Using Offsite Construction to Address Affordable Housing

Credits: 1.0 AIA/CES HSW LUs, 1.0 PHD credit, 0.10 ICC credit

MASS TIMBER+

OFFSITE CONSTRUCTION CONFERENCE

PRODUCED BY

WoodWorks | The Wood Products Council is a registered provider of AIA-approved continuing education under Provider Number G516. All registered AIA CES Providers must comply with the AIA Standards for Continuing Education Programs. Any questions or concerns about this provider or this learning program may be sent to AIA CES (cessupport@aia.org or (800) AIA 3837, Option 3).

This learning program is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

AIA continuing education credit has been reviewed and approved by AIA CES. Learners must complete the entire learning program to receive continuing education credit. AIA continuing education Learning Units earned upon completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Course Description

This course will explore how teams can leverage offsite construction to deliver high-quality, affordable housing at scale. Participants will learn how modular approaches support efficient construction, reduce waste, and improve speed to occupancy—without sacrificing sustainability, occupant comfort, or long-term performance. Drawing from real-world projects, this session will provide practical strategies for applying offsite methods to address today's housing challenges through smart, replicable design in urban settings.

Learning Objectives

- 1. Understand the role of offsite construction in addressing housing affordability.
- 2. Identify how modular and offsite construction methods can support health, safety, and welfare through improved building quality, reduced construction timelines, and more consistent performance.
- 3. Learn how early collaboration between the design team and fabricator influences project outcomes.
- 4. Apply lessons from real-world projects to design and deliver sustainable, scalable, and replicable affordable housing in urban contexts.

Introduction

Anthony Shulde

KSG Engineers
Project Structural Engineers

Mike Kirby

Signature Building Systems Modular Manufacturer

Stuart Lachs

Perkins Eastman Architects
Project Architect

KSG Engineers – Project Structural Engineers

Anthony Shulde, Principal/Senior Structural Engineer

KSG engineers specializes in structural engineering and civil engineering services, working with architects, project developers, homeowners, and the construction industry throughout the United States. We pride ourselves on being a dynamic team capable of handling a wide range of engineering projects.

Signature Building Systems - Modular Manufacturer

Michael Kirby – Director of Commercial Operations and Engineering for Signature Building Systems

Based in Moosic, PA, Signature Building Systems (SBS) is a recognized leader in the modular construction field as an off-site fabricator of volumetric, three-dimensional building sections – Modules - that are used in conjunction with on-site construction elements, to form residential buildings from Single Family Homes to Multifamily Dwellings.

Perkins Eastman - Project Architects

Stuart Lachs – Principal & Residential Practice Area Leader at Perkins Eastman Architects

Perkins Eastman is a global design practice founded on the belief that design has the power to enhance people's lives. With over 1,000 professionals across 25 multidisciplinary studios worldwide, our Human By Design philosophy places people at the center of every solution.

Background on Client/Project

The **Municipal Housing Authority for the City of Yonkers** (MHACY) owns and manages a wide variety of properties, and administers a Housing Choice Voucher Program, to provide affordable, stable, decent and safe housing opportunities within the City of Yonkers. By creating innovative housing opportunities, MHACY strives to provide quality, sustainable housing and services that will equip residents and participants to succeed.

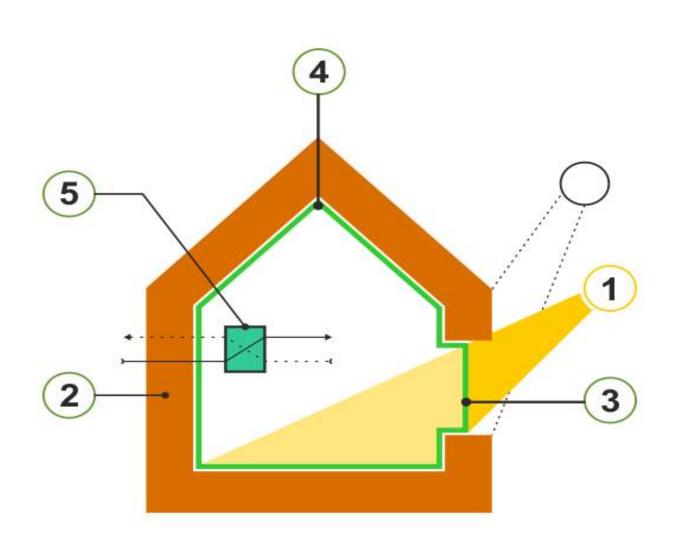
Project Goals:

- Attain Passive House Institute United States (PHIUS) standards
 - EPA Energy Star Multi-family new construction
 - DOE Zero Energy Ready Homes (ZERH)
 - EPA Indoor AirPLUS Standards
 - New York State Energy Research and Development Authority's New Construction Housing Program
 - Enterprise Green Communities
- Address senior housing needs and waiting lists
- Minimize COVID transmission risks for seniors

PROJECT OVERVIEW

- 0.8 acre/35,000± SF site in Yonkers, New York
- 60 1- and 2-bedroom apartments for seniors (62+) at or below 60% AMI
- Four story, wood-frame modular boxes with field constructed walk-out basement
- Passive House (Phius) Certified
- Total project costs approximately \$44 million

IECC 2012 Enclosure HERS 70-80

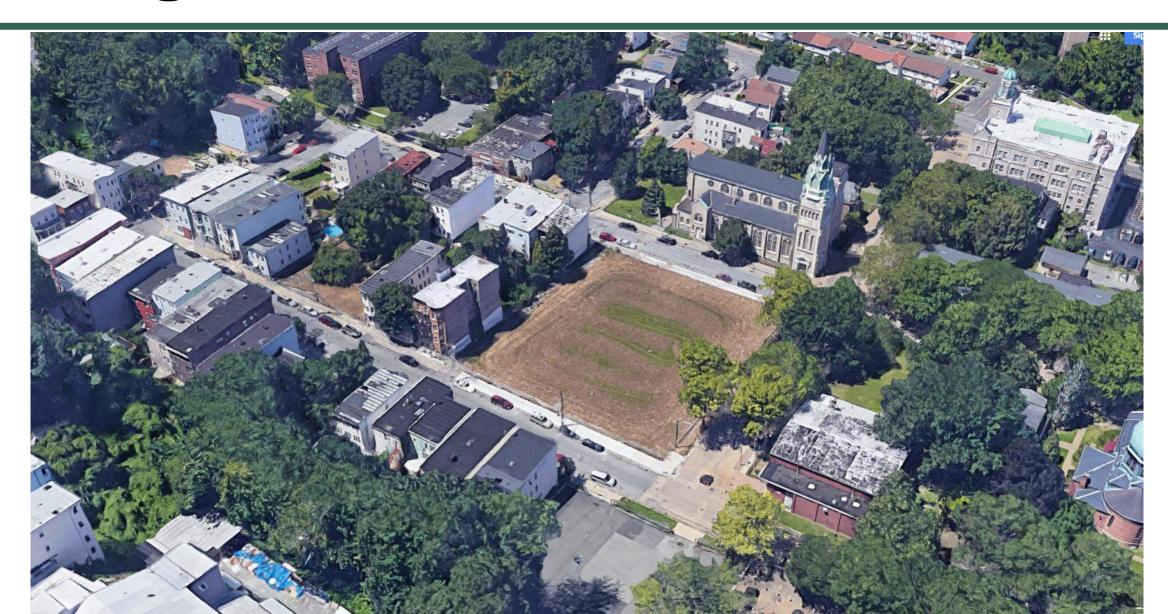

2012

			Electric Vehicle Readiness	Electric Vehicle Readiness
			Balanced Ventilation HRV/ERV	Balanced Ventilation HRV/ERV
		SOLAR READY Depends on climate	SOLAR READY ALWAYS	SOLAR READY ALWAYS
		Eff. Comps. & H2O Distrib	Eff. Comps. & H _z O Distrib	Eff. Comps. & H ₂ O Distrib
		EPA Indoor airPLUS VI	EPA Indoor airPLUS VI	EPA Indoor airPLUS VI
		Ducts in Condit. Space	Ducts in Condit. Space	Ducts in Condit. Space
HVAC QI w/WHV	HVAC QI w/WHV	HVAC QI w/WHV	Micro-load HVAC QI	Micro-load HVAC QI
Water Management	Water Management	Water Management	Water Management	Water Management
Independent HERS Verification	Independent HERS Verification	Independent HERS Verification	Independent HERS Verification	Independent HERS Verification
IECC 2012 Enclosure	IECC 2012 Enclosure	IECC 2015/18 Encl./ES Win.	Ultra-Efficient Enclosure	Ultra-Efficient Enclosure
HERS 60-70	HERS 50-60	HERS 35-45	HERS 30-40	HERS < 0
ENERGY STAR v3	ENERGY STAR v3.1	ZERO ZERH	Phius	@ phius

Combustion On-Site

Readiness

Passive House Design Principals


- Super Insulated Envelope
- 2. Airtight Construction
- 3. High-Performance Glazing
- 4. Eliminate/Reduce Thermal Bridging
- 5. Energy Recovery Ventilation

Project Timeline

```
2/2019 - Initial Architecture RFP and Award
```

- 3/2019 SBS engaged for modular
- 8/2019 KSG engaged for structure
- 2/2019 9/2019 Initial Concept Design & P+Z approvals
- 2020 NYS Dept of Housing and Community Renewal funding submissions & Covid
- 2021 2nd round of HCR funding submissions
- 3/2022 Submit for Building Permit to NYS DOS and Yonkers Building Department
- 10/2022 Groundbreaking
- 7/2023 Delivery and placement of first modular boxes
- 7/2024 C of O Residents move in

Original Site Conditions

Project Program

• 34,848 sf site (0.8 acres)

• Sixty affordable rental apartments for 62-and-over

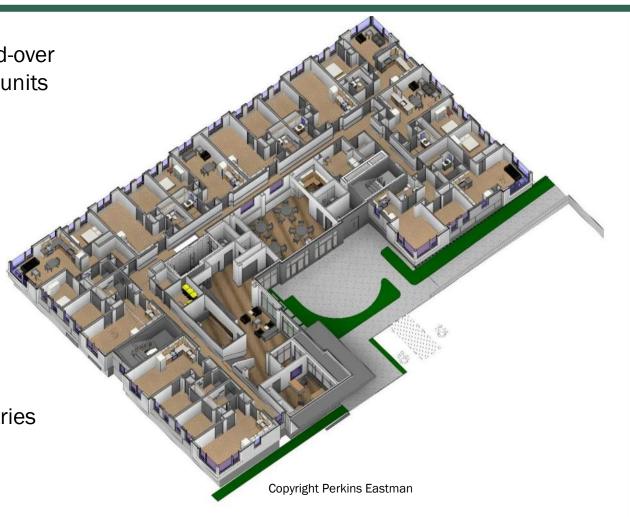
Fully-adapted (Type B) and hearing-impaired units

60,000 Gross SF building area

On-site resident parking

Community Room with Kitchen

Two Business Rooms


- Fitness Room
- Landscaped Courtyard
- Landscaped Roof Deck
- Furnished Lobbies on Two Levels
- Central Laundry facilities

In-unit stacking laundry available on request

Building-wide WIFI

Smart locks at entrances and apartment entries

- Resident storage
- Bicycle Storage
- Management Office

What is Modular Construction?

Modular construction is a process in which a building is constructed off-site, under controlled plant conditions:

Modular construction uses the same materials and designs to the same codes and standards as conventionally built facilities – but in about half the time. Buildings are produced in "modules" that when put together on site, reflect the identical design intent and specifications of the most sophisticated site-built facility – without compromise.

Construction of modular buildings occurs simultaneously with site work, allowing projects to be completed in half the time of traditional construction.

Reduced Construction Schedule:

Because construction of modular buildings can occur simultaneously with the site and foundation work, projects can be completed 30% to 50% sooner than traditional construction.

Elimination of Weather Delays:

60 - 90% of the construction is completed inside a factory, which mitigates the risk of weather delays. Buildings are occupied sooner, creating a faster return on investment.

Built to Code with Quality Materials:

Modular buildings are built to meet or exceed the same building codes and standards as site-built structures, and the same architect-specified materials used in conventionally constructed buildings are used in modular construction projects – wood, concrete and steel.

Final Building Plans

Circulation

3 Lounge 4 Fitness Room 5 Laundry Room 6 Bike Storage

8 Office

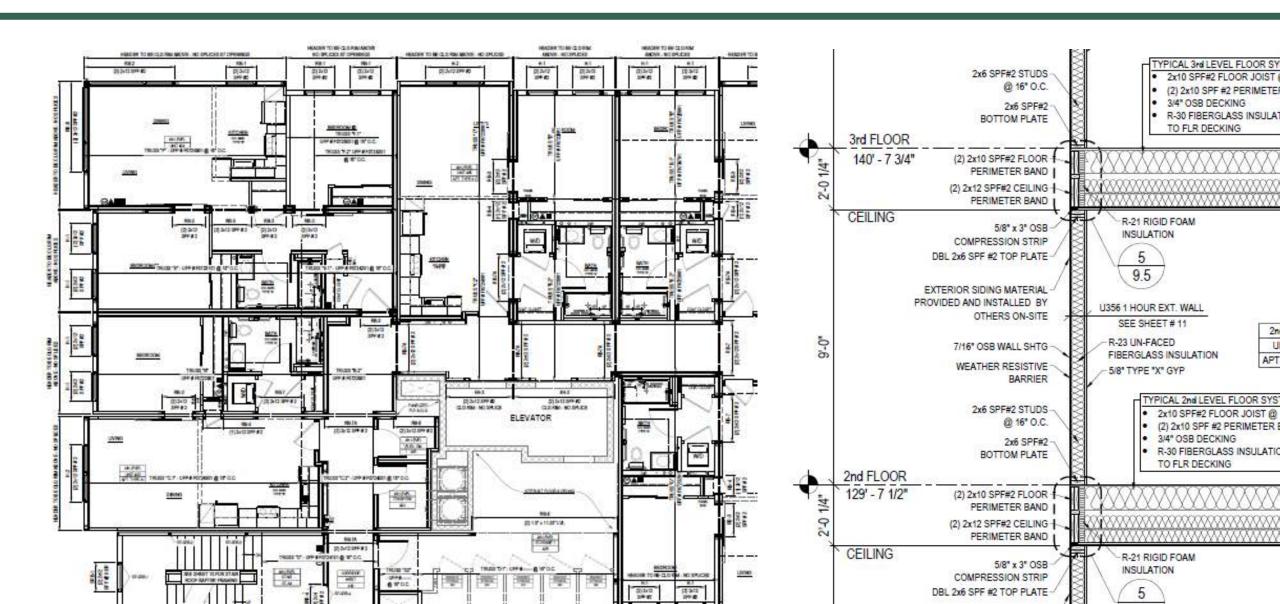
10 Water Room

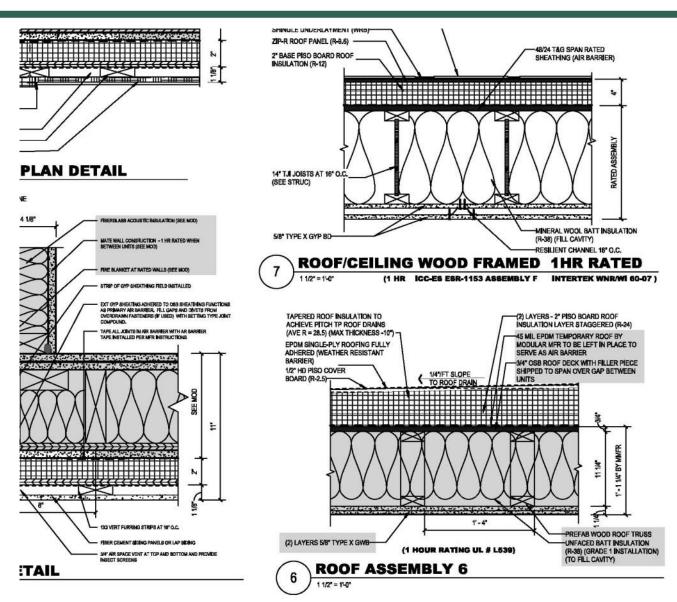
Offices/Admin Utilities

Final Building Plans

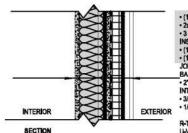
- One Bedroom Unit
- Two Bedroom Unit
- Circulation
- Common Spaces
- Offices/Admin
- Utilities
- 1 Lobby and Mailroom
- 2 Community Room
- 3 Lounge
- 4 Fitness Room
- 5 Laundry Room
- 6 Bike Storage
- 7 Resident Storage
- 8 Office
- 9 Main Trash Room
- 10 Water Room
- 11 Equipment Storage
- 12 Main Electrical Room

Final Building Plans


- One Bedroom Unit
- Two Bedroom Unit
- Circulation
- Common Spaces
- Offices/Admin
- Utilities
- 1 Lobby and Mailroom
- 2 Community Room
- 3 Lounge
- 4 Fitness Room
- 5 Laundry Room
- 6 Bike Storage
- 7 Resident Storage
- 8 Office
- 9 Main Trash Room
- 10 Water Room
- 11 Equipment Storage
- 12 Main Electrical Room



Final Building Plans -Structure


Details

U-VALUE = 0.0285

(1 HOUR RATING UL #U425)

3 EXTERIOR WALL TYPE 3 (EW3)

- (1) LAYER 5/8" TYPE " X" GYPSUM BOARD
 2x4 NOM WD STUD FRAMING AT 16" O.C.(R-4.4)
 3 1/2" THK UNFACED BATT INSULATION (R-15) (GRADE
- INSTALL}
 (1) LAYER 7/16" OSB SHEATHING
 (1) LAYER 5/8" THK EXT GYPSUM THERMAL BARRIER -
- (1) LAYER 5/8" THK EXT GYPSUM THERMAL BARRIER -JOINTS TAPED PENETRATIONS SEALED TO CREATE AIR RAPPIED
- 2" THK, COMPOSITE INSULATED SHEATHING WITH INTEGRAL WEATHER BARRIER- (R-9.6)
 3/4" X 1 1/2" VERTICAL FURRING STRIPS
- 1/2" FIBER CEMENT PANEL OR LAP SIDING

R-TOTAL = 25.19 U-VALUE = 0.0397

(1 HOUR RATING UL #U348)

KIMLEY-HORN OF NEW YORK P.C.

ONE NORTH LEXINGTON AVE. SUITE 1575, WHITE PLAINS, NY 10601

Structural:

KEYSTONE STRUCTURAL GROUP, INC

711 DAVIS, STREET SCRANTON, PA 18505 T. (570) 569-2199

C. (570) 498-7355

01 (010) 400 11

SMITH MILLER ASSOCIATES

38 N MAIN STREET, PITTSTON, PA 18640 T. (570) 299-5865 ext 303 C. (570) 760-9010

Modular Builder

SIGNATURE BUILDING SYSTEMS OF PA, LLC 1004 SPRINGBROOK AVE. MOOSIC. PA 18507

T. (570) 774-1000

PROJECT TITLE:

LA MORA - SENIOR LIVING

23 Mulberry Street Yonkers, NY 10701 Westchester County

PROJECT No: 79710

DRAWING TITLE:

EXTERIOR WALL
TYPES AND TYPICAL
DETAILS

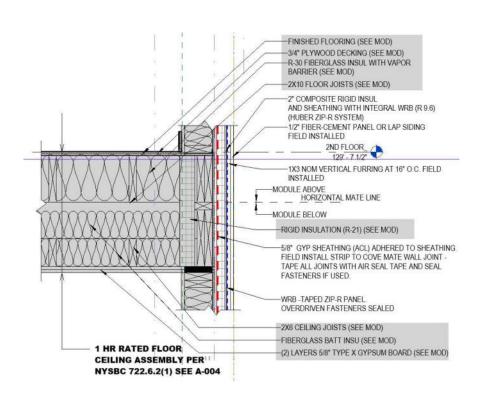
SCALE: As indicated

A-002

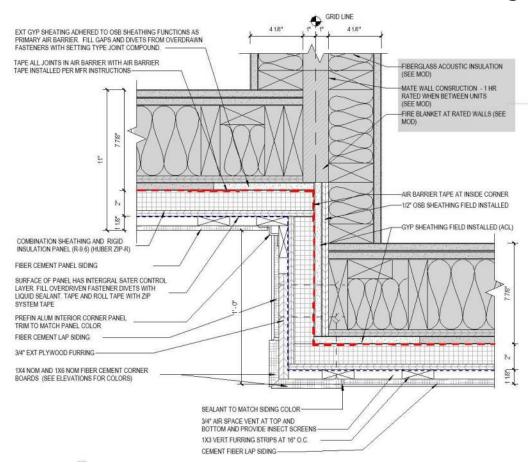
NYS DEPT. OF STATE SUBMISSION

03/11/2022

(1) LAYER 5/8" TYPE "X" GYPSUM BOARD 2x6 WD. STUD FRAMING AT 24" O.C. (R-6.88) · 5 1/2" THK UNFACED BATT INSULATION (R-23) (GRADE 1 INSTALLATION) · (1) LAYER 7/16" OSB SHEATHING (1) LAYER 5/8" THK EXT GYPSUM THERMAL BARRIER -JOINTS TAPED PENETRATIONS SEALED TO CREATE AIR BARRIER · 2" THK COMPOSITE INSULATED SHEATHING WITH INTEGRAL WEATHER BARRIER (R-9.6) • 1x3 NOM VERTICAL FURRING STRIPS AT16" O.C. • 1/2" FIBER-CEMENT PANEL OR LAP SIDING INTERIOR R-TOTAL = 31.81 U-VALUE = 0.0314 SECTION

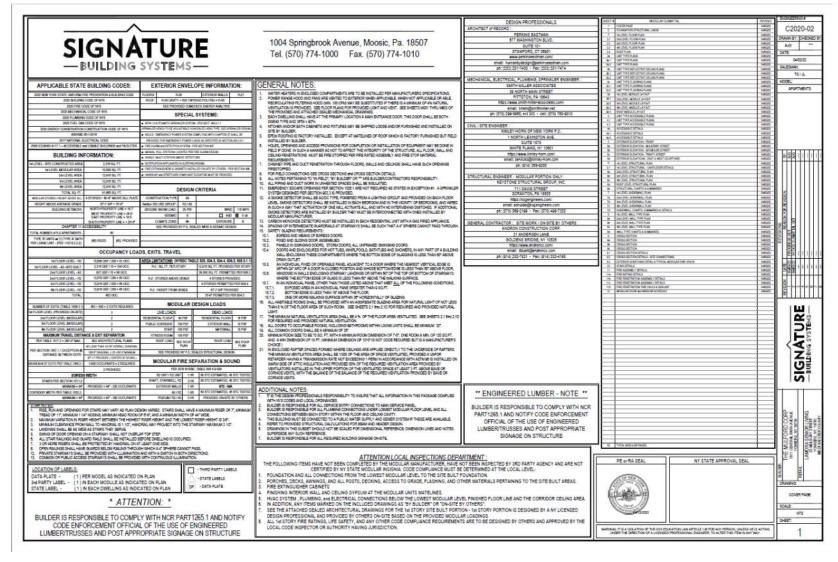

EXTERIOR WALL TYPE 2(EW2)

(1 HOUR RATING UL #U348)

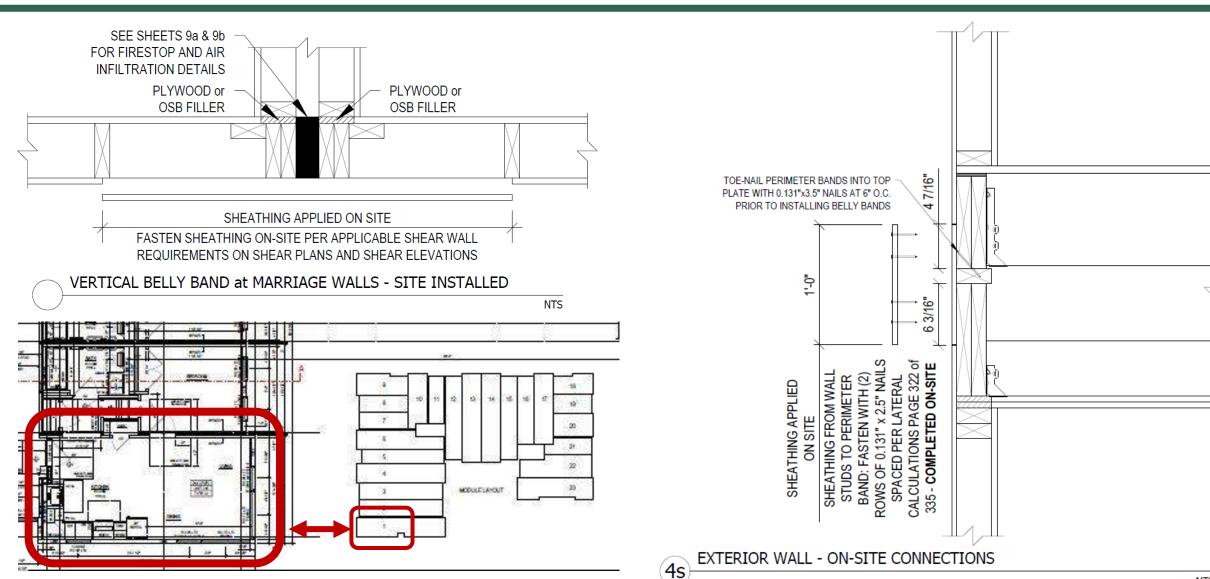

1 EXTERIOR WALL TYPE 1 (EW1)

Passive House specific details

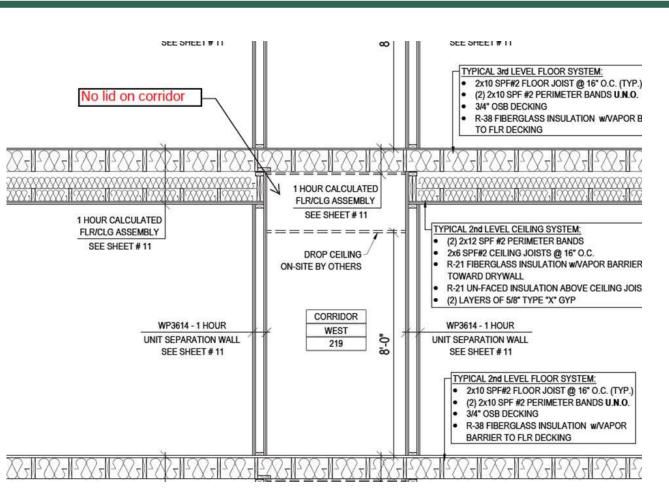
Air-tight construction: detail conditions where boxes join



Vertical Mate

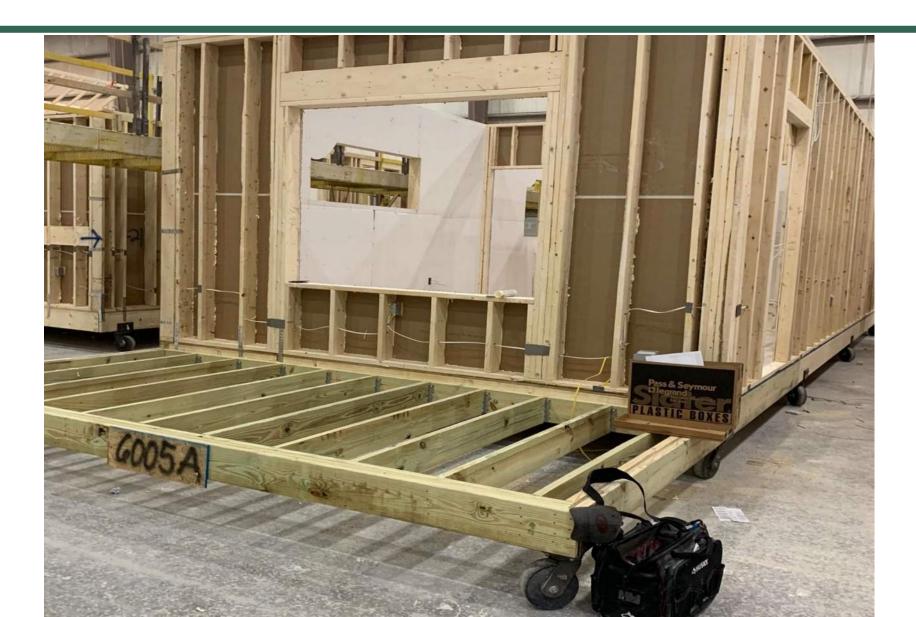

Horizontal Mate

Modular Construction



- 92 Separate boxes
- Delivered to the site in two batches (West and East stacks)
- Modular Manufacturer is Architect of Record for boxes
- Permit review by NYS
 Department of State
- Local authorities only review/approve field-built portions

Modular Details



Modular Details

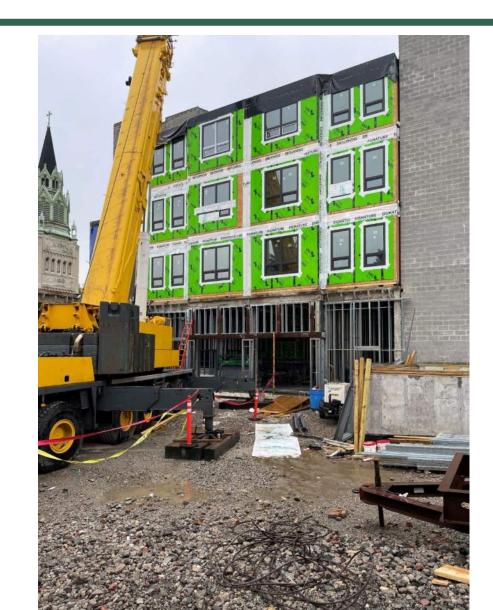
Fabrication

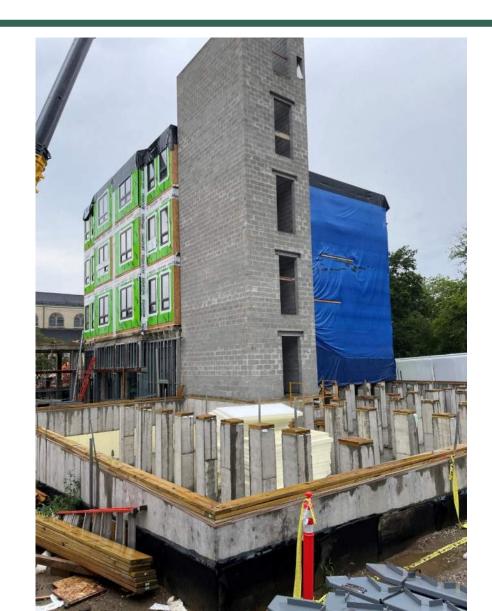
Fabrication

Completed module ready for delivery to jobsite

Placement of the boxes

- ■Wood Frame Boxes sized for transport 16 ft x 60 ft
- •Windows, millwork, finished bathrooms, prime painted walls and ceilings shipped with units.
- ■2" gap horizontally and 3" gap vertically required for erection. Must be air-sealed on-site.



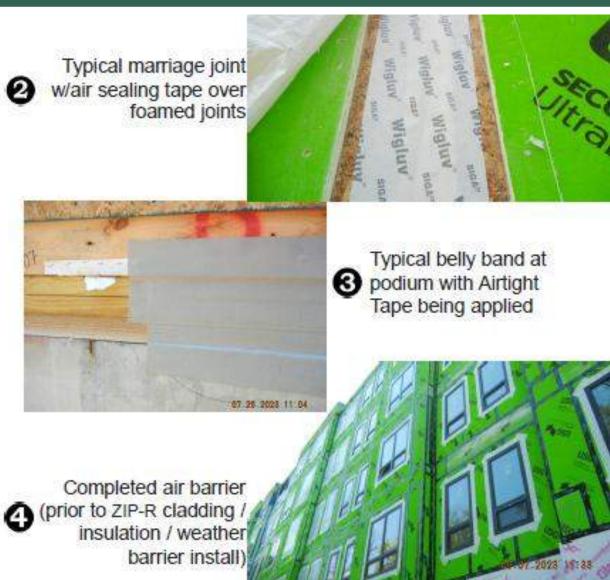


Placement of the boxes

Placement of the boxes

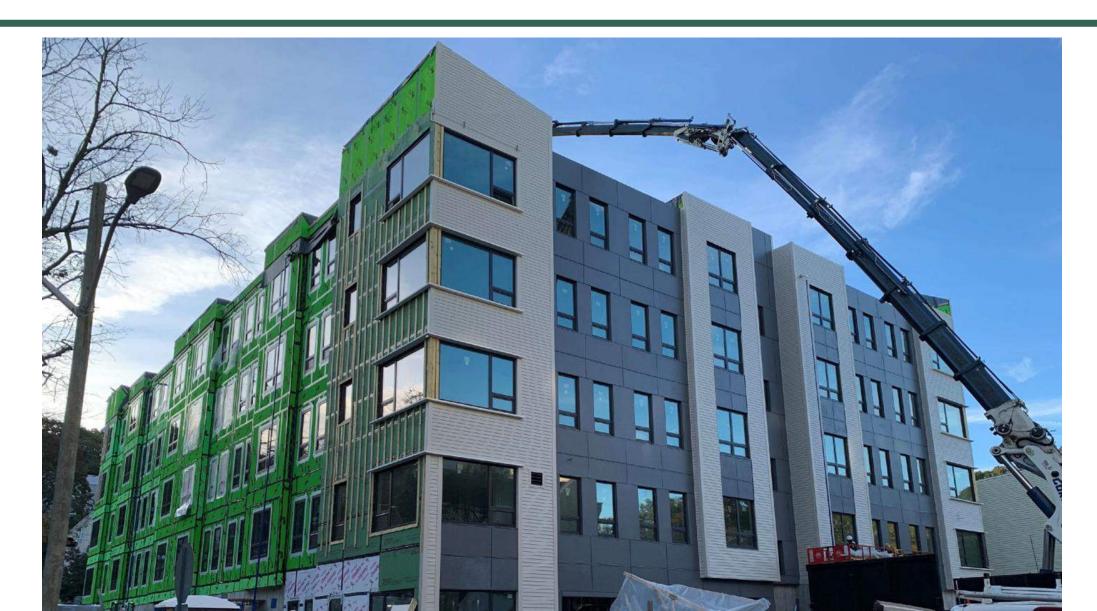
Mate joints

Corridors ceilings are left open



Sealing the Mate Joints

Exposed marriage joints prior to sealing and concealment behind fireproof sheathing (green)



Modules in place

Applying the Exterior Cladding

Passive House Features

Pressure testing in progress

ERV – Energy Recovery Ventilator

Blower door Testing

Air Tightness Test Results

- Whole Building Air Tightness Target = 3654 CFM @ -50 Pa (**0.06 CFM**/SF)
- Test 1 = 0.12 CFM
- Test 2 = 0.08 CFM
- Test 3 = 0.07 CFM
- Final = 0.053 CFM avg depressurization/pressurization 0.061 CFM untaped

Envelope Leakage Test

Technician:

Credentials:

CEM

CPHC

QAD

Yonkers, NY

Customer Information:

Address: 23 Mulberry St

Name:

Email:

Name:

Anthony Lisanti CEM, CPHC

tony@integralbuilding.com

Phius Rater/Verifier

LaMora /Mulford/MHACY

Testing Company:

Integral Building + Design 15 N. Mill Street

Suite 218

Building Information:

Nyack, NY 10960

Phone: 845 535 3035

Project ID: LaMora Whole Bldg Final 23 Mulberry St

Yonkers, NY 10701

Year Built: 2024

Geo-Tag Data: Latitude: 40.937088

Longitude: -73.882623

Timestamp: 2024-03-27 10:29:14

Measured Leakage: 0.05 CFM50/ft2 (Env. Area) Leakage Target: 0.06 CFM50/ft2 (Env. Area)

Compliance with Leakage Target: Pass

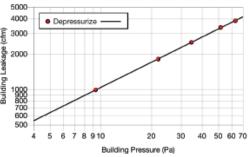
Test ID: Depressurization Taped Whole Bldg Test 6-6-24

Purpose of Test: RESNET Multi-Pt Env. Leakage

3,257.4 (+/- 1.2%) Measured CFM50: **Building Volume:** 443,142.0 ft3 Coefficient (C): 201.8 (+/- 4.6%)

Correlation Coefficient 0.99995

Test Standard: RESNET 380 Multi-Point Test Characteristics: Indoor Temp: 73 °F


Altitude: 121.0 ft

2024-06-06 09:43:45 Test Date and Time:

Effective Leakage Area: 153.4 in² Enclosure Surface Area: 60,903.0 ft2 Exponent (n): 0.711 (+/- 0.013)

Test Mode: Depressurize

Outdoor Temp: 73 °F Time Average Period: 10 seconds

Phius certification achieved in October 2024

Phius Awards

LaMora Senior Living

with the designation of a Phius Certified Project

Project Address 23 Mulberry Street

Yonkers, New York 10701

Program Version Phius CORE 2021

Project Number 1887 Certification Date 08/23/2024

Architecture Planning Perkins Eastman Architects DPC

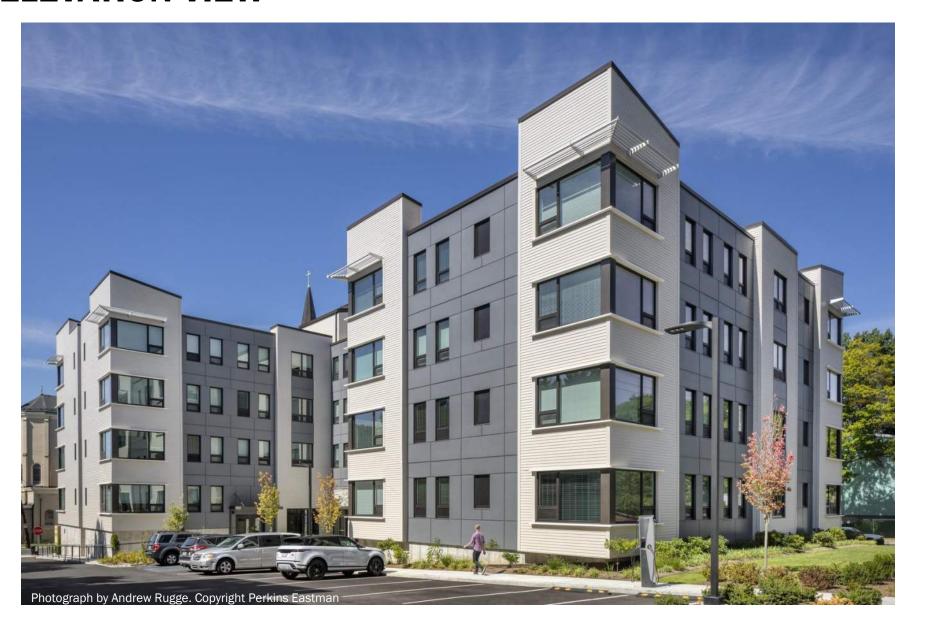
Bullding Owner The Mulford Corporation

Construction Company Andron Construction Corp./Signature Building

Mechanical Systems Designer Smith Miller Associates

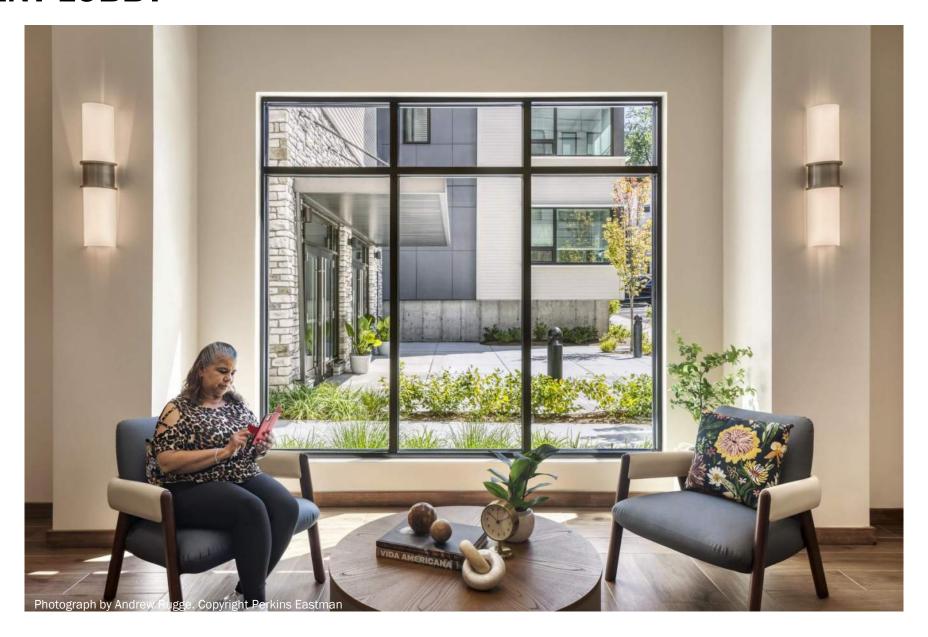
Lead Phlus CPHC® John Loercher Secondary Phlus CPHC® Stephen Tilly

Phlus Certified Verifier Anthony Lisanti



ENTRY CORNER

SOUTH ELEVATION VIEW


MAIN ENTRANCE

ROOF DECK

RESIDENT LOBBY

CORNER APARTMENT VIEW

Lessons earned

AIA Document G701 - 2017

Change Order

PROJECT: (Name and address)

La Mora Senior Living 23 Mulberry Street Yonkers, NY 10710

Date: 06/16/2022

OWNER: (Name and address)

La Mora LLC

1511 Central Park Avenue

Yonkers, NY 10710

CONTRACT INFORMATION:

Contract For: General Contracting

ARCHITECT: (Name and address)

Perkins Eastman

677 Washington Boulevard

Stamford, CT 06901

CHANGE ORDER INFORMATION:

Change Order Number: 007

Date: 06/23/2023

CONTRACTOR: (Name and address)

Andron Construction 21Anderson Lane

Goldens Bridge, NY 10526

LESSONS LEARNED & TAKE-AWAYS

- Work with a team experienced in modular, and ideally, had worked together before.
- Make sure design team understands the capabilities and limitations of modular and incorporates these into the design from the start
- Could this project model be adapted to different contexts or markets? Absolutely!
- What advice would you give other teams starting a modular affordable housing project?
 - Call Us!!!
 - Put the time in to understand modular. Don't try to adapt an existing design to modular. Incorporate modular from the start.
- We learned of the Coltraco Portascanner (submarine technology used for non-destructive testing to detect air leakage)
- It's important for the factory to have their own internal Air boss for instance we designated an internal person, a former QC inspector, whose role was to inspect and photograph all caulking, air sealing, and taping of the modules at the factory. This internal person worked hand-in-hand with the independent energy auditor who came to inspect.
- Understand the abilities and experience of the labor force on the project. You have all these laborers and trades coming in to do
 typical work, but now they also have strict and skilled air sealing requirements and may not realize the importance of the most
 minor item. We had to train our installation crews but again anticipate plumbers, electricians, tin knockers etc. struggle knowing
 the importance or repercussions of Phius demands.
- Budget time and \$ for a modular prototype. Building two modules to test-fit putting them together before mass production was helpful.
- Have you received feedback from residents or the community that influenced how you approach future work? "It doesn't look like a modular building"

QUESTIONS?

This concludes The American
Institute of Architects Continuing
Education Systems Course

Stuart Lachs, AIA, LEED AP

Perkins Eastman

S.Lachs@PerkinsEastman.com

Anthony Shulde, P.E.

KSG Engineers

AShulde@KSGEngineers.com

Mike Kirby

Signature Building Systems of PA

MikeKi@SBSMod.com