INTRO: CLEVELAND

Kristina Miele, PE kmiele@fastepp.com

Disclaimer: This presentation was developed by a third party and is not funded by WoodWorks or the Softwood Lumber Board

Cleveland's First 9-Story Timber Tower

- + Vancouver + Edmonton | Canada + Calgary Canada USA + Seattle
- + New York
- + Darmstadt

Canada **USA** | Germany Where We Work

- + Structural engineers
- + Founded in 1985
- + 85 global staff
- + Work in all materials
- + Mass Timber expertise

Who We Are

HARBOR BAY	HDA	FOREFRONT STRUCTURAL ENGINEERS, INC.	Fast + Epp
Harbor Bay Real Estate	Hartshorne Plunkard Architecture	Forefront Structural Engineers	Fast+Epp Structural Engineers

Design Team:

Key Features

Key Features

ALLOWABLE BUILDING HEIGHT

OCCUPANCY CLASSIFICATION	TYPE OF CONSTRUCTION											
	SEE FOOTNOTES	TYPE I		TYPE II		TYPE III		TYPE IV	TYPE V			
	SEE POOINOTES	A	B	A	8	A	B	нт	A	0		
	NS ^J	UL	160	65	55	65	55	65	50	40		
	\$13D	60	60	60	60	60	60	60	50	40		
K.	S13R	60	60	60	60	60	60	60	60	60		
	S	UL	180	85	75	85	75	85	70	60		

TABLE 504.3 ALLOWABLE BUILDING HEIGHT IN FEET ABOVE GRADE PLANE*

TABLE 504.4—continued

ALLOWABLE NUMBER OF STORIES ABOVE GRADE PLANE**

OCCUPANCY CLASSIFICATION				TYPE OF	CONSTRU	UCTION				
		TYPEI		TYPE II		TYPE III		TYPE IV	TY	PEV
	SEE FOUTNOTES	A	8	A .	8	A	8	HT	A	8
R-1 ⁶	NS ⁴	UL	11						3	2
	\$13R	4	4		•				4	3
	S	UL	12	5	5	5	5	5	4	3
E. S.	NSI	UL	11	4					3	2
R-2 ⁵	\$13R	4	4	4	1 *	•			4	3
	S	UL	12	5	5	5	5	5	4	3
		4.15								

ALLOWABLE BUILDING STORIES

2017 Ohio Building Code

AED

alternatively engineered design required

CLT not a recognized material

Accepted Based On:

language adopted by

ICC Ad Hoc Committee on Tall Wood Buildings for 2021 IBC

- Data from USDA tests
- Additional code compliance for fire protection

2021 IBC Tall Wood Provisions

ABLE BUILDING AREA 972,000 GE AREA PER STORY 54,000 S TYPE IV-A

18 STORIES BUILDING HEIGHT 270 FT ALLOWABLE BUILDING AREA AVERAGE AREA PER STORY 54,000 SF

12 STORIES BUILDING HEIGHT 180 FT ALLOWABLE BUILDING AREA AVERAGE AREA PER STORY 54,000 SF

TYPE IV-B

9 STORIES BUILDING HEIGHT 85 FT ALLOWABLE BUILDING AREA 405,000 SF AVERAGE AREA PER STORY 45,000 SF

TYPE IV-C

Breneman, S; Timmers, M; Richardson, D; Tall Wood Buildings in the 2021 IBC Up to 18 Stories of Mass Timber, 2019; Woodworks Wood Products Council Image Courtesy atelierjones, LLC

01 FIRE RATING

What is the required fire rating (mins) or the building type 02 COVERAGE

How much timber can be exposed / how much must be covered? 03 protection

What satisfies the coverage requirement

To Note:

IBC tables that are most often referenced typically call out **Allowable Building Height, # of Stories, and Allowable Area,** The new 2021 code also has some key information for engineers to be aware of when looking into type 4 construction

02
COVERAG

602.4.2.2.2 Protected area. All interior faces of all mass timber elements shall be protected in accordance with Section 602.4.2.2.1, including the inside face of exterior mass timber walls and mass timber roofs.

Exceptions:Unprotected portions of mass timber ceilings and walls complying with Section 602.4.2.2.4 and the following:

- Unprotected portions of mass timber ceilings, including attached beams, shall be permitted and shall be limited to an area equal to 20% of the floor area in any dwelling unit or fire area; or
- Unprotected portions of mass timber walls, including attached columns, shall be permitted and shall be limited to an area equal to 40% of the floor area in any dwelling unit or fire area; or
- Unprotected portions of both walls and ceilings of mass timber, including attached columns and beams, in any dwelling unit or fire area shall be permitted in accordance with section 602.4.2.2.3.
- Mass timber columns and beams which are not an integral portion of walls or ceilings, respectively, shall be permitted to be unprotected without restriction of either aggregate area or separation from one another.

BUILDING ELEMENT	түрі	EI	TYI II	TYPE TYP		PE	TYPE N				TYPE V	
	Α	в	Α	в	Α	в	Α	B	<u>C</u>	нт	А	в
Primary structural frame ^f (see Section 202)	3 ^{a, b}	ga,	1 ^b	0	1 ^b	0	<u>3</u> 2	<u>2ª</u>	<u>2ª</u>	нт	1 ^b	0
Bearing walls f Interior	3 3 ^a	2 2ª	1	00	2	2 0	mlm	22	22	2 1/HT	1	00

Required fire Bating of Building Element per Tables 601 and 602 (hours)	22.7 Protection Required from Noncombust tible (minutes)
1	40.
2	80
3 or more	120

Noncombustible Protection	Protection Contribution (minutes)
1/2 inch Type X Gypsum Board	30
Stainch Type X Gypsum Board	40

01 FIRE BATING

SCHEMATIC DESIGN

- MATERIAL AND SUPPLY
- FIRE DESIGN
- GRID SPACING
- VOLUME ANALYSIS

EC5 Characteristic Values:

N/mm ²	30	f _{m,k}	
N/mm ²	24	$f_{t,0,k}$	
N/mm ²	0.5	f _{t.90,k}	
N/mm ²	30	f _{c.0,k}	
N/mm ²	2.5	f _{c.90,k}	
N/mm ²	3.5	f _{v.k}	
N/mm ²	1.2	f _{r.k}	

NDS2015 Reference Design Values:

 $F_{NDS} = 145 f_{EC5,k} k_{mod} / y_M / \varphi_{NDS} / K_F$ $k_{mod} = 1.00$

mm

Fb	1550	psi
Ft	1239	psi
$F_{t\perp}$	26	psi
Fc	1549	psi
$F_{c\perp}$	186	psi
F,	181	psi

Supplier and Material

Required Fire Resistance (hr.)	Char Depth, a _{char} (in.)	Effective Char Depth, a _{eff} (in.)
I-Hour	1.5	1.8
1½-Hour	2.1	2.5
2-Hour	2.6	3.2

Table 16.2.1A Char Depth and Effective Char

-

Table 16.2.1B Effective Char Depths (for CLT

with $\beta_n = 1.5 in./hr.$)

Required Fire Resistance		Effective Char Depths, a _{eff} (in.) lamination thicknesses, h _{ins} (in.)										
(hr.)	5/8	3/4	7/8	1	1-1/4	1-3/8	$1 \cdot 1/2$	1-3/4	2			
1-Hour	2.2	2.2	2.1	2.0	2.0	1.9	1.8	1.8	1.8			
1%-Hour	3.4	3.2	3.1	3.0	2.9	2.8	2.8	2.8	2.6			
2-Hour	4.4	4.3	4.1	4.0	3.9	3.8	3.6	3.6	3.6			

Fire Design

Table 16.2.2 Adjustment Factors for Fire Design¹

Table 5.3.1 Applicability of Adjustment Factors for Structural Glued Laminated Timber

FIRE DESIGN +

CLT CHAR +

CLT Grade Lamination actual Thickness Layup Thickness Designation [mm] [mm] T = Т : = = 100-5s 100 20 20 20 20 20 120-5s 120 20 30 20 30 20 20 40 140-5s 140 40 20 20 **BBS 125** and 150 20 20 40 150-5s 30 40 BBS XL 20 VARIED 160-5s 160 20 40 40 40 LAYER 180-5s 180 40 30 40 30 40 + THICKNESS 200-5s 200 40 40 40 40 40

16.2.1.3 For cross-laminated timber manufactured with laminations of equal thickness, the char depth, a_{char} , shall be calculated as follows:

 $a_{char} = n_{lam} h_{lam} + \beta_t (t - (n_{lam} t_{gl}))^{0.813}$ (16.2-3)

Table 8 Layups for Binderholz BBS CLT panels with five layers and five laminations

EQUAL LAYER THICKNESS

COORDINATION

CONNECTIONS

• VIBRATION

• LATERAL

LATERAL DESIGN

LATERAL DESIGN

MyTiCon Timber Connectors White Paper

Full thread SWG ASSY[®] Screws as Reinforcement

on the Bending and Shear Properties of Structural Glued Laminated Timber

Cleveland's First 9-Story Timber Tower

THANK YOU!

JANUARY 13, 2021

Ascent

Alejandro Fernandez Senior Project Engineer Woodworks

Disclaimer: This presentation was developed by a third party and is not funded by WoodWorks or the Softwood Lumber Board

Thornton Tomasetti

0

 \bigcirc

 \bigcirc

\bigcirc • 120 \bigcirc OC \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 0

1500

ENGINEERS, ARCHITECTS, SCIENTISTS AND OTHER PROFESSIONALS

projects in 50 countries

50+

5 continents

WHO ARE WE?

Thornton Tomasetti

MASS TIMBER SOLUTIONS

WWW.THORNTONTOMASETTI.COM/ CAPABILITY/MASS-TIMBER-CONSTRUCTION

Thornton Tomasetti

Milwaukee, Wisconsin. Upon completion, it will be the tallest

structures and the benefits of performance-based fire

CONTEXT

RIVER BEECH

Chicago

COORDINATION

© CD Smith/CAD Makers/Swinerton//Korb/TT

ARCHITECTURAL EXPRESSION

TYPICAL FLOOR PLANS

TYPICAL RESIDENTIAL LEVEL

AMENITIES LEVEL (L25)

CONNECTION TO NATURE

PERMITTING

Dates indicate approved permit year 25 stories stories 12 Framework (2017)

Portland, OR

Ascent (2020) Milwaukee, WI

PERMITTING

Date Court Di Philiphy	TH	PE I	TYPE		TYPE III		TYPE IV	TYPE V	
BULLING ELEMENT	A		A	0	A		HT	۸	
Primary structural frame' (see Section 202)	3"	- 21	1	0	1	0	HT	1	0
Bearing walls Exterior ^{1,1} Interior	3.37	2 2*	ł	0	2	2	2 1.917	1	00
Nonbearing walls and partitions Exterior	See Table 602								
Nonbearing walls and partitions Interior ⁴	0	0	0	0	0	0	See Section 602.4.6	0	0
Floor construction and associated secondary members (see Section 202)	2	2	1	0	1	. 0	нт	1	0
Roof construction and associated secondary members (see Section 202)	$1^{i_{1}j_{2}^{i_{1}}}$	$I_{\mu\nu}$	$I_{\mu \nu}$	0'	$I_{\mu\nu}$	0	HT	$1_{\mu^{(j)}}$	0
		1			-				

TABLE 601 FIRE-RESISTANCE RATING REQUIREMENTS FOR BUILDING ELEMENTS (HOURS)

For S2 1 foot = 304.8 mm.

a. Roof supports: Fire-resistance ratings of primary structural frame and bearing walls are permitted to be reduced by 1 hear where supporting a roof only.

- b. Except in Group F-1, H, M and S-1 occupancies, fire protection of structural members shall not be required, including protection of roof framing and decking where every part of the roof construction is 20 feet or more above any floor immediately below. Fire-retardam-treated wood members shall be allowed to be used for such unprotected members.
- 4. In all occupancies, heavy timber shall be allowed where a 1-hour or loss fire-resistance rating is required.

d. Not less than the fire-resistance rating required by other sections of this code.

e. Not less than the fire-resistance rating based on fire separation distance (see Table 602).

E. Not loss than the fire-resistance rating as referenced in Section 704.10.

IBC 2015

Chapter SPS 361 ADMINISTRATION AND ENFORCEMENT

Subchapter I - Scope and Application

(6) Alternatives. Nothing in chs. <u>SPS 361</u> to <u>366</u> is intended to prohibit or discourage the design and utilization of new building products, systems, components, or alternate practices, provided written approval from the department is obtained first.

Note: Chapter <u>SPS 361</u>, subch. VI contains requirements for approval of building products and alternate standards.

Subchapter VI - Product and Standard Review and Approval

5PS 361.50 Building product approvals.

(1) Voluntary approval.

(a) Materials, equipment, and products regulated under chs. <u>SPS 361</u> to <u>366</u> may receive a written approval from the department indicating code compliance.

(b)

 Approval of materials, equipment, and products shall be based on sufficient data, tests, and other evidence that prove the material, equipment, or product is in compliance with the standards specified in chs. <u>SPS 361</u> to <u>366</u>.

Tests, compilation of data, and calculations shall be conducted by a qualified independent third party.

[2] Alternate approval.

(a) Materials, equipment, and products that meet the intent of chs. <u>525 361</u> to <u>366</u> and which are not approved under sub. (<u>1</u>) shall be permitted if approved in writing by the department.

(b)

 Approval of materials, equipment, and products shall be based on sufficient data, tests, and other evidence that prove the material, equipment, or product meets the intent of the standards specified in chs. <u>SPS 361</u> to <u>366</u>.

Tests, compilation of data, and calculations shall be conducted by a qualified independent third party.

WISCONSIN COMMERCIAL BUILDING CODE

PERMITTING

Milwaukee's 25-Story Ascent Stacks Up as Tall Timber Role Model

Fire officials accept the unprecedented use of the sustainable material in a 284-fttall wood and concrete frame

https://www.enr.com/articles/50905milwaukees-25-story-ascent-stacksup-as-tall-timber-role-model

Approvals took two years for Ascent, an unprecedented 284-ft-tall wood and concrete tower under way in Milwaukee since September.

Montage by Scott Hilling for ENR-rendering by Thornton Tomasetti, photo courtesy C.D. Smith

FIRE

Determining Fire Ratings:

Char

- Calculations (Char Method)
- Full Scale (Global) Testing
- Element (Member) Testing
- Connection Testing
- Product Certificates
- Concealment
- Intumescent Paint (connections only)

FIRE 3 HOURS TEST

CONNECTIONS

CONNECTIONS

FOUNDATION

FOUNDATION STATIC TESTING

IIII Thornton

ASCENT TYPICAL PARKING LEVEL

ASCENT TRANSFER LEVEL

ASCENT TYPICAL TIMBER LEVEL

CONSTRUCTION SEQUENCE

CONSTRUCTION SEQUENCE

ASCENT DEC 3, 2020

This concludes The American Institute of Architects Continuing Education Systems Course

THANK YOU

(Bank)

Contact info

afernandez@ThorntonTomasetti.com

COPYRIGHT MATERIALS

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

© Thornton Tomasetti Inc. 2021