Multi-Story Considerations
Day’s Overview

• Load Path Overview
• Introduction to Codes & Standards
• Diaphragm Design and Detailing
• Shear Wall Design and Detailing
• Prescriptive Design Options for Wood Systems
• Uplift including Combined Shear
• Wall Design
• Multi-Story Considerations
Multi-Story Considerations

- Summary of Day’s Design Topics
- Multi-Story Stacked Shear Wall Effects
- Accumulation of Shear Loads
- Accumulation of Overturning Loads
- Shear Wall Deflection
Multi-Story Wind Load Design

Design Principles are the Same

Remember our mantra:
FOLLOW THE LOAD!
Multi-Story Wind Load Design

WIND SURFACE LOADS ON WALLS
Multi-Story Wind Load Design

WIND INTO DIAPHRAGMS AS UNIFORM LINEAR LOADS
Multi-Story Wind Load Design

- Diaphragms span between shearwalls.
- Wind is directed into shearwalls as concentrated loads.
Multi-Story Wind Load Design

- Diaphragm wind forces do not accumulate—they are isolated at each level.
- Shearwall wind forces do accumulate—upper level forces add to lower level forces.
Design Example: Five over One Wood-Frame

Free download at woodworks.org
Multi-Story Wind Design

Source: WoodWorks Five-Story Wood-Frame Structure over Podium Slab Design Example
Multi-Story Wind Design

Floor Plan

Source: WoodWorks Five-Story Wood-Frame Structure over Podium Slab Design Example
Multi-Story Wind Design

Source: WoodWorks Five-Story Wood-Frame Structure over Podium Slab Design Example

Shearwall Layout
Multi-Story Wind Design

Shearwall Layout

Source: WoodWorks Five-Story Wood-Frame Structure over Podium Slab Design Example
Multi-Story Wind Design

Building Section

Source: WoodWorks Five-Story Wood-Frame Structure over Podium Slab Design Example
Stacked Shearwall Elevation
\[
F_5 = 5.2k \\
F_4 = 3.8k \\
F_3 = 3.7k \\
F_2 = 3.6k \\
F_1 = 3.4k \\
F_P = 1.7k \\
\]

Wind Forces Per Story

Source: WoodWorks Five-Story Wood-Frame Structure over Podium Slab Design Example
\[F_5 = 5.2k \]
\[F_{5+4} = 9k \]
\[F_{5+4+3} = 12.7k \]
\[F_{5+4+3+2} = 16.3k \]
\[F_{5+4+3+2+1} = 19.7k \]
\[F_{5+4+3+2+1+P} = 21.4k \]

Wind Forces Accumulated

Source: WoodWorks Five-Story Wood-Frame Structure over Podium Slab Design Example
Multi-Story Shear Accumulation

- Shear forces are additive from floor to floor
- “Base shear” at the bottom or base of a structure is equal to the sum of all story shears
- Sole plate attachment of each wall must adequately transfer accumulative shear forces to the wall/foundation below

Typical wall to wall attachment:
- Fasteners (nails, screws, etc.), angles, sheathing

Typical wall to foundation attachment:
- Anchor bolts
Multi-Story Shear Accumulation

Source: Strongtie
Multi-Story Shear Accumulation

Figure 5. Typical Floor Framing at Wall

Source: WoodWorks Five-Story Wood-Frame Structure over Podium Slab Design Example
Multi-Story Shear Accumulation

Figure 5A. Typical Platform Floor Framing at Wall Using Sawn Joists

Source: WoodWorks Five-Story Wood-Frame Structure over Podium Slab Design Example
Multi-Story Shear Accumulation

Source: Strongtie
Multi-Story Shear Accumulation
Multi-Story Shear Accumulation
Accumulated Shear Load Transfer

Source: FEMA P752
Making our Buildings Safe + Wind
Visual Cue

Floor Beam with Bearing Wall Above = Stacked Shear Walls
Visual Cue

Floor Beam with Bearing Wall Above = Stacked Shear Walls
Stacked Shearwall Elevation

Source: WoodWorks Five-Story Wood-Frame Structure over Podium Slab Design Example
Wind Forces Per Story

\[F_5 = 5.2k \]
\[F_4 = 3.8k \]
\[F_3 = 3.7k \]
\[F_2 = 3.6k \]
\[F_1 = 3.4k \]
\[F_P = 1.7k \]

Source: WoodWorks Five-Story Wood-Frame Structure over Podium Slab Design Example
\[F_5 = 5.2 \text{k} \]
\[T = C = 5.2 \text{k} \times 50'/29' = 9.0 \text{k} \]

\[F_4 = 3.8 \text{k} \]
\[T = C = 3.8 \text{k} \times 40'/29' = 5.2 \text{k} \]

\[F_3 = 3.7 \text{k} \]
\[T = C = 3.7 \text{k} \times 30'/29' = 3.8 \text{k} \]

\[F_2 = 3.6 \text{k} \]
\[T = C = 3.6 \text{k} \times 20'/29' = 2.5 \text{k} \]

\[F_1 = 3.4 \text{k} \]
\[T = C = 3.4 \text{k} \times 10'/29' = 1.2 \text{k} \]

\[\Sigma = 21.7 \text{k} \]

Overturning Wind Forces Per Story Method
\[F_5 = 5.2k \]
\[F_{5+4} = 9k \]
\[F_{5+4+3} = 12.7k \]
\[F_{5+4+3+2} = 16.3k \]
\[F_{5+4+3+2+1} = 19.7k \]
\[F_{5+4+3+2+1+P} = 21.4k \]

Wind Forces Accumulated

Source: WoodWorks Five-Story Wood-Frame Structure over Podium Slab Design Example
\[F_5 = 5.2k \]
\[T = C = 5.2k \times \frac{10'}{29'} = 1.8k \]

\[F_{5+4} = 9k \]
\[T = C = 9k \times \frac{10'}{29'} = 3.1k \]

\[F_{5+4+3} = 12.7k \]
\[T = C = 12.7k \times \frac{10'}{29'} = 4.4k \]

\[F_{5+4+3+2} = 16.3k \]
\[T = C = 16.3k \times \frac{10'}{29'} = 5.6k \]

\[F_{5+4+3+2+1} = 19.7k \]
\[T = C = 19.7k \times \frac{10'}{29'} = 6.8k \]

\[\Sigma = 21.7k \]

Overturning Wind Forces
Accumulative Method
Overturning Compression Accumulation

Source: WoodWorks Five-Story Wood-Frame Structure over Podium Slab Design Example
Sole Plate Crushing
Sole Plate Crushing

Compression forces perpendicular to grain can cause localized wood crushing. NDS values for $F_{c\perp}$ with metal plate bearing on wood result in a maximum wood crushing of 0.04”. Relationship is non-linear

$$\Delta = 0.02 \times \left(\frac{f_{c\perp}}{F_{c\perp0.02 \text{ in}}} \right)$$

$$\Delta = 0.04 - 0.02 \times \frac{f_{c\perp}}{0.27 \text{ in}}$$

$$\Delta = 0.04 \times \left(\frac{f_{c\perp}}{F_{c\perp0.04 \text{ in}}} \right)^3$$

$\Delta =$ deformation, in

$f_{c\perp} =$ induced stress, psi

$F_{c\perp0.04 \text{ in}} = F_{c\perp} =$ reference design value at 0.04 in deformation, psi ($F_{c\perp}$)

$F_{c\perp0.02 \text{ in}} =$ reference design value at 0.02 in deformation, psi ($0.73 F_{c\perp}$)
Sole Plate Crushing

Figure 12. $F_{C\perp}$ Load Deformation Curve
(Eq. 3.0 Derived from Bendtsen-Galligan, 1979)
Sole Plate Crushing

NDS Commentary C4.2.6: when a joint is made of two wood members and both are loaded perpendicular to grain, the amount of deformation will be approximately 2.5 times that of a metal plate to wood joint.

Table 13. Deformation Adjustment Factor for Bearing Condition

<table>
<thead>
<tr>
<th>Bearing Condition</th>
<th>Deformation Adjustment Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Wood-to-wood (both perpendicular to grain)</td>
<td>2.5</td>
</tr>
<tr>
<td>2. Wood-to-wood (one parallel to grain and one perpendicular to grain)</td>
<td>1.75</td>
</tr>
<tr>
<td>3. Metal-to-wood (wood loaded perpendicular to grain)</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Source: WoodWorks Five-Story Wood-Frame Structure over Podium Slab Design Example
Compression Post Size & Sole Plate Crush

<table>
<thead>
<tr>
<th>Level</th>
<th>Compression</th>
<th>Required Bearing Area</th>
<th>Post Size</th>
<th>Story Sole Plate Crush</th>
<th>2.5x Accum. Sole Plate Crush</th>
</tr>
</thead>
<tbody>
<tr>
<td>5(^{th}) Floor</td>
<td>1.8 k</td>
<td>4.2 in(^2)</td>
<td>(2)-2x4</td>
<td>0.011”</td>
<td>0.028”</td>
</tr>
<tr>
<td>4(^{th}) Floor</td>
<td>4.9 k</td>
<td>11.5 in(^2)</td>
<td>(2)-4x4</td>
<td>0.013”</td>
<td>0.06”</td>
</tr>
<tr>
<td>3(^{rd}) Floor</td>
<td>9.3 k</td>
<td>21.9 in(^2)</td>
<td>(2)-4x4</td>
<td>0.032”</td>
<td>0.14”</td>
</tr>
<tr>
<td>2(^{nd}) Floor</td>
<td>14.9 k</td>
<td>35.1 in(^2)</td>
<td>(3)-4x4</td>
<td>0.037”</td>
<td>0.23”</td>
</tr>
<tr>
<td>1(^{st}) Floor</td>
<td>21.7 k</td>
<td>38.4 in(^2)</td>
<td>(4)-4x4</td>
<td>0.024”</td>
<td>0.29”</td>
</tr>
</tbody>
</table>

Floors 2-5 use S-P-F #2 Sole Plate, \(F_{cperp} = 425\) psi
Floor 1 use SYP #2 Sole Plate, \(F_{cperp} = 565\) psi
Story to Story Compression Force Transfer

Figure 13. Load Transfer from Compression Posts to Compression Posts

Notes for Figure 13: Detail A (at platform framed) may have a single block with a drilled hole for the tie-down rod (see Figure 15).
Rim Joist Buckling & Crushing
Rim Joist Buckling & Crushing
Increasing Compression Post Size

Figure 10. Example Plan Section at Boundary Members

Source: WoodWorks Five-Story Wood-Frame Structure over Podium Slab Design Example
Increasing Compression Post Size
Overturning Tension Accumulation

Source: Strongtie
Overturning Tension Accumulation

Source: WoodWorks Five-Story Wood-Frame Structure over Podium Slab Design Example
Using Dead Load to Resist Overturning

Load Combinations of ASCE 7-10:

06.D + 0.6W

Dead load from above (Wall, Floor, Roof) can be used to resist some or all overturning forces, depending on magnitude.
Overturning Resistance Options

Figure 3: Methods of Providing Overturning Restraint

- Embedded Hold-Down
- Hold-Down with Threaded Anchor
- Threaded Rod with Bearing Plate

Source: Strongtie
Threaded Rod Tie Down

Source: Strongtie

Source: hardyframe.com
Threaded Rod Tie Down
Threaded Rod Tie Down w/Take Up Device

Source: Strongtie
Threaded Rod Tie Down w/o Take Up Device
Threaded Rod Tie Down w/o Take Up Device
Tie Down Take Up Device Purpose

Source: Strongtie
Threaded Rod Tie Down

TRIMMER STUD

END OF SHEAR WALL

BOUNDARY MEMBERS (COMPRESSION POSTS)

COUPLER DEVICE

TIE-DOWN ROD

TIE-DOWN ROD

BOUNDARY MEMBERS (COMPRESSION POSTS)

BOUNDARY PLATE WITH SHRINKAGE COMPENSATING DEVICE

CONSTANT DISTANCE FROM WALL END

EDGE NAILING TO COMPRESSION POSTS

Source: WoodWorks Five-Story Wood-Frame Structure over Podium Slab Design Example
Threaded Rod Tie Down - Couplers

Reducing Coupler

Source: Strongtie
Tie Down with Bearing Plate

Figure 14. Load Transfer from Uplifting Posts to Bearing Device

Notes for Figure 14:
Detail A (at platform framed) may have a single block with a drilled hole for the tie-down rod (see Figure 15).
Bearing Plate Area

Figure 14A. Bearing Zone Through Framing from Uplifting Posts to Bearing Device
Tie Down with Bearing Plate
Bearing Plate Crushing
Tie Down Rod Size & Elongation

<table>
<thead>
<tr>
<th>Level</th>
<th>Plate Hght</th>
<th>Tension</th>
<th>Rod Dia.</th>
<th>Steel</th>
<th>Rod Capacity</th>
<th>Rod Elong.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5th Floor</td>
<td>10 ft</td>
<td>1.8 k</td>
<td>3/8”</td>
<td>A36</td>
<td>2.4 k</td>
<td>0.10”</td>
</tr>
<tr>
<td>4th Floor</td>
<td>10 ft</td>
<td>4.9 k</td>
<td>5/8”</td>
<td>A36</td>
<td>6.7 k</td>
<td>0.09”</td>
</tr>
<tr>
<td>3rd Floor</td>
<td>10 ft</td>
<td>9.3 k</td>
<td>5/8”</td>
<td>A193</td>
<td>14.4 k</td>
<td>0.17”</td>
</tr>
<tr>
<td>2nd Floor</td>
<td>10 ft</td>
<td>14.9 k</td>
<td>3/4”</td>
<td>A193</td>
<td>20.7 k</td>
<td>0.18”</td>
</tr>
<tr>
<td>1st Floor</td>
<td>10 ft</td>
<td>21.7 k</td>
<td>7/8”</td>
<td>A193</td>
<td>28.2 k</td>
<td>0.19”</td>
</tr>
</tbody>
</table>
Bearing Plate Size & Thickness

<table>
<thead>
<tr>
<th>Level</th>
<th>Bearing Plate</th>
<th>Bearing Load</th>
<th>Allow. Bearing Capacity</th>
<th>Bearing Plate Crush</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>L</td>
<td>T</td>
<td>Hole Area</td>
<td>A_{brng}</td>
</tr>
<tr>
<td>5th Floor</td>
<td>3 in</td>
<td>3.5 in</td>
<td>3/8”</td>
<td>0.25 in²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.25 in²</td>
</tr>
<tr>
<td>4th Floor</td>
<td>3 in</td>
<td>3.5 in</td>
<td>3/8”</td>
<td>0.518 in²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.98 in²</td>
</tr>
<tr>
<td>3rd Floor</td>
<td>3 in</td>
<td>5.5 in</td>
<td>1/2”</td>
<td>0.518 in²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.98 in²</td>
</tr>
<tr>
<td>2nd Floor</td>
<td>3 in</td>
<td>5.5 in</td>
<td>1/2”</td>
<td>0.69 in²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.8 in²</td>
</tr>
<tr>
<td>1st Floor</td>
<td>3 in</td>
<td>8.5 in</td>
<td>7/8”</td>
<td>0.89 in²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24.6 in²</td>
</tr>
</tbody>
</table>
Bolted Hold Down Device

Sandwiched T2
As Concentric Hold-Down
Tie Down with Bolted Device

Figure 15. Load Transfer from Uplifting Posts to Bolted Device

Source: WoodWorks Five-Story Wood-Frame Structure over Podium Slab Design Example
Tie Downs: Skipped Floors vs. All Floors

Skipped Floor System:
- Increased cost for posts and rods
- Increased drift
- Lack of vertical redundancy
- Inefficient load path
- Shrinkage not accommodated at each floor
- Lack of construction stability

All Floors Tied-Off System:
- Cost savings on posts and rods
- Reduced drift
- System redundancy
- Efficient load path
- Shrinkage accommodated at each floor
- Construction stability

Source: Strongtie
Shearwall Deformation – System Stretch

Total system stretch includes:

• Rod Elongation
• Take-up device displacement
• Bearing Plate Crushing
• Sole Plate Crushing

Source: WoodWorks Five-Story Wood-Frame Structure over Podium Slab Design Example
Shearwall Tie Down Displacement

SDPWS Definition of Δ_a: “Total vertical elongation of wall anchorage system (including fastener slip, device elongation, rod elongation, etc.) at the induced unit shear in the wall.”

Figure 11. Effect of Δ_a on Drift

Notes for Figure 11:
Where:
$\Delta = d_a \frac{h}{b}$
h = floor-to-floor height
b = the out-to-out dimension of the shear wall

Source: WoodWorks Five-Story Wood-Frame Structure over Podium Slab Design Example
Accumulative Movement

With Shrinkage Compensating Devices

<table>
<thead>
<tr>
<th>Level</th>
<th>Rod Elong.</th>
<th>Shrinkage</th>
<th>Sole Plate Crush</th>
<th>Bearing Plate Crush</th>
<th>Take Up Deflect. Elong.</th>
<th>Total Displac.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5th Floor</td>
<td>0.10”</td>
<td>0.03”</td>
<td>0.028”</td>
<td>0.01”</td>
<td>0.03”</td>
<td>0.20”</td>
</tr>
<tr>
<td>4th Floor</td>
<td>0.09”</td>
<td>0.03”</td>
<td>0.033”</td>
<td>0.02”</td>
<td>0.03”</td>
<td>0.20”</td>
</tr>
<tr>
<td>3rd Floor</td>
<td>0.17”</td>
<td>0.03”</td>
<td>0.08”</td>
<td>0.02”</td>
<td>0.03”</td>
<td>0.33”</td>
</tr>
<tr>
<td>2nd Floor</td>
<td>0.18”</td>
<td>0.03”</td>
<td>0.093”</td>
<td>0.03”</td>
<td>0.03”</td>
<td>0.36”</td>
</tr>
<tr>
<td>1st Floor</td>
<td>0.19”</td>
<td>0.03”</td>
<td>0.06”</td>
<td>0.01”</td>
<td>0.03”</td>
<td>0.32”</td>
</tr>
</tbody>
</table>
Accumulative Movement

Without Shrinkage Compensating Devices

<table>
<thead>
<tr>
<th>Level</th>
<th>Rod Elong.</th>
<th>Shrinkage</th>
<th>Sole Plate Crush</th>
<th>Bearing Plate Crush</th>
<th>Total Displac.</th>
<th>Accum. Displac.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5<sup>th</sup> Floor</td>
<td>0.10”</td>
<td>0.17”</td>
<td>0.028”</td>
<td>0.01”</td>
<td>0.31”</td>
<td>1.96”</td>
</tr>
<tr>
<td>4<sup>th</sup> Floor</td>
<td>0.09”</td>
<td>0.17”</td>
<td>0.033”</td>
<td>0.02”</td>
<td>0.31”</td>
<td>1.65”</td>
</tr>
<tr>
<td>3<sup>rd</sup> Floor</td>
<td>0.17”</td>
<td>0.17”</td>
<td>0.08”</td>
<td>0.02”</td>
<td>0.44”</td>
<td>1.34”</td>
</tr>
<tr>
<td>2<sup>nd</sup> Floor</td>
<td>0.18”</td>
<td>0.17”</td>
<td>0.093”</td>
<td>0.03”</td>
<td>0.47”</td>
<td>0.9”</td>
</tr>
<tr>
<td>1<sup>st</sup> Floor</td>
<td>0.19”</td>
<td>0.17”</td>
<td>0.06”</td>
<td>0.01”</td>
<td>0.43”</td>
<td>0.43”</td>
</tr>
</tbody>
</table>
Shearwall Deflection Methods

Multiple methods for calculating accumulative shearwall deflection exist.

Mechanics Based Approach:
- Uses single story deflection equation at each floor
- Includes rotational & crushing effects
- Uses SDPWS 4 part equation

Other methods exist which use alternate deflection equations, FEM.
Tie Down Attachment to Concrete

Source: Strongtie
Tie Down Bolt with Washer

Source: Strongtie
Tie Down Bolt with Washer

Source: Strongtie
Tie Down Bolt with Washer - Reinforcing

Source: Strongtie
Hold Off Tie Down Anchor

Shallow Podium Slab Anchor Kit

ABL
U.S. Patent 8,381,482

SAR
U.S. Patent Pending

Source: Strongtie
Hold Off Tie Down Anchor

Source: Quicktie
Tie Down Anchor Chair

Source: Earthbound Anchors
Tie Down Anchor Chair in Cast Slab

Source: Earthbound Anchors
Tie Down Anchor Chair on Foundation Wall

Source: Earthbound Anchors
Reinforcing Around Anchor Chairs

Source: Earthbound Anchors
Reinforcing Around Anchor Chairs

Source: Earthbound Anchors
Embedded Steel Plates – Weld on Rods

Fig. RD.5.2.9—Anchor reinforcement for tension.
Tie Down Anchors – Precast Through Bolt
Post Installed Tie Down Anchor

Source: Strongtie
Post Installed Sleeve Anchors
Tie Down to Steel Beam Attachment

Source: Strongtie
Tie Down to Steel Beam Attachment
What do we need when placing anchor chairs, reinforcing, tie down rods, embedded plates, etc. in concrete slabs, especially podium slabs?

Coordination!
Lateral Load Path Continuity: Wall Elevation

- Header distributes upper shear wall end post concentrated load to wall below.
- Header also distributes upper shear wall shear to wall below.
- Posts in lower wall transfer upper wall end post concentrated loads to foundation.
- Wall plates act as drag struts to transfer shear loads from upper wall to lower wall.
Offset Shear Wall Overturning Resistance

Source: FEMA 55
Offset Shear Wall Overturning Resistance

Source: Strongtie
Questions?

This concludes The American Institute of Architects Continuing Education Systems Course

Ricky McLain, PE, SE
WoodWorks
Ricky.mclain@woodworks.org
(802)498-3310

Visit www.woodworks.org for more educational materials, case studies, design examples, a project gallery, and more
Copyright Materials

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

© The Wood Products Council 2015