 58,539 58,720

Notes: Forest area and C stock estimates include all Forest Land Remaining Forest Land in the conterminous 48 states

https://www.epa.gov/sites/production/files/2020-04/documents/us-ghg-inventory-2020-main-text.pdf



https://www.epa.gov/sites/production/files/2020-04/documents/us-ghg-inventory-2020-main-text.pdf

Harvested Wood Products

« Solid sawn wood products have the
lowest level of embodied energy.

* Wood products requiring more
processing steps (for example,
plywood, engineered wood products,
flake-based products) require more
energy to produce but still require
significantly less energy than their
non-wood counterparts.

Source: USFPL Wood Handbook; Wood as a
Sustainable Building Material Image: Structurecraft Image: Georgia-Pacific



_...Tools to Evaluate Carbon Impact
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Whole Building Life Cycle Analysis (WBLCA)

“Evaluation of the inputs, outputs, and potential T
environmental impacts... throughout its life cycle” of Embodied Carbon in

Climate Smart Buildings

 WBLCA covers all stages in the life cycle of a
building and its components

« Several tools available; various methodologies

o https://www.thinkwood.com/education/calculate-
wood-carbon-footprint

How to Calculatethe @~ @ s —
Wood Carbon Footprint | = —

o https://www.thinkwood.com/blog/understanding- st S

the-role-of-embodied-carbon-in-climate-smart- i:’::.;.éii_.’:
buildings et St |



https://www.thinkwood.com/education/calculate-wood-carbon-footprint
https://www.thinkwood.com/blog/understanding-the-role-of-embodied-carbon-in-climate-smart-buildings

WoodWorks Carbon Calculator

Volume of wood used:

* Available at woodworks.org \'} 208,320 cubic feet

. EStimateS tOtaI WOOd Mass in 3 bU||d|ng * U.S. and Canadian forests grow this much wood in:

17 minutes

+ Relays estimated carbon impacts: C| e won

° i Avoided greenhouse gas emissions:
Amount of carbon stored in wood | 68| 5507 et o of cor

° TOTAL POTENTIAL CARBON BENEFIT:
Amount Of gree_nhouse gas _ / 13,958 metric tons of CO,
emissions avoided by choosing T
wood over a non-wood material EQUIVALENT TO:

ﬁ 2,666 cars off the road for a year

Source: US EFA

ﬂ Energy to operate a home for 1,186 years

“d WoodWorks : 4

WOOD PRODUCTS COUNCIL http://www.woodworks.org/carbon-calculator-download-form/
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Bullitt Center
Seattle, WA

« Designed for a life
span

 Met criteria for

* Rooftop photovoltaic cells
generate electricity for the
building; building recycles its
own water

* 6 over 2 design; 52,000 sf

« Heavy timber frame: glulam
and NLT panels

Architect: The Miller Hull Partnership
Structural Engineer: DCI Engineers



Bullitt Center
Seattle, WA

v Volume of wood used:

24,526 cubic feet

i U.5. and Canadian forests grow this much wood in:

2 minutes

c Carbon stored in the wood:

545 metric tons of CO,

1,158 metric tons of CO;

TOTAL POTENTIAL CARBEON BENEFIT:
1,703 metnc tons of CO;

e
@e@ Avoided greenhouse gas emissions:

Source: LS EPA

EQUIVALENT TO:

[ﬁ| 325 cars off the road for a year
[ﬂ | Energy to operate a home for 145 years

4 A Pt o N A LA
BULLITTY CENTE
W HhBis S ey -

Wood Shines in Sustainable
‘Show & Tell’

Bullitt Center's heavy timber frame
teaches environmental and
structural lessons




Bullitt Center
Seattle, WA

Volume of wood:

— _—— | Based on userinputs
v Volume nf_wnnd used:
| 24,526 cubic feet
U.S. and C dian f ts thi h din:
4 | o tes emE i o —___| Volume of Wood - Volume of Logs =
c Carbon stored In the wood: Volume of Trees = Tree Growth Rate
545 metrnc tons of CO,
Avoided greenhouse gas emissions:
| e o e Volume of Wood - Mass of Wood -
0
' TOTAL POTENTIAL CARBON BEMNEFIT: Mass Of Carbon (50 /0 Of WOOd) 9
Y | 1,703 metric tans of €O, Mass of CO, (3.67 x mass of Carbon)
EQUIVALENT TO:

ﬁ 325 cars off the road for a year

Source: LIS ERPA

ﬁ Energy to operate a home for 145 years



Candlewood Suites
Redstone Arsenal, AL

4 stories; 62,688 sf

First CLT hotel in USA

37% faster overall construction
40% fewer construction workers

Trained unemployed veterans

"'""‘oto IH GArmy Hotels Lendlease

Architect: Lendlease
Project Engineer: Schaefer Structural Engineers



Candlewood Suites

Redstone Arsenal, AL

Photo: IHG Army Hotels, Lendlease

Carbon Benefits

Wood lowers a building’s carbon footprint in two ways. It continues
to store carbon sbsorbed by the tree while growing, keeping it out of
the atmosphere for the lifetime of the building—longer if the wood is
reclaimed and reused or manufactured into other products. When used
in place of fossil fuel-intensive materials such as steel and concrete, it
also results in ‘avoided’ greenhouse gas emissions.

Volume of wood products used:
935,696 board feet (equivalent)

U.S. and Canadian forests grow this much wood in:
5 minutes

Carbon stored in the wood:
1,276 metric tons of C0O-

Avoided greenhouse gas emissions:
494 metric tons of CO,

TOTAL POTENTIAL CAREBON BENEFIT:

NBRISIE

1,770 metric tons of CO,

EQUIVALENT TO:

374 cars off the road for a year

@ Energy to operate 187 homes for a year

Source: Us EFA

Estimated by the Wood Carbon Calcwiator for Buildings, based on resaarch by
Sarthre, R. and J. O'Coennor, 2000, A Sypnthesis of Research on Weod Products
and Gregnhouse Gas Impacts, FPinnovabionz. Nota: CO. on this chart refars o
COL equivalent.



Carbon Benefits

Wood lowers a building’s carbon footprint in two ways. It continues

Ca n d IeWOOd S u ites to store carbon absorbed by the tree while growing, keeping it out of

the atmosphere for the lifetime of the building—longer if the wood is
Red StO N e Arse N a I AL reclaimed and reused or manufactured into other products. When used
) in place of fossil fuel-intensive materials such as steel and concrete, it

also results in ‘avoided’ greenhouse gas emissions.

v Volume of wood products used:

, 935,696 board feet (equivalent)

Emissions avoided by choosing wood
over alternative building material
based on building type

; U.S. and Canadian forests grow this much wood in:
5 minutes

Carbon stored in the wood:
1,278 metric tons of C0;

Avoided greenhouse gas emissions:
494 metric tons of CO,

TOTAL POTENTIAL CARBON BENEFIT:
1,770 metric tons of CO,

Total Potential Carbon Benefit = - —
Carbon Stored + Emissions Avoided EQUIVALENT TO:

% 374 cars off the road for a year

u

Convert Total Potential Carbon Benefit / @ e A R T

to laymen’s terms like emissions from -
Operating acar or a home Estimated by the Wood Carbon Calculator for Buildings, based on resaarch by

Sarthre, R. and J. O'Coennor, 2000, A Sypnthesis of Research on Weod Products

SOUrT

and Greanhouse Gas Impacts, FPinnovabions. Nota: CO. on this chart refars fo
COL equivalent.



Crescent Terminus
Atlanta, GA

o J o -:'ﬁ A e

Project Architect: Lord Aeck Sargent
Structural Engineer: SCA Consulting Engineers

5 stories wood over 3 stories
of concrete parking (Type IA
podium)

Savings by using wood could
be spent on luxury amenities

Dedication to sustainable
investments

Flexibility in design

Rooftop gardens supported
by wood trusses



Crescent Terminus
Atlanta, GA

Volume of wood products used:
3.1 milion board feet {(equivalent)

U.5. and Canadian forests grow this much woed in:
16 minutes

Carbon stored in the wood:
4,327 metric tons of CO;

Avoided greenhouse gas emissions:
0196 maetric tons of CO;

TOTAL POTENTIAL CARBON BENEFIT:
13,523 metric tons of CO;

NEIISS

EQUIVALENT TO.
E 2,583 cars off the road for a year
Photo: Crescent._(__)_qmmunities 7 g | " ‘% @ Energy to operate a home for 1,149 years
(. A
Project Architect: Lord Aeck Sargent P Ml i s b b

Structural Engineer: SCA Consulting Engineers Gas Impacts, FRinnovations. Nate: CO; on this chart refers to (0, equivatent



El Dorado High School

El Dorado, AR | m

- 322,500 square feet

- $2.7 million savings by
switching from steel and masonry
to wood

- Exposed wood to acknowledge
Arkansas landscape and provide
enriching educational space

- Barrel-vaulted roof with exposed
glulam bowstring trusses in the
arena

'rq H 1 A
3,:, s 4;; - % : Architect: CADM Architecture, |
| «":« . AEL a ™ rchitect: . rchitecture, Inc.
—— Denms.r 2 - .L‘; P =2 Y — Structural Engineer: Engineering Consultants, Inc.

\'_\




El Dorado High School
El Dorado, AR

Architect: CADM Architecture, Inc.
Structural Engineer: Engineering Consultants, Inc.

Carbon Benefits
For more infoarmation on the calculations below, vl woodwarks.arg

Wood lowers a bullding's carbon foolprnt in o ways, It continues to stone
carbon absorbed during the tree's growing cycle, keepimg it out of the atmo-
sphere for the hfetime. of the bullkding=—Ilonger if the wood 5 reclamed and
used elswhers, When used in place of fossil fuel-intensive materials such as
steel and concrete, it also results in ‘avoided’ greenhouse gas emissons.

1
|

> (<]

|

|
J
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Volume of wood used:
4,340 cubic meters/ 153,140 cubic feet of lumber,
panels and engineered wood

U.5. and Canadian forests graw this much wood in:
13 minutes

Carbon stored in the wood:
3.660 metnc tons of CO;

Avoided greenhouse gas emissions:
7,780 metnc tons of C0;

TOTAL POTENTIAL CARBON BENEFT:
11,440 metric tons of CO;

Lource: US EPS

EQUIVALENT TO:

2,100 cars off the road for a year
Energy to operate a home for 970 years

Estrnabied by the Wood Carbon Calowaror for Suidings, bated an réseanch by Sarmhee, K
and L Q' Connar, 2000, A Synthesss of Besearch on Wood Products and Greenhouwse Gas
frmpacts, FRinnovadions. Aode. CO on this chart refers to O, egurvalent




1430 Q

Sacramento, CA

-~ -

- 6 stories of wood + mezzanine
over 2-story concrete podium
(I11A over IA)

- 63,000 square feet
- First of its kind in USA

- Needed 6 floors of residential
units to make the project viable

3 ¢ ert o

« Concrete and steel were too
expensive

Architect: HRGA, The HR Group Architects
Structural Engineer: Buehler



1430 Q

Sacramento, CA

Volume of wood products used:
1.708 cubic meters (60, 334 cubic feat)

.5, and Canadian forests grow this much wood in:
B minutas

Carbon stored in the wood:
1,426 matnc tons of CO;

Avoided greenhouse gas emissions:
3,031 metric tons of COy

"

TOTAL POTENTIAL CARBOMN BENEFIT:
4 45T metric tons of CO,

< [2] 0w (<]

EQUIVALENT TO:

[ﬁ 942 cars off the road for a year

e

Sounce LS ERY

=
[ﬁ | Energy to operate 471 homes for a year
o |

- ) Eztimated by the Wood Carben Calowlator for Buildings, baged on ressarnch by

al ‘ Lebie 108 . . : Sarthve, A, and J, O'Connor, 2010, A Spnthesis of Research on Wood Products
BB T R o =S . B ond Greenhouse Gas impacts, FRinnovations, Nate: CO, on this chart refers fo
CO, egquivalant.

Photo: Gary Folkins




Tallhouse, Boston
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Soule: Generate Architecture



Tallhouse
Boston

Building Mass

Global Warming Potential (.0 vy

Reference |
Condtete Sabs on Stewl Deck,
Seel Frame, Concrete Cores

Reference 2
Concrate Flat Sty
Corcrote Cores

Timber Use |
Trrder Fioon Steet Framw
Cercrate Corey
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Timber Use 2
Terter Post, Beamn & Pute
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Forest to Cities
A Systemic Solution in Action

www.ForesttoCities.org

64
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Key Early Design Decisions

il =TT - i I K ———

What is the Single Most Important Early Design Decision on
a Mass Timber Project? Is it:

Construction Type MEP Layout
Fire-Resistance Ratings Acoustics
Member Sizes Concealed Spaces
Grids & Spans Connections
Exposed Timber (where & how much) Penetrations

The Answer is...They All Need to Be Weighed (Plus Others)



Key Early Design Decisions

Early = Efficient

Realize Efficiency in:
* Cost reduction o
* Material use (optimize fiber use, — N

minimize waste) % B EST
 Construction speed
 Trad dinati |
. Minimize RFls PRACTICE
e

Commit to a mass timber design
from the start




Key Early Design Decisions

One potential design route:

Y
1. Building size & occupancy informs  SS08 “‘;‘ u’:{“_‘_‘:“ A!"//

.-—“- _-———
L . T S
3

construction type & grid

2. Construction type informs fire
resistance ratings

3. Grid & fire resistance ratings inform
timber member sizes & MEP layout

But that’s not all...

.




Key Early Design Decisions

Other impactful decisions:

Acoustics informs member sizes (and
vice versa)

Fire-resistance ratings inform
connections & penetrations

MEP layout informs use of concealed
spaces

Miller Hull Partnership, photo: John Stz



Key Early Design Decisions

Other impactful decisions: | |

‘ ] Y | -
* Grid informs efficient spans, MEP - =EE====E§:;-;.

layout

 Manufacturer capabilities inform

member sizes, grids & connections ” u I -
E =
« Lateral system informs
connections, construction I-l ll . H .

sequencing

And more...

Platte Fifteen, Oz Architecture, KL&A
Engineers & Builders, Arch Angle Media



Key Early Design Decisions

Where do we start?

TIME TO
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Construction Types

IBC defines 5 construction types: I, I, IlI, IV, V
A building must be classified as one of these

Construction Types | & II:
All elements required to be non-combustible materials

However, there are exceptions including several for mass timber



Construction Types

Where does the code allow MT to be used?
. Roof Decking

Image: StructureCraft Builders



Construction Types

e L —— S

All wood framed building options:

Type lli
Exterior walls non-combustible (may be FRTW)

Interior elements any allowed by code, including mass timber

Type V
All building elements are any allowed by code, including mass timber

Types lll and V are subdivided to A (protected) and B (unprotected)

Type IV (Heavy Timber)
Exterior walls non-combustible (may be FRTW OR CLT)

Interior elements qualify as Heavy Timber (min. sizes, no concealed
spaces except in 2021 IBC)




Construction Types

Where does the code allow MT to be

used?

« Type lll: Interior elements (floors,
roofs, partitions/shafts) and exterior
walls if FRT

J - ) T‘ "h‘; - ) 5 - -
IE Block I, RMW Architecture & Interiors, Buehler Engineering,

Bernard André Photography



Construction Types

Where does the code allow MT to be used?

« Type IV: Any exposed interior elements & roofs, must meet
min. sizes; exterior walls if CLT or FRT. Concealed space
limitations (varies by code version)

y
- iw
tl. 0

Image:|Perkins +MVill




Construction Types

Type IV construction permits exposed
heavy/mass timber elements of min. sizes.

Framing  S0LC DI S|
= | Columns  8x8 6°/4x 8% 7x7%
é Beams 6x10 5x107% 5/ x 9%
“ Columns 6x8 5x8% 5/ x7%
e Beams* | 4x6 3X6'/s 3% X 5%

Minimum Width by Depth in Inches
See IBC 2018 2304.11 or IBC 2015 602.4 for Details

*3” nominal width allowed where sprinklered

—P oto:WoodWofk‘s>



Construction Types

f'ype IV min. sizes: WL )

Floor Panels/Decking:

« 47 thick CLT (actual thickness)

47 NLT/DLT/GLT (nominal thickness)

« 3" thick (hominal) decking covered
with: 17 decking or 15/32" WSP or %"
particleboard

Photo: WoodWorks



Construction Types

ype IV min. sizes:

Interior Walls:

 Laminated construction 4” thick

« Solid wood construction min. 2 layers
of 1" matched boards

« Wood stud wall (1 hr min)

* Non-combustible (1 hr min)

Verify other code requirements for FRR
(eg. interior bearing wall; occupancy
separation)




Construction Types

Type IV concealed spaces

Can | have a dropped ceiling”? Raised access floor?




Construction Types

Type IV concealed spaces

Until 2021 IBC, Type IV-HT provisions prohibited concealed spaces

4 E CONCEALED ACE CONZEALED SPACE
f T&3 (FLOOR) T&(3 FLAHK FLOOR OR ROOF
&— FRAMED ©R SLUSD-LAMIMATED MENEES DRYWaLL, WL L EOARD, BT DRTWALL OR SIMILAR SIDING
FLOGRS 6 % 10 (WM
ROOTS 6 28 MIN SHEET METAL DUST
FROHIEN =0 (NS 1AL [+
PEREMITTED INETALLATICH
CONCEALE E
A FINISH FLODR MG
SUSHENDED CEILING COMCEALEREFACE
PROHEBITED IMSTAL b PROAIE! EL (M LLA Y

Credit: IBC



Construction Types

Type IV concealed space options within 2021 IBC

Option 1:

Sprinklers in concealed spaces

Dropped ceiling




Construction Types

Type IV concealed space options within 2021 IBC

Option 2:

—
N
_

Noncombustible insulation () 58888%%6 666668

Dropped ceiling




Construction Types

Type IV concealed space options within 2021 IBC

Option 3:

5/8" Type X gypsum on all mass timber

surfaces within concealed space

Dropped ceiling |




Construction Types

Whhard Ml ain, M58

Secsar Technicof Direcios

WORTWorss = W N odam

Concealed Spaces in Mass Timber
and Heavy Timber Structures
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Concealed spaces solutions paper

i

kA lw
L =

The John W. Olver Design Building at UMass

Amherst includes exposed wood structure
in some areas and dropped ceilings in others.
Architect: Leers Weinzapfel Associates

https://www.woodworks.org/wp-content/uploads/wood solution paper-

Concealed Spaces Timber Structures.pdf



https://www.woodworks.org/wp-content/uploads/wood_solution_paper-Concealed_Spaces_Timber_Structures.pdf

Construction Types

Where does the code allow MT to be used?
 Type V: All interior elements, roofs & exterior walls

Image: Christian Columbres Photogra;!hy



Construction Types

Allowable mass
timber building size
for group B
occupancy with
NFPA 13 Sprinkler

Pmﬁg

Type V: 4 stories

Cre “EmaPme. -
.

Type IV: 6 stories



Construction Types New Options in 2021 IBC

Allowable mass timber building
b size for group B occupancy with
Office o :
Assembl (18 stories) :
Residential NFPA 13 Sprinkler
Office
~ 180 ft.
Mercantil Assembl :
{1gr:fnrieg]— | Hes{dam{ai... . (12 stories)
Office . B5ft.
Mercantile (9 stories) — | g (9 stories)
(8 stories) — Residential —
(8 stories)
Assembly
Mercantile
(6 stories)
Type IV-A Type IV-B Type IV-C |




Fire Design of MT

CLT char depth

Original CLT depth

Credit: David Barber, ARUP



Key Early Design Decisions
. . - -

TABLE 601
FIRE-RESISTANCE RATING REQUIREMENTS FOR BUILDING ELEMENTS (HOURS)
TYPEI TYPE I TYPE I TYPE IV TYPEV ‘
BUILDING ELEMENT
A | B A | B A B HT A B |
Primary structural frame’ (see Section 202) 3 iy 1
Bearng walls
Exterior™! 3 2 1
Internor 3: 2: l
Nonbearing walls and partitions
Exterior
Nr.:-nbeag:‘ldg walls and partitions 0 0 0 ek

Inten

Floor construction and associated secondary members
(see Secnon 202)

Roof construction and associated secondary members
(see Section 202

602.4.6

Source: 2018 IBC



Key Early Design Decisions

Constructiontype influences FRR , )

* Type IV-HT Construction (minimum sizes)
« Other than type IV-HT: Demonstrated fire resistance

Method of demonstrating FRR (calculations or testing)
can impact member sizing



Code Path for Exposed Wood Fire-Resistance Calculations

F R R D es i g n Of M T ::t:o{ifm detenmining fire rosistance

* Prescriptive designs per IBC 721.1

Calculations in accordance with IBC 722
Fire-resistance designs documented in sources
Engineering analysis based on a comparison
Alternate protection methods as allowed by 104.11

Calculated FRR of Exposed MT:
IBC to NDS code compliance path

IBC 722
Calculated Fire Resistance

“The calculated fire resistance of exposed wood
r members and wood decking shall be permitted

& in accordance with Chapter 16 of ANSI/AWC
o ; National Design Specification for Wood
Construction (NDS)
NDS
sosmmmon. NDS Chapter 16
INTERNATIONAL Fire Design of Wood Members

BUILDING COOE

* | imited to calculating fire resistance up to 2 hours

* Char depth varies based on exposure time
{i.e., fire-resistance rating), product type and
lamination thickness. Equations and tables are
provided.

¢ TR 10 and NDS commentary are helpful in
implementing permitted calculations.

5




FRR Design of MT

NDS Chapter 16 includes
calculation of fire resistance of
NLT, CLT, Glulam, Solid Sawn
and SCL wood products

Table 16.2.1B Effective Char Depths (for CLT
with j,=1.5in./hr.)

Required Effective Char Depths, a..,
Fire (in.)
Endurance lamination thicknesses, huy (in.)

(Ex) 58 |34 78 | 1 |1-1/4| 1-3/8 |1-1/2|1-3/4| 2

1-Hour 22 |22 )|:21 |20 20| 19 1.8 | 1.8 | 18
14-Hour 34 |32 31 |30)129 | 28 | 28 | 28 | 26
2-Hour 44 |43 | 41 |40| 39 | 38 | 36 | 36 | 3.6

Credit: FP:I_,n novations



FRR Design of MT

NDS Table 16.2.2 Design stress adjustment factors applied to adjust
to average ultimate strength under fire design conditions

Table 16.2.2 Adjustment Factors for Fire Design!

ASD
|
Na..- NI-. A é‘
; : § | £ =
E 2| & | 3y E:
£ W o v g = ‘%
2 g o E & g &
2 | 2 | & | A |3
BEﬂdi]lg Stfﬂﬂgth Fb. X CF CV Cf“ CL -
Beam Buckling Strength Foe X - - . . -
Tensile Strength F, X C. - . % 2
Compressive Strength F. X Cr - - - Cp
Column Buckling Strength F.g X ; - - - - -
1. See 4.3, 5.3, 8.3, and 10.3 for applicability of adjustment fact neci figiproducts.

2. Factor shall be based on initial cross-section dimensions.
3. Factor shall be based on reduced cross-section dimensions. Source: AWC’s NDS



FRR Design of MT

AWC'’s TR10 is a technical design guide, aids in the use of NDS

Chapter 16 calculations

Calculating the
Fire Resistance of
P| Wood Members
' and Assemblies

I Technical Report No. 10

AMERICAN

A WOOD
L‘J COUNCIL

Example 5: Exposed CLT Floor - Allowable Stress Design

Simply-supporied cross-laminated fimber (CLT) floor spanning L=18 ft in the strong-axis direction. The
design loads are Qus=B0 psf and Qoes=30 psf including estimated self-weight of the CLT paned. Floor
decking, nalled to the unexposed face of CLT panel, is spaced to restrict hol gases from venting through
half-lap joints at edges of CLT panel sections. Calculate the required section dimensions for a 1-hour
struciural fire resistance time when subjected (o an ASTM E119 fire exposure.

For the struchural design of the CLT paned, calculate the maximum induced moment.

Calculate panel load (per foot of width)
Wissa = (Qassd * Give) = (30 psf +80 psN{1ft width) =110 pHift of width

Catculate maximum induced moment {per foot of width);
Mumas = Wiaad L* /8 = (110){18%)/8 = 4,455 fi-I'ft of width

From PRG 320, select a 5-ply CLT floor panel made from 1-38 in x 3-1/2 in. lumber boards (CLT
thickness of 6-7/8 inches). For CLT grade V2, tabulated propertias ara:

Bending moment, FeSenn = 4,675 A-bM of width (PRG 320 Annex A, Table AZ)
Calculate the allowable design moment (assuming Co=1.0: Cw=1.0: C=1.0: C=1.0)
o = FolSutfColCul(Cl Cu) = 4.675 (1.0){1.0){1.0) = 4,675 N-IbM of width (NDS 10.3.1)
Structural Check: Mo 2 M 4,675 ft-ib/ft > 4,455 f-Ibift v

{rate: serviceability chack is nof performed to simplify the design example, bt should ba done in typical
struciural design).

Source: AWC’s TR10



FRR Design of MT
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FRR Design of MT
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demonstrating FRR
Free download at woodworks.org
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Grids & Spans
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Structural Grid

Member Sizes

* Impact of Sizing on Efficient Spans

0 HR FRR: Consider 3-ply Panel

« Efficient Spans of 10-12 ft

* Grids of 20x20 (1 purlin) to 30x30
(2 purlins) may be efficient

Albina Yard, Portland, OR
20x20 Grid, 1 purlin per bay
3-ply CLT

Image: Lever Architecture




Structural Grid

Member Sizes

* Impact of FRR on Sizing

* Impact of Sizing on Efficient Spans

 Consider connections — can drive member sizing

1 or 2 HR FRR: Likely 5-ply Panel

« Efficient spans of 14-17 ft

* Grids of 15x30 (no purlins) to
30x30 (1 purlin) may be efficient

First Tech Credit Union, Hillsboro, OR .=
12x32 Grid, One-Way Beams |

o-ply (5.9”) CLT E==

Image: Swinerton =




Key Early Design Decisions

Why so much focus on panel thickness?

-

_"‘UE .




Key Early Design Decisions

Typical MT Package Costs

m Project Overhead
m | abor
m Material

m Equipment

Source: Swinerton



Key Early Design Decisions

m Project Overhead

m Equipment

Panels are the biggest part of the
biggest piece of the cost pie

ource: Swinerton



Key Early Design Decisions

Panel volume usually 65-80% of MT package volume

Type llIA option 1
1-hr FRR

Purlin: 5.5"x28.5”
Girder: 8.75°x33"
Column: 10.5°x10.75"
Floor panel: 5-ply

Glulam volume = 118 CF (22% of MT)
CLT volume =430 CF (78% of MT)
Total volume =0.73 CF / SF

Source: Fast + Epp, Timber Bay Design Tool



Key Early Design Decisions

Panel volume usually 65-80% of MT package volume

Type llIA option 2
1-hr FRR

Purlin: 5.5"x24”
Girder: 8.75°x33"
Column: 10.5°x10.75"
Floor panel: 5-ply

Glulam volume = 123 CF (22% of MT)
CLT volume =430 CF (78% of MT)
Total volume =0.74 CF / SF

Source: Fast + Epp, Timber Bay Design Tool

Cost considerations: One additional beam (one additional erection pick), 2 more connections



Key Early Design Decisions

Panel volume usually 65-80% of MT package volume

Type IV-HT

0-hr FRR (min sizes per IBC)

Purlin: 5.5"x24” (IBC min = 5"x10.5")

Girder: 8.75"x33” (IBC min = 5"x10.5")
Column: 10.5"x10.75” (IBC min = 6.75"x8.25")
Floor panel: 3-ply (IBC min = 4" CLT)

Glulam volume = 120 CF (32% of MT)
CLT volume = 258 CF (68% of MT)
Total volume = 0.51 CF / SF

Source: Fast + Epp, Timber Bay Design Tool



Key Early Design Decisions

Panel volume usually 65-80% of MT package volume

Type IV-C

2-hr FRR

Purlin: 8.75"x28.5"
Girder: 10.75"x33"
Column: 13.5"x21.5”
Floor panel: 5-ply

Glulam volume = 183 CF (30% of MT)
CLT volume =430 CF (70% of MT)
Total volume = 0.82 CF / SF

Source: Fast + Epp, Timber Bay Design Tool



Key Early Design Decisions

NEW MASS TIMBER
FLOOR VIBRATION
DESIGN GUIDE

U.S. Mass Timber
Floor Vibration

Design Guide

Worked office, lab
and residential
Examples

Covers simple and complex
methods for bearing wall and
frame supported floor systems
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Key Early Design Decisions

Many ways to demonstrate connection fire protection:
calculations, prescriptive NC, test results, others as approved by AHJ

Photo: Josh Partee



Key Early Design Decisions

Steel hangers/hardware fully concealed within a timber-to-timber
connection is a common method of fire protection




Key Early Design Decisions

Connection FRR and beam
reactions could impact required
beam/column sizes
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Photos: Simpson Strong-Tie . ” : e o B .,‘ —y Photo: LEVER Architecture



Key Early Design Decisions

2017 Glulam Beam to Column Connection Fire
Tests under standard ASTM E119 time-
temperature exposure

1



Key Early Design Decisions

Member to member bearing also commonly used, can avoid
some/all steel hardware at connection




Key Early Design Decisions

Member to member bearing also commonly used, can avoid
some/all steel hardware at connection

N

Style of connection also impacts and is impacted by grid layout

and MEP integration




Key Early Design Decisions

v K L&‘A
v_ & Engineers & Bullders

WoodWorks Index of
Mass Timber Connections

ARCHITECTURE
URBAN DESIGN SWINERTON FSpe

INTERIOR DESIGN

MASS TIMBER CONNECTIONS
INDEX

A library of commonly used mass
timber connections with designer
notes and information on fire
resistance, relative cost and load-

\ aACity.
L :
=
I A
A R T
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Connections

P
-

Other connection
design
considerations:

« Structural capacity
« Shrinkage

« Constructability
 Aesthetics

« Cost

it: Alex Schreyer
4 ] L IS
N






Penetrations & Firestopping

Option 1: MT penetration firestopping via tested products




Penetrations & Firestopping

Most firestopping systems include combination of fire safing (eg.
noncombustible materials such as mineral wool insulation) plus fire caulk

Thermal insulation

Through-penetrating item with
enough clearance as to not
touch the mass timber

Fire stopping provided
around through-penetrating
item, up to an appropriate
depth/thickness to account
for anticipated/calculated
charring of mass timber

Photos: AWC/FPInnovations/Hilti
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Penetrations & Firestopping
Inventory of Fire Tested Penetrations in MT Assemblies

Y WoodWorks

WOOD PRODUCTS COUNCIL

Table 3: North American Fire Tests of Penetrations and Fire Stops in CLT Assemblies
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Penetrations & Firestopping

Option 2: MT penetration firestopping of penetrations via engineering
judgement details (contact firestop manufacturer)

F-RATING = 1-HR. OR 2-HR. (SEE NOTE NO. 3 BELOW)

o
TOP VIEW SECTION A-A E
& GRGSE-SECI!DN#L VIEW
|| 2 TN
L Pt X Y
= LLLLL '. Il iﬁ" . I
- il 5 - l][ l_' - ]? 9

2. HILTI CFS-DID FIRESTOP DROP-IN DEVICE INSERTED INTO OPENING (SEE TABLE BELOW) AND SECURED

1. 3-PLY CROSS LAMINATED TIMBER FLOOR ASSEMBLY (MINIMUM 3" THICK) (1-HR. FIRE-RATING). % M r M /
|

TO TOP SURFACE OF CROSS LAMINATED TIMBER FLOOR ASSEMBLY WITH THREE 1/4" x 1" LONG STEEL 3
WOOD SCREWS WITH WASHERS.

3. MINIMUM 3" THICKNESS MINERAL WOOL (MIN. 4 PCF DENSITY) TIGHTLY PACKED, AND FLUSH WITH TOP 1. MASS TIMBER WALL ASSEMBLY (MINIMUM 12" THICK) (1-HR. OR 2-HR. FIRE-RATING).
AND BOTTOM SURFACE OF CFS-DID FIRESTOP DROP-IN DEVICE. 2. MAXIMUM 2" NOMINAL DIAMETER PVC PLASTIC PIPE (SCH 40).

4. MINERAL WOOL (MIN. 4 PCF DENSITY) TIGHTLY PACKED, RECESSED TO ACCOMMODATE SEALANT, AND 3. MINIMUM 4" THICKNESS MINERAL WOOL (MIN. 4 PCF DENSITY) TIGHTLY PACKED AND
COMPLETELY FILLING SPACE BETWEEN CFS-DID FIRESTOP DROP-IN DEVICE AND PERIPHERY OF RECESSED TO ACCOMMODATE SEALANT.

OPENING.
5. MINIMUM 1" DEPTH HILTI FS-ONE MAX INTUMESCENT FIRESTOP SEALANT BETWEEN CFS-DID FIRESTOP 4. MINIMUM 3/4" DEPTH HILTI FS-ONE MAX INTUMESCENT FIRESTOP SEALANT.

DROP IN DEVICE AND PERIPHERY OF OPENING.



Penetrations & Firestopping

Beam-penetrations:
« If FRR = 0-hr, analyze structural impact of hole diameter only
* |If FRR > 0-hr, account for charred hole diameter or firestop penetration

~,., B o= Hole diameter —
g - )

|

+

S

Hole diameter after 1-hr char~
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MEP Layout & Integration

Set Realistic Owner Expectations About Aesthetics
 MEP fully exposed with MT structure, or limited exposure?




MEP Layout & Integration

Key considerations:

« Level of exposure desired

* Floor to floor, structure depth & desired

nead height

« Building occupancy and configuration (i.e.
central core vs. double loaded corridor)

« Grid layout and beam orientations

* Need for future tenant reconfiguration

* Impact on fire & structural design:
concealed spaces, penetrations




MEP Layout & Integration

Smaller grid bays at central core (more head height)
 Main MEP trunk lines around core, smaller branches in exterior bays
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Credit: Blaine Brownell Credit: WoodWorks



MEP Layout & Integration

Smaller grid bays at central
core

Main MEP trunk lines around core

Smaller branches in exterior bays |
Credit: ARUP



MEP Layout & Integration

Dropped below MT framing
* Can simplify coordination (fewer penetrations)

- ‘/ ¢ ’
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* Bigger impact on head height

Credit: Alex Schreyer Credit: Wood\Aierke



MEP Layout & Integration

Inpenetrations through MT framing———————————

 Requires more coordination (penetrations)
« Bigger impact on structural capacity of penetrated members

 Minimal impact on head height




MEP Layout & Integration

Inchases above beams and below panelsatCatalyst——
« 30x30 grid, 5-ply CLT ribbed beam system

Credit: Hans-Erik Blomgren




MEP Layout & Integration

Ingaps between MTpanels

 Fewer penetrations, can allow for easier modifications later




MEP Layout & Integration

In"gaps between MT panels
« Aesthetics: often uses ceiling panels to cover gaps
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MEP Layout & Integration

« Aesthetics (minimal exposed MEP)
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MEP Layout & Integration

Greater need for coordination prior to slab pour

Limitations on what can be placed (thickness of topping slab)
No opportunity for renovations later
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Lateral System Choices
Concrete Shearwalls
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Credit: HackerArchitects




Lateral System Choices




Lateral System Choices
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Lateral System Choices

Wood-frame Shearwalls:
« Code compliance
« Standard of construction practice well known

« Limited to 65 ft shearwall height, 85 ft overall building height
(Type llIA construction)




Lateral System Choices
MT Shearwalls
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Lateral System Choices
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Acoustics & Sound Control




Acoustics & Sound Control

P~ /
B

Images: Maxxon

Finish Floor if Applicable
Concrete/Gypsum Topping

Acoustical Mat Product

CLT Panel

No direct applied or hung ceiling




Acoustics & Sound Control

Air-Borne Sound:
Sound Transmission Class (STC)

 Measures how effectively an assembly isolates air-borne sound and
reduces the level that passes from one side to the other

* Applies to walls and floor/ceiling assemblies

I | | I

Airborne
sound

source ' . Transmission
-1 > through wall

&

A

\

|

Separating assembly




Acoustics & Sound Control

Structure-borne sound:
Impact Insulation Class (lIC)

« Evaluates how effectively an assembly blocks impact sound from
passing through it

« Only applies to floor/ceiling assemblies




Acoustics & Sound Control

MT: Structure Often is Finish

W

Photos: Baumberger Studio/PATH Architecture/Marcus Kauffman | Architect: Kaiser + PATH




Acoustics & Sound Control

But by Itself, Not Adequate for Acoustics




Acoustics & Sound Control

TABLE 1:
Examples of Acoustically-Tested Mass Timber Panels

Mass Timber Panel Thickness STC Rating lIC Rating
3-ply CLT wall* 3.07" 33 INJA
5-ply CLT wall* 6.875" 38 N/A
S-ply CLT fioor® 5.187% 39 22
5-ply CLT floor
7-ply CLT floor* 9.65" 44 30

3-1/2° bare NLT 24 bare NLT
B
St 4-1/4" with 3/4" plywood 29 with 3/4° plywood N/A
5-1/2" bare NLT 22 bare NLT
B
26 NLT vl 6-1/4" with 3/4° plywood 31 with 3/4* plywood A
2x6 NLT floor + 1/2* plywood? 6" with 1/2° plywood 34 33

Source: inventory of Acoustically-Tested Mass Timber Assemblies, WoodWorks?




Acoustics & Sound Control

Regardless of the structural materials used in a wall or floor ceiling
assembly, there are 3 effective methods of improving acoustical

performance:

1. Add mass
2. Add noise barriers
3. Add decouplers

B

Image credit: Christian Columbres’ |g



Acoustics & Sound Control

Mass timber has relatively low “mass”
Recall the three ways to increase acoustical performance:

1. Add mass
2. Add noise barriers
3. Add decouplers

v [

—

Credit: CRridtiah Columbies




Acoustics & Sound Control

Concrete Slab: CLT Slab:

6" Thick 6-7/8" Thick



Acoustics & Sound Control

There are three main ways to improve an assembly’s
acoustical performance:

—) 1 Add mass

2. Add noise barriers

— 3. Add decouplers

Finish Floor if Applicable

Concrete/Gypsum Topping

Acoustical Mat Product

CLT Panel

No direct applied or hung ceiling




Acoustics & Sound Control

There are three main ways to improve an assembly’s
acoustical performance:

1. Add mass
2. Add noise barriers
— 3. Add decouplers

Acoustical Mat:

»  Typically roll out or board products >

* Thicknesses vary: Usually 74" to
1”+

Credit: Maxxon



Acoustics & Sound Control

Acoustical floor underlayments

Photo: AcoustiTECH '?

Photo: Kmetics Noise Control, Inc.,"

Phota: Phteq Inc..”

Phato: Maxxon Comoration



Acoustics & Sound Control

Common mass timber floor
assembly:

* Finish floor (if applicable)
* Underlayment (if finish floor)

« 1.57to 4" thick
concrete/gypcrete topping

* Acoustical mat
« WSP (if applicable)
« Mass timber floor panels

Credit: AcoustiTECH



Acoustics & Sound Control

Solutions Paper € WoodWorks
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http://www.woodworks.org/wp-content/uploads/wood_solution_paper-MASS-TIMBER-ACOUSTICS.pdf

Acoustics & Sound Control

Inventory of Tested Assemblies

Designing a wood building? 2 WoodWorks"
Ask us anything. ™" woo0 movucs counca

FREE PROJECT SUPPORT EDUCATION | RESOQURCES

Acoustically-Tested Mass Timber Assemblies

Following is a list of mass timber assemblies that have been acoustically tested as of January 23, 2019, Sources ane noted at the end of this
document. For free technical assistance on any questions related to the acoustical design of mass timber assemblies, or free technical
assistance refated 1o any aspect of the design, engineering or construction of a commercial or muiti-family wood bullding In the U.S., emakl
help@woodworks.om or contact the WoodWerks Reglonal Director nearest you: http://www.woodworks.org/project-assistance
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Key Early Design Decisions

Early Design Decision Example
7-story, multi-family building, typ. floor plan:

240°

32’ «— 30x32 typ. unit
X

6" | Corridor
t

32’




Key Early Design Decisions

Early Design Decision Example
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MT Construction Type Options: L
e 7 stories of IV-C
« 5 stories of llIA over 2 stories of |IA podium

« 5 stories of IV-HT over 2 stories of |1A podium




Reduce Risk
Optimize Costs

- For the entire project team,
not just builders

- Lots of reference documents

www.woodworks.org

www.woodworks.org/wp-content/uploads/wood solution paper-

Mass-Timber-Design-Cost-Optimization-Checklists.pdf

) WoodWorks

WOO0O FRODUCTS COUNCIL

Mass Timber Cost and
Design Optimization Checklists

WoodWorks has developed the following checkdists to assist
in the design and cost optimization of mass timber projects.
Tha desgn opnmaanon checkisis are iended or bullding
des:gners (archects and engneers), but many of the 1opcs
should piso be dacussed with the fabecatons and bulders. The
Tlont Toon Fadensd
cost opimzzaton checkists will halp guide CoXTMaton betwesn Coodt Unm
desgness and bulldens {ganaal CONACINS, CONSINUCHON MANJNErs,
estmators, fabricators, installors, olc ) as they are estimating and

makng Cost-ralatad deasions 0N 8 Mass tmber proact

Most resources ksted in ths
paper can be found on the
WoodWorks websie Please

o0 the end notes for URLs



https://www.woodworks.org/wp-content/uploads/wood_solution_paper-Mass-Timber-Design-Cost-Optimization-Checklists.pdf

Keys to Mass Timber Success:

Know Your WHY

Design it as Mass Timber From the Start
Leverage Manufacturer Capabillities
Understand Supply Chain
Optimize Grid
Take Advantage of Prefabrication & Coordination
Expose the Timber
Discuss-Early with AHJ

Work with Experienced People
Let WoodWorks Help for Free
Create Your Market Distinction




Questions? Ask me anything.

WOODWORKS

Marc Rivard, PE, SE
Regional Director | MA, CT, ME, NH, RI, VT

(617) 997-3890 B ;- ]
marc.rivard@woodworks.org : : s 4 : pmer—s

901 East Sixth, Thoughtbarn-Delineate Studio, Leap!Structures, photo Casey Dunn
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